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Figure 1: The appearance of two texture-mapped models is transferred to a target model (the Bunny). We analyze the geometric features of the
source and their correlation with texture. The source texture is transferred to the target mesh based on the correlation.

Abstract

Texture variation on real-world objects often correlates with underlying geometric characteristics and creates a
visually rich appearance. We present a technique to transfer such geometry-dependent texture variation from an
example textured model to new geometry in a visually consistent way. It captures the correlation between a set of
geometric features, such as curvature, and the observed diffuse texture. We perform dimensionality reduction on
the overcomplete feature set which yields a compact guidance field that is used to drive a spatially varying texture
synthesis model. In addition, we introduce a method to enrich the guidance field when the target geometry strongly
differs from the example. Our method transfers elaborate texture variation that follows geometric features, which
gives 3D models a compelling photorealistic appearance.

1. Introduction

The visual richness of textures has long been recognized as
critical to photorealism. Recent advances have enabled the
synthesis of elaborate textures from example. However, for
a large class of objects, texture can be quite simple locally,
but may exhibit rich variation over the surface. For exam-
ple, this is the case for weathered objects where dirt or cor-
rosion tends to manifest itself differently over the surface,
but it can also be caused by other aspects of an artifact’s
fabrication and history. In addition, texture variation is often
correlated with local geometric characteristics; dust tends to
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accumulate in areas of low accessibility [Mil94], and corro-
sion often starts at exposed areas [DH96]. Instead of model-
ing the underlying processes that produce a particular texture
variation, we empirically model the variation with statistical
correlation. Our goal is not to simulate the physics of weath-
ering processes but to reproduce the rich visual appearance
of a textured object.

We take a source 3D mesh and its texture as an exam-
ple. Given a target mesh, we synthesize a new texture that
reproduces the variation and geometry correlation from the
source (Fig. 1). Rather than seeking physical accuracy, we
aim at reproducing a visually consistent transfer of the tex-
ture. This problem is related to the “texture-by-numbers” is-
sue, as coined by Hertzmann et al. [HJO∗01], in which a
guidance field of scalar or vector values drives a texture syn-
thesis algorithm. While much work has been dedicated to
constrained synthesis [HJO∗01, EF01] and to the ability to
vary textures spatially [ZZV∗03, LLH04, MZD05], little at-
tention has been paid to the creation of the guidance field it-
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self. In a nutshell, in the texture-by-numbers issue, previous
work has addressed texture while we focus on the numbers.

Faithfully transferring the richness of real texture varia-
tion involves a number of challenges. First, we need to com-
pile a list of geometric properties or features that are rel-
evant to texture variation. Second, the number of possible
features is too large and needs to be reduced to prevent the
curse of dimensionality at the texture synthesis step. In ad-
dition, irrelevant elements in the guidance field could lead to
spurious variations in the transferred texture. We introduce
a dimensionality-reduction step that extracts the geometric
features that are actually correlated with texture variation.

Because our approach leverages the geometry of the input
and example 3D meshes to create rich texture variation, it
can be challenging to transfer to a target mesh bearing little
similarity with the source. To address this issue, we intro-
duce a feature matching technique that transfers statistical
characteristics of the source guidance field onto the target
guidance field. While this step does not strictly respect the
input geometry, it greatly increases the realism of the syn-
thesized texture and also addresses missing data problems
when the target contains features that are not present in the
source guidance field.

The guidance field drives a constrained texture synthe-
sis algorithm such as existing non-parametric “texture-by-
numbers” approaches [HJO∗01, EF01]. We also introduce a
parametric variant based on the Heeger and Bergen model
[HB95]. It lacks the ability to represent structured textures,
but is superior in producing detailed variations in case of
strong geometry correlation. Moreover, it is computationally
less expensive and does not require parameter tweaking.

Our contributions can be summarized as follows:

• We capture the correlation between texture and geometry
based on a set of surface descriptors. Using dimensional-
ity reduction, we construct a parsimonious guidance field
for constrained texture synthesis.

• We introduce a technique which matches the guidance
field on the target object to the source guidance field.

• We extend Heeger and Bergen’s model [HB95] to synthe-
size texture over meshes by following a guidance field, as
an alternative to existing non-parametric approaches.

1.1. Related Work

Our work builds on a large body of literature on texture and
material appearance. In this section we focus on work most
related to our goal.

Texture Synthesis over meshes. Synthesis of station-
ary textures on surfaces has been demonstrated by many
authors [PFH00, Tur01, WL01, YHBZ01, SCA02, TZL∗02,
WGMY05]. Gorla et al. [GIS03] synthesize a stationary sur-
face texture using non-parametric sampling but adjust orien-
tation based on curvature. We also take into account surface

metrics for the purpose of reproducing variation among dif-
ferent types of texture, but automatically deduce which geo-
metric features are needed.

