
Real-Time Bump Map Synthesis

Jan Kautz∗ Wolfgang Heidrich† Hans-Peter Seidel∗

Max-Planck-Institut für Informatik∗ University of British Columbia†

Figure 1: Bump mapped sphere at different levels of detail consistently generated and shaded with the normal distribution shown on the left.

Abstract

In this paper we present a method that automatically synthesizes
bump maps at arbitrary levels of detail in real-time. The only in-
put data we require is a normal density function; the bump map is
generated according to that function. It is also used to shade the
generated bump map.

The technique allows to infinitely zoom into the surface, because
more (consistent) detail can be created on the fly. The shading of
such a surface is consistent when displayed at different distances to
the viewer (assuming that the surface structure is self-similar).

The bump map generation and the shading algorithm can also be
used separately.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics processors; I.3.3 [Computer Graphics]:
Picture/Image Generation—Bitmap and frame buffer operations;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, Shading, Shadowing and Texture

1 Introduction

Bump mapping was originally introduced by Blinn [3] in 1978. He
showed how wrinkled surfaces can be simulated by only perturbing
the normal vector, without changing the underlying surface itself.
The perturbed normal is then used for the lighting calculations in-
stead of the original normal.

Current graphics hardware usually supports bump mapping by
providing per-pixel operations such as dot-products accessible
through either OpenGL extensions [18] or DirectX 8 [16]. These

∗{kautz,hpseidel}@mpi-sb.mpg.de, Stuhlsatzenhausweg 85, 66123
Saarbrücken, Germany.

†heidrich@cs.ubc.ca, Dept. of Computer Science, 3645 - 2424 Main
Mall, Vancouver, BC, V6T 1Z4, Canada

per-pixel operations are very flexible and allow not only bump maps
with diffuse and specular reflections using a Lambertian reflection
model or resp. the Blinn-Phong model [4, 12, 15], but even using
more complex reflection models [14].

Bump maps are usually created by artists to create the illusion
of certain surfaces or surface structures. In many cases these bump
maps just contain more or less random bumps to better simulate
rough materials at close-ups. The perceived roughness of such sur-
faces should be the same when displayed at different distances to
the viewer. But shading of these bump mapped surfaces is often
inconsistent across different levels of detail, because the shading
model at the coarsest level of detail does not correspond to the bump
map at finer level of details. Or put the other way round, the bump
map is not consistent with the chosen shading model.

We present a method that automatically generates bump maps
in real-time given only a shading model. It performs consistent
shading under the assumption that the wrinkled surface is fractal
and that the reflection model is based on microfacets (i.e. many tiny
specular surface patches). This also allows to infinitely zoom into
the surface, because more (consistent) detail can be created on the
fly.

The basic idea of our method is simple. Since we presume that
the shading model is based on microfacets, we can create a bump
map that is consistent with the original shading model by distribut-
ing bumps according to the normal density function (NDF), which
describes the probability distribution of different microfacet orien-
tations. When the viewer gets closer to the bump map, we can cre-
ate more wrinkles at higher frequencies while maintaining the nor-
mal distribution of the shading model; see Figure 1. The creation of
bumps is governed by a noise function. The shading is always done
with the original shading model, which is (almost) correct, because
the generated detail is self-similar (fractal); no matter how close
one zooms in, the microfacets always have the same distribution.

Consequently, we are synthesizing finer detail from a very coarse
description. It is worth noting that this is different from most ex-
isting texture synthesis methods, where data is synthesized at same
level of detail. Our main contributions are

• a method that interactively synthesizes bump maps at arbitrary
levels of detail from a normal density function, and

• a rendering algorithm that performs shading of the generated
bump maps with a reflectance model based on the same nor-
mal density function.

These two parts can actually be used independently.



In the following section we will briefly review some related
work. In Section 3 we will first give an overview of our method
and then detail the bump map generation in Section 4 and the ren-
dering algorithm in Section 5. After presenting some results in Sec-
tion 6 we show possible extensions (Section 7) and finally conclude
(Section 8).

2 Related Work

While bump mapping has been around for a while [3], implementa-
tions using graphics hardware have been proposed more recently. A
technique called embossing [5] uses a multipass method that works
on traditional graphics hardware. However, dot-product bump map-
ping is preferred nowadays because it produces better results and
is more flexible, although it needs hardware support for advanced
per-pixel operations. It directly stores the normals of the surface in
texture maps [12, 30] and can be used to render diffuse and specular
reflections from small surface bumps.

