

Precomputed Radiance Transfer for Real-Time Rendering
in Dynamic, Low-Frequency Lighting Environments
Peter-Pike Sloan Jan Kautz John Snyder

Microsoft Research
ppsloan@microsoft.com

Max-Planck-Institut für Informatik
jnkautz@mpi-sb.mpg.de

Microsoft Research
johnsny@microsoft.com

Abstract
We present a new, real-time method for rendering diffuse and
glossy objects in low-frequency lighting environments that cap-
tures soft shadows, interreflections, and caustics. As a preprocess,
a novel global transport simulator creates functions over the
object’s surface representing transfer of arbitrary, low-frequency
incident lighting into transferred radiance which includes global
effects like shadows and interreflections from the object onto
itself. At run-time, these transfer functions are applied to actual
incident lighting. Dynamic, local lighting is handled by sampling
it close to the object every frame; the object can also be rigidly
rotated with respect to the lighting and vice versa. Lighting and
transfer functions are represented using low-order spherical
harmonics. This avoids aliasing and evaluates efficiently on
graphics hardware by reducing the shading integral to a dot
product of 9 to 25 element vectors for diffuse receivers. Glossy
objects are handled using matrices rather than vectors. We further
introduce functions for radiance transfer from a dynamic lighting
environment through a preprocessed object to neighboring points
in space. These allow soft shadows and caustics from rigidly
moving objects to be cast onto arbitrary, dynamic receivers. We
demonstrate real-time global lighting effects with this approach.

Keywords: Graphics Hardware, Illumination, Monte Carlo Techniques,

Rendering, Shadow Algorithms.

1. Introduction

Lighting from area sources, soft shadows, and interreflections are
important effects in realistic image synthesis. Unfortunately,
general methods for integrating over large-scale lighting environ-
ments [8], including Monte Carlo ray tracing [7][21][25], rad-
iosity [6], or multi-pass rendering that sums over multiple point
light sources [17][27][36], are impractical for real-time rendering.

Real-time, realistic global illumination encounters three difficul-
ties – it must model the complex, spatially-varying BRDFs of real
materials (BRDF complexity), it requires integration over the
hemisphere of lighting directions at each point (light integration),
and it must account for bouncing/occlusion effects, like shadows,
due to intervening matter along light paths from sources to receiv-
ers (light transport complexity). Much research has focused on
extending BRDF complexity (e.g., glossy and anisotropic reflec-
tions), solving the light integration problem by representing
incident lighting as a sum of directions or points. Light integra-
tion thus tractably reduces to sampling an analytic or tabulated
BRDF at a few points, but becomes intractable for large light
sources. A second line of research samples radiance and pre-
convolves it with kernels of various sizes [5][14][19][24][34].
This solves the light integration problem but ignores light trans-
port complexities like shadows since the convolution assumes the
incident radiance is unoccluded and unscattered. Finally, clever
techniques exist to simulate more complex light transport, espe-
cially shadows. Light integration becomes the problem; these
techniques are impractical for very large light sources.

Our goal is to better account for light integration and light trans-
port complexity in real-time. Our compromise is to focus on low-

frequency lighting environments, using a low-order spherical
harmonic (SH) basis to represent such environments efficiently
without aliasing. The main idea is to represent how an object
scatters this light onto itself or its neighboring space.

To describe our technique, assume initially we have a convex,
diffuse object lit by an infinitely distant environment map. The
object’s shaded “response” to its environment can be viewed as a
transfer function, mapping incoming to outgoing radiance, which
in this case simply performs a cosine-weighted integral. A more
complex integral captures how a concave object shadows itself,
where the integrand is multiplied by an additional transport factor
representing visibility along each direction.

Our approach is to precompute for a given object the expensive
transport simulation required by complex transfer functions like
shadowing. The resulting transfer functions are represented as a
dense set of vectors or matrices over its surface. Meanwhile,
incident radiance need not be precomputed. The graphics hard-
ware can dynamically sample incident radiance at a number of
points. Analytic models, such as skylight models [33] or simple
geometries like circles, can also be used.

By representing both incident radiance and transfer functions in a
linear basis (in our case, SH), we exploit the linearity of light
transport to reduce the light integral to a simple dot product
between their coefficient vectors (diffuse receivers) or a simple
linear transform of the lighting coefficient vector through a small
transfer matrix (glossy receivers). Low-frequency lighting envi-
ronments require few coefficients (9-25), enabling graphics
hardware to compute the result in a single pass (Figure 1, right).
Unlike Monte-Carlo and multi-pass light integration methods, our
run-time computation stays constant no matter how many or how
big the light sources, and in fact relies on large-scale, smooth
lighting to limit the number of SH coefficients necessary.

We represent complex transport effects like interreflections and
caustics in the transfer function. Since these are simulated as a
preprocess, only the transfer function’s basis coefficients are
affected, not the run-time computation. Our approach handles
both surface and volume-based geometry. With more SH coeffi-
cients, we can even handle glossy (but not highly specular)
receivers as well as diffuse, including interreflection. 25 coeffi-
cients suffice for useful glossy effects. In addition to transfer
from a rigid object to itself, called self-transfer, we generalize the
technique to neighborhood-transfer from a rigid object to its
neighboring space, allowing cast soft shadows, glossy reflections,
and caustics on dynamic receivers, see Figure 7.