Spatially Varying Texture Synthesis has been demon-
strated in 2D [Wei01, MZD05, ZFCG05] and on 3D sur-
faces [ZZV∗03]. The specification of variation is left to the
user, while we wish to explain the variation according to
the characteristics of the underlying surface. Texture-by-
numbers [Ash01,HJO∗01,EF01] synthesizes texture accord-
ing to a user-defined guidance field using non-parametric
synthesis. We focus on creating and manipulating a guid-
ance field specifically for geometry-correlated texture. We
also introduce a novel synthesis approach based on a para-
metric model, which respects the correlation better.

User-Driven Decoration. Zhou et al. [ZWT∗05] present
a texture mapping approach with a focus on handling se-
mantics. They carefully align the texture with the under-
lying geometry, but rely on a sparse set of user-defined
correspondences to do so. We aim to automatically re-
solve a dense correspondence between texture and geometry.
Zelinka et al. [ZG04] describe local surface characteristics
using spatial neighborhoods that sample 3D offsets or curva-
ture [GGGZ05]. They use this measure to guide geometry-
dependent colorization based on sparse user input. Our tech-
nique yields automatic geometry-dependent texturing from
an example. In addition, our guidance field is much more
compact.

Weathering. The geometry-correlated textures we aim
to reproduce are often caused by weathering processes like
dirt accumulation and corrosion [DH96, DPH96, DEL∗99,
CXW∗05]. Measures such as accessibility and exposure
have been applied for mimicking a tarnished appearance
[Mil94]. Wong et al. [WNH97] used accessibility, curva-
ture and exposure to drive procedural texturing of weathered
surfaces. Dorsey and Hanrahan [DH96] employed accessi-
bility to guide generation of metallic patinas. In concurrent
work, Lu et al. [LGR∗05] and Giorghiades et al. [GLX∗05]
have sought to reproduce weathered appearance based on ac-
quired examples. They propose suitable guidance fields for
specific phenomena: drying [LGR∗05], paint crackling and
patina formation [GLX∗05]. We do not make assumptions
about the underlying phenomena or fabrication processes,
but instead infer a suitable selection from an overcomplete
set of geometric features for a given example. In addition,
we can deal with the case of having vastly different source
and target geometry using our feature matching technique.

2. Method Overview

Our method takes a (source) triangular mesh with a texture
map as input which constitutes the training pair. Given a tar-
get mesh, we then generate a texture map exhibiting similar
texture variation and correlation. The meshes are acquired
using a commercial scanner, while texture is obtained from
calibrated photographs (see Section 6.1).
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We compile an overcomplete set of geometric features
such as curvature and visibility, which are potentially rele-
vant to texture variation and compute them for every location
on the mesh.

We then seek to characterize which features are actually
correlated with texture. For this, we use Canonical Corre-
lation Analysis [Hot36] to obtain a subspace in the feature
set that maximizes correlation with the texture color. The
reduced features constitute the basic guidance map for con-
strained texture synthesis.

In some cases, the target mesh might be more detailed
than the source mesh, such that the transferred texture looks
too granular. Another related problem occurs when not
enough data are available in the source model to map to
the target, e.g., due to a partial scan. We introduce a fea-
ture matching step that transfers multi-scale characteristics
from the source to the target features to tackle these issues.

The guidance field is then used to drive constrained tex-
ture synthesis over the surface. Using Hertzmann et al.’s ter-
minology [HJO∗01], the correlated features of the source
and target are the “unfiltered” A and B images, while the
source and target textures correspond to the “filtered” ver-
sions A′ and B′, respectively. We present techniques based
on non-parametric and parametric texture synthesis, with a
tradeoff between the precise handling of structure and speed.

3. Geometric Correlation

Before introducing our set of geometric features and our di-
mensionality reduction approach, we describe the infrastruc-
ture we use to handle data on meshes.

3.1. Data Representation

We use well-established techniques to represent data over
meshes. We opted for uniformly distributed set of surface
points, as used by Turk [Tur01] and Wei et al. [WL01]. In our
examples, 512000 points were used. Alternatively, a texture
atlas [LPRM02] can be employed, but special care needs to
be taken to deal with borders and potential parameterization
distortions. We follow Turk [Tur01] to build our representa-
tion. The mesh is sampled uniformly at multiple resolutions
using point repulsion [Tur91]. Each point carries a vector x

of geometric features — as discussed in the next section —
and a texel y (RGB triplet). We will use superscripts s and t
to denote the source and target features (texels), respectively.
The feature (texel) signal can be evaluated at any surface lo-
cation using scattered data interpolation [She68].