Special hardware for bump mapping has also been proposed or
even implemented [7, 17, 21]. Olano and Lastra [19] used a more
general approach, they have built graphics hardware that can run
small shading programs and hence is capable of doing bump map-
ping.

Many reflectance models have been introduced in computer
graphics the past years. We will only briefly mention those that are
closely related to our work. Blinn [4] proposed a very simple shad-
ing model based on microfacets, which is often used in the context
of bump mapping. It is a modification of the commonly used Phong
model [23] to make it visually more satisfying. The Cook-Torrance
model [6] is also based on microfacets, but adds a shadowing and
Fresnel term to make it more realistic. Ward [28] introduced an
anisotropic BRDF model that is based on an anisotropic Gaussian
microfacet distribution. Ashikmin et al. [1] have recently intro-
duced a way of generating reflection models from arbitrary normal
distributions.

Recently new techniques have been developed to incorporate
more complex BRDF models into real-time rendering. For exam-
ple, the Banks model [2] and the Cook-Torrance model [6] were
used by Heidrich and Seidel [12]. More general reflectance mod-
els were used for hardware accelerated shading by Kautz and Mc-
Cool [13]. These methods cannot be used for bump mapping, be-
cause they assume smoothly varying surface normals. Kautz and
Seidel introduced a method [14] that combines bump mapping with
more complex analytic BRDFs, but did not address the issue of
mipmapping or filtering in general.

An effective way to do mipmapping of bump maps (in software)
was introduced by Fournier [8]. A similar technique was proposed
by Olano and North [20]. Our method tries to solve a different
problem, but performs consistent shading for different mipmap lev-
els assuming the surface structure is fractal.

There is also a host of work on texture synthesis, both in the
computer graphics and in the computer vision literature. Com-
mon approaches include feature matching (e.g. [10]), Markov ran-
dom fields (e.g. [29]), and physical simulations such as reaction-
diffusion models [31]. These algorithms synthesize global patterns
that are much more complex than the simple fractal patterns we are
considering. However, these algorithms are far from realtime syn-
thesis and only partly amenable to level-of-detail representations.

3 Overview

As our method is based on a fractal microfacet model, we first pro-
vide a summary of such models before we give an overview of the
proposed algorithm.

3.1 Microfacet-Based Reflectance Models

Microfacet-based reflectance models assume that a surface is made
of many small, flat, and perfectly specular patches (Fresnel reflec-
tors), so-called microfacets (see [6] for a more detailed discussion).
These microfacets only reflect light in the specular direction with
respect to its own normal n̂m. The overall appearance of the surface
is governed by the distribution of the orientation of microfacets,
given as a probability density function p(n̂m), also called the nor-
mal density function (NDF); see Figure 2.

normal density (NDF)

vn h

mn

l

Figure 2: Microfacet-based surfaces. n̂m is the normal of a micro-
facet, n̂ is the normal of the surface, and v̂ and l̂ are exemplary local
viewing and light directions. On the right you can see a visualiza-
tion of a normal density function p(n̂m).

This NDF can be used directly for shading purposes, given that
we are far enough away so that we cannot discern individual micro-
facets. The normalized half-way vector ĥ between the eye vector v̂

and the light vector l̂ can be used to look up the fraction of micro-
facets that will reflect light towards the eye for the given light and
eye vector. This value p(ĥ) can be directly used for shading, as it is
done for example by the Blinn-Phong model [4] or in [8, 20]. More
accurate models [27, 4, 6, 8, 1] include a self-shadowing/masking
term and a Fresnel term. In our work we currently do not include
these terms, simply for efficiency reasons. But inclusion of these
terms is possible using a combination of [14] and [1].

3.2 Fractal Surfaces

We assume the surface to be made of fractal microfacets. A fractal
microfacet surface can be described as a surface consisting of mi-
crofacets that are not perfectly specular but themselves consist of
microfacets, which happen to be distributed according to the same
density function, and so on. This implies that when we get close
enough to the surface to see individual microfacets, we have to per-
form shading of the microfacets with the reflectance model based
on the NDF. When we get even closer we have to generate more
microfacets distributed according to the NDF.

3.3 Algorithm Overview

The problem we are trying to solve is the following. Instead of re-
quiring an artist to draw a bump map, which would only be valid for
one level of detail, we want to synthesize a bump map at arbitrary
levels of detail from a given reflectance model. The reflectance
model must be based on microfacets and the probability density
function p(n̂m) of the microfacet distribution must be given.