A number of technical steps such as the feature matching
introduced in Section 4 or the texture synthesis in Section 5
require a multi-scale representation of the data. We construct
a Gaussian pyramid over the mesh by successive smoothing
and down-sampling [Tur01].
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Figure 2: Two geometric features: solid angle curvature
and directional occlusion (based on spherical harmonics).
Other features in our set are height and surface orientation
(not shown here). Left to right: solid angle curvature with
a small radius captures local variations; a big radius cap-
tures global characteristics such as exposure; ambient oc-
clusion (constant spherical harmonics band) contributes as
an exposure indicator; directional occlusion (linear band)
can measure influence along the direction of gravity.

Figure 3: 2D analogy of the multi-scale solid angle curva-
ture. The solid angle curvature approximates the fraction of
a sphere enclosed by the surface as the solid angle subtended
by the corresponding sphere-surface intersection curve. The
sphere radius controls scale. In this example here, at the
smaller scale, the surface is convex (left); at a large scale, it
is concave (right).

3.2. Geometric Features

We compiled a set of geometric characteristics that are likely
to be relevant for various geometry-dependent effects. Each
of these feature vectors will be computed at each vertex of
the source and target mesh, and interpolated at each texel.
See Figure 2 for examples. We use the following features:

Normalized Height. We observed that texture and color
variation often depend on height, that is, the distance to
the supporting plane. Height-dependent variation can be at-
tributed to weathering, for instance. We measure the location
of each surface point along the vertical axis (normalized to
[0,1] with respect to the object’s bounding box).

Surface Normal. The local orientation of the surface can
be relevant for certain weathering-related effects (e.g., influ-
ence from the direction of the sky). This orientation is well
represented by the surface normal.

Multi-Scale Solid Angle Curvature. We adapt the sur-
face descriptor introduced by Connolly [Con86], which
turns out to be useful for measuring curvature and expo-
sure, e.g., to capture a tarnished appearance. It approximates
the fraction of the sphere that lies inside the object. Given a
sphere centered at the point of interest, the solid angle curva-
ture is equal to the solid angle subtended by the intersection
of the surface with this sphere (Fig. 3). We compute the inter-
section analytically using the spherical excess formula. The
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radius acts as a scale parameter, akin to the size of a convolu-
tion kernel. We empirically chose four different radii which
are scaled relatively to the diagonal of the object’s bounding
box. Solid angle curvature is closely related to accessibil-
ity [Mil94], but has the advantage that it provides informa-
tion for both concave and convex parts of the surface. Also,
the solid angle curvature can be evaluated easily at multiple
scales, unlike discrete mean curvature [MDSB02] and acces-
sibility.

Directional Occlusion. Occlusion is a useful indicator of
exposure [WNH97]. We introduce a novel measure which
can be seen as a directional extension of ambient occlu-
sion [ZIK98]. We capture the large-scale directional vari-
ation of visibility by projecting the binary visibility func-
tion at each location onto the spherical harmonic (SH) ba-
sis [SKS02] using ray casting. The resulting coefficients are
used as features. We found that the constant and linear band
are sufficient. Note that the constant SH band actually en-
codes ambient occlusion. Orientation is defined with respect
to object space, in order to capture directional dependencies
which could coincide with directions such as gravity.

The total dimensionality of our feature set is 12. We found
these features to be sufficient for our purposes. One could
easily extend this set with other measures, such as accessibil-
ity [Mil94], mean curvature [MDSB02,GGGZ05,GLX∗05],
and so on, but they are already closely related to the above
features and thus provide little additional information. See
Figure 4 for a demonstration of the usefulness of these fea-
tures.

3.3. Correlation Analysis

Given the geometric features and a texture for a source
model, we need to reduce the dimensionality of the former
(12D) to make synthesis tractable. Our problem is different
from the typical usage of a technique such as PCA, because
we are interested in the correlation between two kinds of
vectors (features and texture description), while PCA only
characterizes the extent of a dataset in one space. Consider
the simple case where color is a function of only curvature
(Figure 5). PCA preserves an irrelevant feature like height
because it exhibits significant variation in the dataset, al-
though it is uncorrelated to texture color.

This is why we employ Canonical Correlation Analysis
(CCA) [Hot36, MKB00, Bor98] to compute a parsimonious
feature subset for a given example (Fig. 5). CCA finds an
affine low-rank transformation such that the source feature
vectors xs and the texel RGB vectors ys have maximal corre-
lation. In contrast, standard dimensionality reduction using
PCA transforms xs’ into a space that maximizes variance
(see Figure 6 for a comparison between CCA and PCA).
Under the assumption that xs and ys are zero-mean, CCA
returns two matrices Wx and Wy and a diagonal matrix of
respective correlations

√
Λ. These are related as follows:

√
ΛW⊤

x xs ≈ W⊤
y ys
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Figure 4: Importance of our feature set. We take 8 tex-
tured models, apply our correlation analysis using CCA and
observe the principal direction (i.e., the subspace with the
highest correlation value). The magnitude of the components
of this direction vector are plotted for each model (each vec-
tor is normalized for clarity). In general, we see that every
feature contributes significantly in at least a few of the ex-
amples. Solid angle curvature appears to have importance
across various scales. Ambient occlusion has a large influ-
ence in many cases, which can be attributed to the presence
of residual illumination artifacts in the input texture (these
did not lead to visible artifacts however).

The matrices Wx and Wy transform the features and tex-
ture respectively into a correlated latent space. We are only
interested in transforming the features, so matrix Wy is not
used. The correlated source feature vectors xs⋆ are computed
with xs⋆ = W⋆⊤

x xs, where W⋆⊤
x retains only d components.

The resulting feature dimensionality d is always equal to
the lowest dimensionality among the two datasets [Bor98].
Thus for our case, d is always equal to three (cf. RGB), re-
gardless of the size of the feature vector. The dimensional-
ity reducing matrix-vector multiplication boils down to three
weighted summations over the feature components. These
weights in matrix W⋆⊤

x basically tell us which features are
relevant (see Figure 4). Finally, the correlated target features
are obtained by re-applying the same transform to the target
features: xt⋆ = W⋆⊤

x xt , where xt are the target features. The
result of our analysis is the set of correlated features xs⋆ and
xt⋆, which form the source and target guidance fields respec-
tively. See Figure 8 for a plot of the guidance fields.

Other techniques exist that find a relation between two
datasets, in particular the ones that maximize covariance in-
stead of correlation (e.g. Partial Least Squares [Bor98]). Co-
variance however is heavily dependent on the scale of the
two spaces xs and ys, an issue that is ill-defined in our case.
In contrast, CCA is insensitive to the respective scales of the
two spaces and therefore is more robust in our context.

Currently we are only correlating geometry with color
(RGB triplets). More elaborate texture descriptors could be
applied, however, the approximation with RGB triplets al-
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Figure 5: Illustration of CCA. We compute 2 features on
the owl: solid angle curvature (horizontal axis) and height
(vertical axis). The scatter plot displays the points in feature
space, along with their color (enhanced contrast for clarity).
We apply CCA between features and texel brightness, and
the resulting linear subspace (red axis) captures the strong
correlation between brightness and solid angle curvature.
In contrast, PCA would find the opposite direction (vertical)
because it does not take correlation with brightness into ac-
count and only considers the variation of the features.

ready performs sufficiently well. More advanced texture de-
scriptors are likely to add redundant complexity to our ap-
proach. We experienced that as long as the average texture
colors for the different parts (e.g. flat, exposed, concave, etc.)
of the object are discernible, our technique is able to estab-
lish a sufficient amount of correlation, even for very intricate
and structured textures (e.g. as seen in Figure 1).

4. Feature Matching

We now address the case where the geometry of source and
target model differ significantly, leading to vastly different
feature distributions in the source and target. This raises an
important issue: we will need to synthesize texture for fea-
tures that were not observed in the source, making the trans-
fer problem ill-posed. We address this problem by forcing
the statistics of the target features to match that of the source.
In addition, the overall texture distribution will be different
if the geometric feature distribution is different. Since our
goal is visual faithfulness rather than physical accuracy, we
choose to match the features of the new model to comply

(a) source (b) PCA (c) CCA

Figure 6: Comparing transfer results for PCA and CCA. The
texture generated using PCA is not correlated with the geom-
etry, whereas the texture using CCA emphasizes the fine de-
tail on the bunny.

with the source. For brevity, we will refer to the correlated
features obtained after CCA simply as “features”.

4.1. Marginals

Matching the features is similar to matching color distribu-
tions [RAGS01, HB95]. This is usually done using 1D his-
togram matching [GW02] for each axis, often in a decor-
related space [RAGS01, HB95]. In order to better han-
dle complex distribution, we chose the n-dimensional his-
togram matching technique recently introduced by Pitie et
al. [PKD05]. Their technique operates by repeatedly rotating
the data, and performing standard histogram transfers along
the axes, and projecting the data back to the original space.

Altering the features through matching corresponds to
changing the geometric description of the target model.
However, we still remain as faithful to the original geometry
as we can, since histogram matching monotonically modi-
fies existing features and will not introduce spurious novel
elements such as new bumps or creases.

4.2. Multiscale Feature Content

We have found that the feature distribution must be matched
at different scales. For instance, when the source model is
smooth and the target contains mainly small details, it is
useful to reduce the features at smaller scales, while coarser
features should be enhanced. We therefore decompose the
features into a Laplacian pyramid, and match the pyramid
coefficients in addition to the actual feature values, in the
same spirit as Heeger and Bergen [HB95]. The Laplacian
pyramid is computed from the Gaussian pyramid of features,
by subtracting each up-sampled coarser level from the cur-
rent level, while leaving the coarsest one unchanged [AB81].
Figure 7 shows the influence of feature matching on a trans-
fer between very different geometries.