This density function tells us what percentage of microfacets is
oriented in which way. So synthesizing a bump map requires the
creation of a normal map that is consistent with the density func-
tion. Then this bump map, represented as a normal map, has to be



Noise−Texture

Final Image NDF

Normals

Shading with
NDF

Normal Lookup

Figure 3: Conceptual overview of our method. First, the object is
rendered with distance-dependent fractal noise (2D Gaussian dis-
tributed random numbers). Then a lookup is performed that returns
local surface normals defining a bump map; the lookup table is gen-
erated in such a way that the normals are distributed according to
the NDF. Finally the NDF is used to shade the bump map.

shaded. Since we assume the surface to be fractal, shading is done
with a microfacet reflection model based on the same NDF.

We are not explicitly creating the normal map, we rather gener-
ate it on-the-fly. The generation of a normal map according to a
probability density function can be seen as the generation of a ran-
dom variable with a given density. This boils down to precomputing
a lookup table that takes a two-dimensional, [0, 1]-distributed ran-
dom vector as its input and outputs a normal (more detail about this
can be found in the next section). The lookup table is generated in
such a way that normals are distributed according to the NDF.

Rendering is straightforward then. A distance-dependent noise
texture is generated for the object, and the values from the noise tex-
ture and the precomputed table are used to look up normals defin-
ing a bump map. Then the NDF-based reflection model is used for
shading this generated bump map.

Different levels of detail depending on the distance to a surface
are generated as follows. When the object is seen from far away,
no individual bumps should be visible, i.e. the 2D noise texture
should contain a vector (depends on the representation of the NDF)
that looks up the normal (0, 0, 1). When getting closer to the sur-
face more detail will become visible, which can be e.g. achieved
by smoothly blending in Perlin noise [22]. The closer you get the
more octaves of Perlin noise should be added, resulting in more
detail when needed.

In Figure 3 the individual steps are visualized.

4 Bump Map Generation

As explained in the previous section, we want to build a lookup
table that maps 2D random vectors to normals according to the
normal density function. This can be seen as the generation of a
random variable with a given density. This is a well-known prob-
lem [24], and is generally solved the following way.

Given a two dimensional probability density function (PDF)
f(x, y) and uniformly [0, 1]-distributed random numbers (r1, r2),

we first compute the marginal density function:

m(x) :=

∫ ∞

−∞

f(x, y)dy,

and then its cumulative distribution function (CDF):

M(x) :=

∫ x

−∞

m(x′)dx
′
.

Given a uniformly distributed random number r1, we can compute
a new random number xn that is distributed according to f(x, y) in
the following manner:

xn := M
−1(r1), M

−1 being the inverse CDF.

Now it is necessary to compute the following conditional PDF for
a given xn:

c(y|xn) :=
f(xn, y)

m(xn)
,

and its cumulative distribution function:

C(y|xn) :=

∫ y

−∞

c(y′|xn)dy
′
,

which can then be used to compute the other new random number:

yn := C
−1(r2|xn), C

−1 being the inverse CDF.

The random numbers (xn, yn) are also in [0, 1], but distributed ac-
cording to the PDF f(x, y).

This works if the initial random numbers (r1, r2) are uniformly
[0, 1]-distributed. If the (independent) initial random numbers r1

and r2 are distributed according to some density function g(x), we
first have to map them to uniformly distributed random numbers
and then apply the computation from above. The mapping is done
the following way:

r
∗
1 := G(r1), r

∗
2 := G(r2),

where (r∗1 , r∗2) are the new uniformly distributed random variables,
G(x) is the cumulative distribution function of g(x). Combining
both mappings gives

xn := M
−1(G(r1)),

yn := C
−1(G(r2)|xn).

We use several octaves of Perlin noise to synthesize a turbulence
function (i.e. fractal noise). Since both Perlin noise and the re-
sulting turbulence function are known to produce random numbers
(r1, r2) with a Gaussian distribution [25], we have to do the addi-
tional mapping described above.