In Figure 8, we show a transfer from a scanned bagel to
the Bunny using parametric synthesis. It is a particularly
challenging case because the source data is incomplete, in
the sense that certain feature values are not present. In par-
ticular, directional occlusion is not sampled in the down-
ward direction because only the top half of the bagel was
acquired. Using our multi-scale feature matching approach,
we are able to fill in the missing data, and generate a con-
vincing and consistent transfer.

5. Texture Transfer

Given the texture on the source model and the guidance field
on the target mesh, we use constrained synthesis to generate
a texture with appropriate variation. We adapt two standard
constrained synthesis algorithms that trade off between the
ability to handle structured textures, speed, and robustness
to parameters.
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(a) source (b) no matching (c) marginals (d) multi-scale

Figure 7: Feature matching enhances the guidance field of the target for more consistent transfers when source and target
are different. The bowl only has thick round features, in contradistinction to the bunny’s sharp bumps and creases. Image (b)
shows the result without feature matching. We observe that the green texture almost did not carry over to the bunny. Also, the
bunny texture seems too have a too finely grained appearance. Matching the marginals (c) improves the result slightly. Only if
we match the features at multiple scales (d), the transfer becomes visually consistent. Note how the head of the bunny has a
smoother appearance, as seen on the exposed parts of the bowl.

5.1. Non-parametric Synthesis

Our guidance field can be readily applied to the previ-
ously introduced non-parametric constrained synthesis tech-
niques [HJO∗01, EF01]. We implemented the Image Analo-
gies framework [HJO∗01] on top of Turk’s non-parametric
texture synthesis method for surfaces [Tur01]. For each un-
synthesized texel on the target, a local surface neighborhood
containing the already synthesized part and the underlying
correlated features is compared against all neighborhoods
on the source model. The texel with the closest match ac-
cording to the L2 norm, is copied onto the target. Synthesis
proceeds coarse-to-fine in a Gaussian pyramid [WL00]. As
described by Hertzmann et al., we improve texture consis-
tency by combining the best match strategy [EL99, WL00]
with Ashikhmin’s coherence heuristic [Ash01]. Several pa-
rameters control the synthesis: the relative weights of texels
and features, the coherence bias (to decide whether to pick a
coherent texel or a best match-texel) and the neighborhood
size.

5.2. Parametric Synthesis

Although non-parametric synthesis is capable of reproduc-
ing compelling textures, it is challenging to use for all cases,
in particular when the texture shows intricate variations due
to strong correlation with geometry. This introduces spatial
patterns on the target which were not observed on the exam-
ple object, thereby making it challenging to satisfy the con-
straints in the neighborhood search from the limited number
of possible matches. Reducing the constraints by downsiz-
ing neighborhoods improves correlation, but at the risk of
destroying texture consistency. In addition, non-parametric
synthesis has many parameters to tweak, which are strongly
dependent on the input.

We propose a weaker texture model when texture is
strongly correlated and unstructured. We extend the Heeger

and Bergen model (H&B) [HB95] to follow the guidance
field. The basic H&B algorithm decomposes texture into
a band-pass multi-resolution representation like the steer-
able [SFAH92] or Laplacian [AB81] pyramid. Texture is de-
scribed by the global intensity histogram and the histograms
at each pyramid level. Synthesis is performed by simultane-
ously transferring pyramid and intensity histograms of the
source to target image.

5.2.1. Constrained Heeger and Bergen

Heeger and Bergen’s algorithm relies on global histograms.
In order to extend it to spatially-varying texture, we need to
handle such information locally. While we could compute a
different histogram for each pixel, including only neighbors
with similar features, the cost would be prohibitive. This is
why we introduce a segmentation of the object through k-
means clustering [Llo82] on the values in the guidance map.
Similar values in the guidance map will be partitioned into
the same segment. Because the feature values are correlated,
each segment will contain the same type of texture, thereby
providing a neighborhood over which texture histograms can
be measured locally. For each of these segments, we com-
pute a set of histograms for the (decorrelated [HB95]) inten-
sity and Laplacian pyramid levels. Each segment is identi-
fied by its average correlated feature Fs, and its local texture
is described by the histogram set Hs. This collection of pairs
Fs → Hs defines a mapping from features to texture. See
Figure 9(a) for an example of this segmentation.

The same clustering algorithm is performed on the tar-
get guidance field. For each target segment, we compute the
average feature Ft . We use the source mapping Fs → Hs

to infer the histogram set Ht for each F t using interpola-
tion. The “nearest” source clusters with respect to F t are
looked up using the L2 norm. We interpolate the histogram
set Ht from the k-nearest Hs’s using the reciprocal square
distance [She68]. We employ the inverse cumulative distri-
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(a) Source (b) Result, no feat. match. (c) Result, matched marg. (d) Result, multi-scale

(e) Source Features (f) Features, no feat. match. (g) Features, matched marg. (h) Features, multi-scale

Figure 8: Application of feature matching. The top row shows texture; the bottom row shows the corresponding guidance fields,
where the feature values have been shifted and scaled to [0,1] and displayed as RGB values. We scanned the top half of a bagel
(a), and transferred its texture to the bunny model using parametric synthesis. Since the source model is incomplete, the transfer
is ill-posed. Not all feature values in the target are available in the source: directional occlusion is only sampled for the upper
hemisphere because the top half of the bagel is available. Consequently, the guidance field takes on spurious values (f), yielding
a transferred texture that is not consistent with the source (b): the texture is too rough and there are artifacts on the head and
back of the bunny. Matching marginal feature statistics partially solves the problem, but the transfer still has some artifacts
(c), which are due to discontinuities in the guidance field (g). The multi-scale feature matching solves this, yielding a smooth
and visually consistent transfer (d). Note that the lighting and the orientation of the bunny was selected to highlight differences
between textures. The supplementary material shows renderings under more natural illumination.

bution functions instead of the actual histograms in order to
consistently blend the distributions [MZD05]. Then, a new
texture is synthesized for each segment based on the derived
histogram set Ht [HB95]; see Figure 9(d) for a result.

As an alternative to interpolation, we could establish ex-
plicit correspondences between source and target clusters.
However, interpolation has the advantage of being able to
generate novel mixtures of texture.

5.2.2. Feathering

Since k-means provides a hard segmentation, we feather the
result to avoid seams using a Gaussian with a standard devia-
tion equal to that of the corresponding cluster’s distribution.
At segment borders, the weighting functions are forced to
sum to one on a per-texel basis, thereby assuring consistent
blending. The feathering is used on both the source and tar-
get. Synthesis proceeds by applying the histogram transfers

to each segment, and re-combining all segments using a per-
texel weighted summation. Figure 9(b) shows the effect of
feathering.

5.2.3. Initialization

Although clustering already enforces much of the structure,
additional measures should be taken to obtain a crisp re-
sult. The Heeger and Bergen model is too weak to synthe-
size structure such as crevices. As a result, naively initializ-
ing the target with random noise generates an unstructured
and uncorrelated result. We therefore create a “good guess”
of what the texture should look like. In particular, the ini-
tialization should contain most of the structure, which will
be refined further by H&B. This is similar to the sharpness
preservation for texture morphing, as proposed by Matusik
et al. [MZD05]. In our case, H&B generates texture on top
of the initialization instead of attenuating high frequencies.
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(a) Segmentation (b) Feathered Segmentation

(c) Initialization w. Linear Regr. (d) H&B Histogram Transfer

Figure 9: Steps involved in computing a transfer to the
dragon model using constrained parametric synthesis. Seg-
mentation on the feature values is used to define neighbor-
hoods in which texture can be measured locally. In figure
(a), we show such a segmentation where each cluster is dis-
played by unique color. We turn the hard segmentation into
a soft one using feathering. In figure (b), cluster colors are
displayed using the feathered weights. Before applying the
histogram transfer, we initialize the result using simple lin-
ear regression per segment (c), yielding an good estimate
geometry-correlated structure. Finally, Heeger and Bergen-
style histogram transfer [HB95] adds textural detail (d).

We apply a simple linear regression model by fitting the
point-wise mapping between correlated features Xs and tex-
els Ys for each source cluster. Linear regression finds a ma-
trix As and offset vector bs, such that Ys = AsXs + bs. The
linear regression coefficients for the target — At and bt —
can also be inferred using the the k-nearest neighbor interpo-
lation technique described earlier. The target is initialized by
applying Yt = AtXt + bt . Finally, a fixed amount of white
noise is added to the resulting initialization which acts as
“seed” for generating texture details. See Figure 9(c) for an
example of initialization.

5.3. Discussion

Non-parametric synthesis achieves good results when the
guidance field stays fairly smooth. One must be careful
however in specifying the correct parameters (neighborhood
size, relative weighting of features versus texture, and the
Ashikhmin coherence parameter), which may require te-
dious trial-and-error, especially given that it takes over 2
hours per transfer (for 5×5 neighborhoods).