The above computations can be used directly to create a normal
map according to a normal density function from our Gaussian dis-
tributed random numbers. The NDF is two-dimensional depending
on the x and y-coordinate of n̂m, and hence the same technique
can be applied. Since we store our normal distribution functions
in a 2D hemispherical map (directly using the x- and y-component
of the normals, see right side of Figure 2), all the above compu-
tations are done numerically. The actual distribution g(x) of the
Perlin turbulence is also computed numerically. We assume that
the Gaussian distribution of the Perlin turbulence remains constant
independent of the number of octaves, which is a valid approxima-
tion. The resulting random numbers (xn, yn) are expanded to a
normal describing the direction of a microfacet:

n̂m =
(

2xn − 1, 2yn − 1,
√

1 − (2xn − 1)2 − (2yn − 1)2
)T

.



We generate a full lookup table L(r1, r2) with 256 × 256 en-
tries for mapping (r1, r2) to n̂m. This is done once for every nor-
mal density function in a preprocessing step. In addition we are
deterministically generating a tangent frame for every normal n̂m,
which we also store in the lookup table. A complete tangent frame
is needed for anisotropic NDFs, as seen for example in Figure 1,
otherwise the normal is sufficient. The lookup table is then used
during rendering.

5 Rendering

In this section we will detail how the rendering is done. We will first
show how this technique can be used for software rendering, and
then how the same method can be implemented on current graphics
hardware (using an NVIDIA GeForce 3).

5.1 Software

A software renderer (e.g. raytracer) can easily implement this tech-
nique. The rendering algorithm for a single ray works as follows.
When the ray hits the object, we compute the distance d from the
eye to the intersection point. If the distance is above some (user-
defined) threshold, then the object is not close enough to discern
its surface structure, hence we just shade the surface with the NDF
(i.e. no bump mapping at all). Alternatively, we could use a user-
provided bump map with an arbitrary normal distribution as the top
level for macroscopic features.

If the distance is below some threshold, bumps start appearing.
We then evaluate a noise function for that surface — a fractal noise
function such as Perlin turbulence should be used. We adjust the
number of used octaves depending on the distance d, the closer the
more octaves we use. Whenever a new octave is added, it should be
blended in smoothly to avoid popping artifacts. The noise function
has to be evaluated twice (with different settings) to get two differ-
ent random numbers (r1, r2). These are used to look up a (local)
microfacet tangent frame (normal n̂m, tangent t̂m, and binormal
b̂m) using the table L(r1, r2).

Then we compute the halfway vector ĥ between the viewing and
light vector and express it in the local surface tangent frame, which
must be provided by the object’s model. Now both the microfacet
tangent frame and the half-way vector ĥ are in local coordinates rel-
ative to the local surface frame. As stated before, we want to shade
the microfacets (defined by the tangent frames {t̂m, b̂m, n̂m}) with
the NDF and not the original surface. Since the NDF is indexed
with the half-way vector in local coordinates, we have to project
the half-way vector ĥ into the microfacet’s tangent frame resulting
in ĥm. Now we can lookup the NDF p(ĥm) and use the stored
value for shading.

See the Section 6 for results using software rendering.

5.2 Hardware

In this section we will describe how our bump map synthesis
method can be implemented on current graphics hardware.

5.2.1 Dependent Texture Lookup

In order to implement our technique we need dependent texturing,
a feature now supported on modern graphics hardware. Dependent
texturing allows the entries of one texture map to be used as texture
coordinates for a lookup into a second texture map.

We implemented our technique on an NVIDIA GeForce 3, the
only currently available graphics card with a fairly flexible depen-

dent texture lookup1 . We will briefly outline how this works on
GeForce 3 cards.

The dependent texture lookup is embedded in the texture
shaders, a new stage in the pipeline which takes place before multi-
texturing, i.e. also before NVIDIA’s register combiners. The texture
shaders are divided into four stages. Every stage takes a texture map
from the corresponding texture unit as its input, as well as the tex-
ture coordinate set from that texture unit. Other potential inputs are
the results from one or two previous stages. Every stage runs one
of about 20 canned programs. The programs include normal tex-
turing, dependent texture lookup from the green and blue channel
of a previous stage, computation of dot-products, dependent lookup
into a 2D texture using results of two dot-products, and many more.

Please note that since the texture shaders only support four
stages, we can perform shading with isotropic NDFs only. For
the hardware rendering we store the isotropic NDF pi(n̂m · ĥm)
in a 1D texture. An additional stage would allow us to implement
anisotropic distributions as well.

5.2.2 Rendering Algorithm

The algorithm consists of multiple parts: noise generation, the nor-
mal lookup using L(r1, r2), and shading with the NDF. We explain
all three parts here.