A particular difficult case for non-parametric sampling

is when texture is strongly correlated with the underlying
geometry (feature values). Despite efforts to find the right
parameters, non-parametric sampling will fail to reproduce
texture in a visually consistent manner here. The reason
is that consistency in texture and features must be traded
off against each other, which is not always possible. In or-
der to achieve a decent degree of texture consistency, one
must employ a sufficiently large neighborhood size (5× 5
in our experiments). Unfortunately, as neighborhood size
grows, the search space will exponentially increase in vol-
ume, while the number of available example neighborhoods
on the source remains constant. It will therefore be harder
to find a match because not enough examples are available.
In particular, when a certain pattern in the target guidance
field does not occur on the source, the feature neighborhood
cannot be matched, which makes it hard to conform with
the target guidance field. Using very small neighborhoods
(3×3) or increasing the guidance weights improves consis-
tency with the features, but produces poor textures. Typi-
cally, the synthesis “gets stuck” in certain parts of the ex-
ample texture (as reported previously [EL99]). Several re-
searchers have shown that texture quality can be improved
by enforcing coherency, i.e. by copying over patches instead
of pixels (this can be controlled by the Ashikhmin coher-
ence parameter). Unfortunately, this results in similar prob-
lems since copying large patches of texture is now encour-
aged, which again assumes that the source and target guid-
ance fields are very similar to each other.

If the texture does not contain much structure, aside from
structure defined by the guidance field, the parametric tex-
ture model will create good transfers. It is fast — transfers
take about 15 minutes — and virtually parameter-free; only
the number of clusters can be changed, which we set to 50
by default. The algorithm follows the guidance map very
closely since it operates at a very high granularity, result-
ing in textures that are highly correlated with the underly-
ing geometry. Furthermore, it generalizes well to unseen pat-
terns in the guidance field. On the downside, structured tex-
tures cannot be handled with this texture model. The use of a
Laplacian pyramid limits the textures to be isotropic. Using a
steerable pyramid instead would allow anisotropy but the as-
sociated image filters are oriented, requiring a local frame at
each point that is consistent with the input texture. However,
the majority of the textures we observed are isotropic, and
for the remaining cases, we use non-parametric synthesis. A
detailed visual comparison between the two algorithms can
be found in Figure 12 and in the supplementary material.

6. Results

6.1. Data Acquisition

Our input data consist of scanned texture-mapped objects.
Most of the models in this paper were downloaded from Es-
teban and Schmitt’s collection [ES03].

In addition, we acquired several models ourselves using
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a 3D laser scanner. Texture maps were constructed from
one or more images taken by a CCD camera. We reduced
illumination artifacts by using only indirect lighting dur-
ing acquisition, and high pass filtering in log-space as post-
processing [OCDD01]. The images were registered using
Lensch et al.’s silhouette matching [LHS00]. Finally, we re-
sampled and combined all images in a texture atlas using
“Graphite” [Gra03].

The user is provided with a simple tool to mask out parts
of the texture. Although this is optional, it sometimes helps
in removing unwanted information which can possibly “con-
taminate” the output, like markings on statues and incom-
plete parts of the texture map. The masked texels are simply
discarded from the training set.

6.2. Discussion of Results

For all parametric synthesis results in the paper, we used
three Laplacian pyramid levels, three H&B iterations, and
50 clusters for segmentation. We used the following para-
meters for non-parametric synthesis in Figures 1 (right) and
11: neighborhood size of 5 × 5 and a coherence parame-
ter of 1.0. We used the ANN library [AMN∗98] to retrieve
the nearest neighborhoods. Features and texture were given
equal weights, and the number of levels in the Gaussian
pyramid was 3. We ran our implementation on a Pentium
4 (2.8Mhz) with 1Gb of main memory. The time required
to create the guidance field creation (CCA) is about 15 sec-
onds. It takes roughly 15 minutes to synthesize a texture us-
ing the parametric version, and about 2 to 3 hours using non-
parametric synthesis (for 5×5 neighborhoods). Multi-scale
feature matching requires and extra 10 minutes.

Figure 1 shows a transfer of a strongly correlated texture
and a slowly varying structured texture, which were gen-
erated with parametric (left) and non-parametric synthesis
(right). Figure 11 shows another transfer of structured tex-
ture using the non-parametric version.

Figure 10 shows a transfer from a computer-generated
texture. We applied Dorsey et al.’s simulation [DH96] to
generate a patina texture on the bunny model. The patina is
transferred to the dragon. The transfer resembles the “ground
truth” patina, which was created using the same parameters
as the source.

Figure 12 compares parametric to non-parametric synthe-
sis for the case of strongly correlated texture. We tried non-
parametric synthesis with different settings, but were unable
to find a good set of parameters for which the transfer con-
forms with the input. The parametric version does not re-
quire parameter tweaking, and is able to reproduce the ap-
pearance faithfully.