Ideally, the graphics hardware would support a procedural noise
function, for example using an implementation similar to the one
proposed by Hart et al. [9]. Since this is not (yet) the case, we
have two possibilities to texture an object with distance-dependent
noise. The first possibility is to implement Perlin turbulence with a
multipass algorithm [5], which is expensive. We chose to use a less
expensive way. We create a mipmapped texture containing Perlin
turbulence that is applied to the object. The finest mipmap level
contains the most octaves, every coarser mipmap level contains one
octave less. This is done to fade out the bumpy appearance of the
surface when it is viewed from far away.

The single-pass rendering algorithm uses NVIDIA’s texture
shader extension, which provides the dependent texture lookup. It
works as follows. We load the noise texture into texture unit 0 (the
green and blue component contain r1 and r2), the lookup texture
L(r1, r2) into texture unit 1, and the NDF into texture unit 3. In
contrast to the software rendering method, the lookup table only
contains normals n̂m, which is because the texture shaders are lim-
ited to four stages.

We then set up the texture shader as follows. Texture shader
stage 0 performs standard texture mapping with the noise texture.
Texture shader stage 1 takes the green and blue component of the
noise texture and looks up L(r1, r2) resulting in a microfacet nor-
mal n̂m. The texture coordinates for texture unit 2 are set to the
halfway vector ĥ (with respect to the surface tangent frame). Tex-
ture shader stage 2 is set to compute the dot-product between the
texture coordinates, i.e. ĥ, and the result from stage 1, i.e. the nor-
mal n̂m. The last texture shader stage then uses the result of this
dot-product to look up a 1D texture map containing the isotropic
NDF (actually the texture shaders require a lookup into a 2D tex-
ture, we simply set the second coordinate to zero). The result from
this lookup is p(n̂m · ĥm), which is then directly used to texture the
surface.

If the texture shaders supported one more stage, it would be pos-
sible to implement shading with anisotropic NDFs. Other vendors
are expected to incorporate a similar stage (required by DirectX
8 [16]), and hopefully it will be more flexible in the future, so that
anisotropic NDF shading can be implemented as well.

1SGI Octanes also support dependent texturing (called Pixel-Textures)
but only via a framebuffer copy.



Figure 5: These images were generated at 30Hz on an AMD Athlon
1GHz and an NVIDIA GeForce 3.

Anisotropic shading would also be possible if we did the lookup
L(r1, r2) in advance and directly stored the normals in texture
maps freeing a stage in the texture shaders. We decided not to do
so since bilinear filtering of normals often leads to artifacts.

6 Results

We now would like to show a few results generated with this tech-
nique.

In Figure 4 you can see a teapot rendered in software using our
technique with an anisotropic NDF. On the left you can see the
NDF, the three middle images show renderings at different dis-
tances. The image on the right shows what happens if the normals
are distributed uniformly and not according to the NDF.

In Figure 5 you can see two renderings done with an isotropic
NDF using NVIDIA’s GeForce 3. The teapot model consists of
about 17000 triangles. Since the generation of the bump map and
the shading can be done in a single-pass, it was possible to ren-
der about 30 frames per second. The resulting quality is very high.
In particular, it is almost aliasing free. The main reason for this
is that the indices (r1, r2) are filtered and the filtered indices are
used for the lookup to get a normal. This avoids problems of un-
normalized and degenerated normals that may occur with normal
mapping. Unfortunately, it is somtimes possible to see some ring-
ing in the shading when the object is moved around. We are not
entirely sure where it comes from, but it is probably due to quan-
tization errors (e.g. the indices in the noise-texture are limited to 8
bits by the hardware). It does not occur in the software renderings.

All our renderings were done with the NDF only. As can be seen
in the images, a diffuse component (although not a Lambertian dif-
fuse component) can be incorporated directly into the NDF. Alter-
natively, it is also possible to add a separate diffuse bump mapping
term that is computed conventionally, which has the advantage that
a diffuse texture can be modulated with it.

We noticed that some care should be taken when generating the
Perlin noise. We never used low-frequency noise generated by only
a few octaves, because the resulting bumps were much too large.

7 Extensions

This technique can be easily extended in different ways.
First of all, the bump map synthesis and the bump map NDF

shading can be used separately. For example, the generated bump
map can be used with some other shading technique, e.g. [14]. If
the bump map NDF shading is used separately, it can be imple-
mented in hardware for anisotropic NDFs and not only isotropic
NDFs, since two additional texture stages are free. However, using
an arbitrary hand-crafted bump map will result in inconsistencies
between the bump map and the refection model.

Often it might be desirable to add more detail to a surface that
already uses a bump map. It is easily possible to do this with
our method. The original bump map just needs to be converted
to a texture containing indices for the lookup table L(r1, r2) so
that the original normals will be looked up. This can be done
using the following computation: r1 = G−1(M(nx)) and r2 =
G−1(C(ny|nx)), where n̂ = (nx, ny, nz) is the normal from the
bump map, G is the cumulative distribution of the noise density, M ,
and C are the marginal, resp. conditional distribution functions; see
Section 4. When zooming closer to the surface, noise can be added
to this index texture. This combined index texture is then used for
the lookup. On a GeForce 3 it is not possible to easily implement
this extension, since the texture shader stage does not allow to add
two textures before they are used for a dependent lookup, future
hardware will hopefully allow more flexibility in this stage.

Another extension is to generate an NDF for an existing bump
map and then use the NDF for shading of the bump map. Again
under the assumption of a fractal surface, this will produce consis-
tent shading across different levels of detail. Of course this is still
not the same as correctly mipmapping a bump map as proposed by
Fournier [8].

Since multitexturing is not used by our algorithm, one can easily
add a Fresnel term (at least an approximation to it), and potentially
also a shadowing/masking term depending on how complex it is.

8 Conclusion and Discussion

We have presented a method to automatically generate detail in the
form of bump maps given only a shading model, i.e. a normal den-
sity function to be more precise. Our technique generates more
detail when the user gets closer to a surface and more of the surface
structure becomes visible. The algorithm assumes an underlying
fractal surface structure. Under this assumption the shading is con-
sistent across different levels of detail.

The technique can either be implemented in software or using
modern graphics hardware working in real-time. The hardware im-
plementation is restricted in two ways, the shading works only with
isotropic NDFs and the necessary noise generation is not available
in hardware, so it was simulated by precomputing noise and stor-
ing it in mipmaps. The disadvantage of doing so is that either you
have to compute a very large texture or repeat the texture over the
surface in order to be able to zoom in closely; otherwise individual
microfacets can become visible breaking the assumption of a frac-
tal surface. Hopefully procedural noise will be available in future
hardware, as it can be used in many different ways to synthesize
detail and hence saving bandwidth from the host to the graphics
card.

Recently techniques have been proposed to cast shadows in
bump maps [11, 26] and to compute scattering in bump maps [11].
We have not considered shadows or scattering.



Figure 4: Teapot with automatically generated bump map using the NDF shown on the left. On the far right the teapot was rendered with
uniformly distributed normals, i.e. not according to the NDF.

9 Acknowledgements

We would like to thank the anonymous reviewers for their de-
tailed and helpful comments. Furthermore, we would like to thank
NVIDIA for giving us early access to a GeForce 3 card. The first
author would like to thank the Imager Lab at UBC for making his
stay in Vancouver so pleasant.

References
[1] ASHIKHMIN, M., PREMOZE, S., AND SHIRLEY, P. A Microfacet-based BRDF

Generator. In Proceedings SIGGRAPH (July 2000), pp. 65–74.

[2] BANKS, D. Illumination in Diverse Codimensions. In Proceedings SIGGRAPH
(July 1994), pp. 327–334.

[3] BLINN, J. Simulation of Wrinkled Surfaces. In Proceedings SIGGRAPH (Aug.
1978), pp. 286–292.

[4] BLINN, J. Models of Light Reflection For Computer Synthesized Pictures. In
Proceedings SIGGRAPH (July 1977), pp. 192–198.

[5] BLYTHE, D., GRANTHAM, B., MCREYNOLDS, T., AND NELSON, S. Ad-
vanced Graphics Programming Techniques Using OpenGL. In SIGGRAPH ’00
Course Notes (July 2000).

[6] COOK, R., AND TORRANCE, K. A Reflectance Model for Computer Graphics.
In Proceedings SIGGRAPH (Aug. 1981), pp. 307–316.

[7] ERNST, I., RÜSSELER, H., SCHULZ, H., AND WITTIG, O. Gouraud Bump
Mapping. In Eurographics/SIGGRAPH Workshop on Graphics Hardware
(1998), pp. 47–54.