7. Conclusions and Future Work

We have presented a method for the transfer of geometry-
correlated texture variation from a texture-mapped source

mesh to a new mesh. We compile an overcomplete set of
geometric features and reduce it to only the relevant ones by
analyzing correlation. The reduced feature set is compact in
order for it to be used as guidance field for constrained tex-
ture synthesis. Matching the statistics of the target guidance
field to the source at multiple scales makes improves transfer
quality when source and target geometry differ significantly.

We have used two constrained texture synthesis ap-
proaches with different characteristics. Our parametric
model trades the ability of handling structure texture for
stronger correlation (vice versa for the non-parametric
model). Consequently, structured textures that exhibit a high
degree of correlation may pose a problem.

While our method can reproduce texture variation due to
weathering processes, it does not capture all weathering ef-
fects. In particular effects that do not sufficiently correlate to
geometry are not handled, such as paint peeling [GLX∗05]
and water flows [DPH96]. The extension of our feature set to
non-geometric parameters is an interesting avenue of future
work.

The feature matching enhances existing features in the
guidance field, but cannot create novel elements. For in-
stance, when transferring from a detailed model to a coarser
one, small-scale details might be missing which are needed
to match the target to the source’s frequency content.

We are planning to transfer the variation of material ap-
pearance as encoded by BRDFs and BTFs. We want to ex-
tend our work to the animation of weathering processes, both
using manual specification and acquired time-lapse data —
similar to the work by Georghiades et al. [GLX∗05].
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[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precomputed
radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. In SIGGRAPH ’02: Proceed-
ings of the 29th annual conference on Computer graphics and
interactive techniques (2002), ACM Press, pp. 527–536.

[Tur91] TURK G.: Generating textures on arbitrary surfaces using
reaction-diffusion. Computer Graphics 25, 4 (July 1991), 289–
298. Proceedings of SIGGRAPH 91.

[Tur01] TURK G.: Texture synthesis on surfaces. In SIGGRAPH
’01: Proceedings of the 28th annual conference on Computer
graphics and interactive techniques (2001), ACM Press, pp. 347–
354.

[TZL∗02] TONG X., ZHANG J., LIU L., WANG X., GUO B.,
SHUM H.-Y.: Synthesis of bidirectional texture functions on ar-
bitrary surfaces. In SIGGRAPH ’02: Proceedings of the 29th
annual conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 2002), ACM Press, pp. 665–672.

[Wei01] WEI L.-Y.: Texture Synthesis by Fixed Neighborhood
Searching. PhD thesis, Stanford University, 2001.

[WGMY05] WANG L., GU X., MÜLLER K., YAU S.-T.: Uni-
form texture synthesis and texture mapping using global parame-
terization. In Proceedings of Pacific Graphics (2005).

[WL00] WEI L.-Y., LEVOY M.: Fast texture synthesis using
tree-structured vector quantization. In SIGGRAPH ’00: Pro-
ceedings of the 27th annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 2000), ACM
Press/Addison-Wesley Publishing Co., pp. 479–488.

[WL01] WEI L.-Y., LEVOY M.: Texture synthesis over arbitrary
manifold surfaces. In SIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 2001), ACM Press, pp. 355–360.

[WNH97] WONG T.-T., NG W.-Y., HENG P.-A.: A Geometry
Dependent Texture Generation Framework for Simulating Sur-
face Imperfections. In Eurographics Rendering Workshop 1997
(June 1997), pp. 139–150.

[YHBZ01] YING L., HERTZMANN A., BIERMANN H., ZORIN

D.: Texture and shape synthesis on surfaces. In Proceedings of
12th Eurographics Workshop on Rendering (2001).

[ZFCG05] ZALESNY A., FERRARI V., CAENEN G., GOOL

L. V.: Composite texture synthesis. International Journal of
Computer Vision 62, 1/2 (2005), 161–176.

[ZG04] ZELINKA S., GARLAND M.: Similarity-based surface
modelling using geodesic fans. In Proceedings of the Second
Eurographics Symposium on Geometry Processing (2004), Euro-
graphics Association, pp. 209–218.

[ZIK98] ZHUKOV S., IONES A., KRONIN G.: An ambient light
illumination model. In Rendering Techniques Š98 (Proceedings
of the Eurographics Workshop on Rendering) (1998), pp. 45–
Ű55.

[ZWT∗05] ZHOU K., WANG X., TONG Y., DESBRUN M., GUO

B., SHUM H.-Y.: TextureMontage: Seamless texturing of arbi-
trary surfaces from multiple images. In ACM SIGGRAPH 2005
(2005), pp. 1148–1155.

[ZZV∗03] ZHANG J., ZHOU K., VELHO L., GUO B., SHUM H.-
Y.: Synthesis of progressively variant textures on arbitrary sur-
faces. ACM Transactions on Graphics 22, 3 (July 2003), 295–
302.

c© The Eurographics Association 2006.