[8] FOURNIER, A. Normal Distribution Functions and Multiple Surfaces. In Graph-
ics Interface ’92 Workshop on Local Illumination (May 1992), pp. 45–52.

[9] HART, J., CARR, N., KAMEYA, M., TIBBITTS, A., AND COLEMAN, T. An-
tialiased parameterized solid texturing simplified for consumer-level hardware
implementation. In Eurographics/SIGGRAPH Workshop on Graphics Hardware
1999 (Aug. 1999), pp. 45–54.

[10] HEEGER, D., AND BERGEN, J. Pyramid-based texture analysis/synthesis. In
Proceedings SIGGRAPH (Aug. 1995), pp. 229–238.

[11] HEIDRICH, W., DAUBERT, K., KAUTZ, J., AND SEIDEL, H.-P. Illuminating
Micro Geometry Based on Precomputed Visibility. In Proceedings SIGGRAPH
(July 2000), pp. 455–464.

[12] HEIDRICH, W., AND SEIDEL, H. Realistic, Hardware-accelerated Shading and
Lighting. In Proceedings SIGGRAPH (Aug. 1999), pp. 171–178.

[13] KAUTZ, J., AND MCCOOL, M. Interactive Rendering with Arbitrary BRDFs
using Separable Approximations. In Tenth Eurographics Workshop on Rendering
(June 1999), pp. 281–292.

[14] KAUTZ, J., AND SEIDEL, H.-P. Towards Interactive Bump Mapping with
Anisotropic Shift-Variant BRDFs. In Eurographics/SIGGRAPH Workshop on
Graphics Hardware 2000 (August 2000), pp. 51–58.

[15] KILGARD, M. A Practical and Robust Bump-mapping Technique for
Today’s GPUs. NVIDIA Corporation, April 2000. Available from
http://www.nvidia.com.

[16] MICROSOFT CORPORATION. DirectX 8.0 SDK, Nov. 2000. Available from
http://www.microsoft.com/directx.

[17] MILLER, G., HALSTEAD, M., AND CLIFTON, M. On-the-fly Texture Compu-
tation for Real-Time Surface Shading. IEEE Computer Graphics & Applications
18, 2 (Mar.–Apr. 1998), 44–58.

[18] NVIDIA CORPORATION. NVIDIA OpenGL Extension Specifications, Mar.
2001. Available from http://www.nvidia.com.

[19] OLANO, M., AND LASTRA, A. A Shading Language on Graphics Hard-
ware: The PixelFlow Shading System. In Proceedings SIGGRAPH (July 1998),
pp. 159–168.

[20] OLANO, M., AND NORTH, M. Normal Distribution Mapping. Tech. Rep. UNC
CSTR 97-041, University of North Carolina, Chapel Hill, 1997.

[21] PEERCY, M., AIREY, J., AND CABRAL, B. Efficient Bump Mapping Hardware.
In Proceedings SIGGRAPH (Aug. 1997), pp. 303–306.

[22] PERLIN, K. An Image Synthesizer. In Proceedings SIGGRAPH (July 1985),
pp. 287–296.

[23] PHONG, B.-T. Illumination for Computer Generated Pictures. Communications
of the ACM 18, 6 (June 1975), 311–317.

[24] PITMAN, J. Probability. Springer, 1992.

[25] PIXAR. PRMan Application Note #13: Properties of RenderMan Noise Func-
tions.

[26] SLOAN, P., AND COHEN, M. Hardware Accelerated Horizon Mapping. In
Eleventh Eurographics Workshop on Rendering (June 2000), pp. 281–286.

[27] TORRANCE, K., AND SPARROW, E. Theory for Off-Specular Reflection From
Roughened Surfaces. Journal of the Optical Society of America 57, 9 (Sept.
1967), 1105–1114.

[28] WARD, G. Measuring and modeling anisotropic reflection. In Proceedings SIG-
GRAPH (July 1992), pp. 265–272.

[29] WEI, L., AND LEVOY, M. Fast texture synthesis using tree-structured vector
quantization. In Proceedings SIGGRAPH (Aug. 2000), pp. 479–488.

[30] WESTERMANN, R., AND ERTL, T. Efficiently Using Graphics Hardware in Vol-
ume Rendering Applications. In Proceedings SIGGRAPH (July 1998), pp. 169–
178.

[31] WITTKIN, A., AND KASS, M. Reaction-diffusion textures. In Proceedings
SIGGRAPH (July 1991), pp. 299–308.