Figure 1: Precomputed, unshadowed irradiance from [34] (left) vs. our
precomputed transfer (right). The right model can be rendered at 129Hz
with self-shadowing and self-interreflection in any lighting environment.

Overview As a preprocess, a global illumination
simulator is run over the model that captures how it
shadows and scatters light onto itself. The result is
recorded as a dense set of vectors (diffuse case) or
matrices (glossy case) over the model. At run-time
(Figure 2), incident radiance is first projected to the SH
basis. The model’s field of transfer vectors or matrices
is then applied to the lighting’s coefficient vector. If the
object is diffuse, a transfer vector at each point on the
object is dotted with the lighting’s coefficients to
produce correctly self-scattered shading. If the object is
glossy, a transfer matrix is applied to the lighting
coefficients to produce the coefficients of a spherical
function representing self-scattered incident radiance at
each point. This function is convolved with the object’s
BRDF and then evaluated at the view-dependent reflec-
tion direction to produce the final shading.

2. Related Work

Scene relighting precomputes a separate global illumi-
nation solution per light source as we do; linear
combinations of the results then provide limited dy-
namic effects. Early work [2][11] adjusts intensities of
a fixed set of sources and is not intended to fit general
lighting environments. Nimeroff, et al. [33] precompute
a “steerable function” basis for general skylight illumi-
nation on a fixed view. Their basis, essentially the
spherical monomials, is related to the SH by a linear
transformation and thus shares some of its properties
(e.g., rotational invariance) but not others (e.g., or-
thonormality). Teo, et al. [40] generalize to non-infinite
sources, using principal component analysis to reduce
the basis set. Our work differs by computing a transfer
field over the object’s surface in 3D rather than over a
fixed 2D view to allow viewpoint changes. Dobashi, et
al. [10] use the SH basis and transfer vector fields over
surfaces to allow viewpoint change but restrict lighting
changes to the directional intensity distribution of an
existing set of non-area light sources in diffuse scenes. Debevec,
et al. [9] relight faces using a directional light basis. Real-time
rendering requires a fixed view.

Shadow maps, containing depths from the light source’s point of
view, were first used by Williams [43] to simulate point light
source shadows. Many extensions of the basic technique, some
suitable for real-time rendering, have since been described:
percentage-closer filtering [35], which softens shadow edges,
layered depth maps [26] and layered attenuation maps [1], which
more accurately simulate penumbra shape and falloff, and deep
shadow maps [29], which generalize the technique to partially
transparent and volume geometry. All these techniques assume
point or at least localized light sources; shadowing from larger
light sources has been handled by multi-pass rendering that sums
over a light source decomposition into points or small sources
[17][27][36]. Large light sources become very expensive.

Another technique [39] uses FFT convolution of occluder projec-
tions for soft shadowing with cost independent of light source
size. Only shadows between pre-segmented clusters of objects
are handled, making self-shadows on complex meshes difficult.

Finally, accessibility shading [32] is also based on precomputed
global visibility, but is a scalar quantity that ignores changes in
lighting direction.

Methods for nonlocal lighting on micro-geometry include the
horizon map [4][31], which efficiently renders self-shadowing
from point lights. In [20], this technique is tailored to graphics
hardware and generalized to diffuse interreflections, though

interreflection change due to dynamic lighting is still not real-
time. By precomputing a higher-dimensional texture, polynomial
texture maps [30] allow real-time interreflection effects as well as
shadowing. A similar approach using a steerable basis for direc-
tional lighting is used in [3]. Like our approach, these methods
precompute a simple representation of a transfer function, but one
based on directional light sources and thus requiring costly multi-
pass integration to simulate area lights. We compute self-transfer
directly on each preprocessed 3D object rather than mapping it
with 2D micro-geometry textures, allowing more global effects.
Finally, our neighborhood transfer extends these ideas to cast
shadows, caustics, and reflections.

Caching onto diffuse receivers is useful for accelerating global
illumination. Ward et. al. [41] perform caching to simulate
diffuse interreflection in a ray tracer. Photon maps [21] also
cache but perform forward ray tracing from light sources rather
than backwards from the eye, and handle specular bounces in the
transport (as does our approach). We apply this caching idea to
real-time rendering, but cache a transfer function parameterized
by a SH lighting basis rather than scalar irradiance.

Precomputed transfer using light-field remapping [18] and
dynamic ray tracing [16] has been used to achieve highly specular
reflections and refractions. We apply a similar precomputed, per-
object decomposition but designed instead for soft shadows and
caustics on nearly diffuse objects in low-frequency lighting.
Irradiance volumes [15] allow movement of diffuse receivers in
precomputed lighting. Unlike our approach, lighting is static and
the receiver’s effect on itself and its environment is ignored.

diffuse surface self-transfer

glossy surface self-transfer

Figure 2: Self-Transfer Run-Time Overview. Red signifies positive SH coefficients
and blue, negative. For a diffuse surface (top row), the SH lighting coefficients (on the
left) modulate a field of transfer vectors over the surface (middle) to produce the final
result (right). A transfer vector at a particular point on the surface represents how the
surface responds to incident light at that point, including global transport effects like
self-shadowing and self-interreflection.. For a glossy surface (bottom row), there is a
matrix at each point on the model instead of a vector. This matrix transforms the light-
ing coefficients into the coefficients of a spherical function representing transferred
radiance. The result is convolved with the model’s BRDF kernel and evaluated at the
view-dependent reflection direction R to yield the result at one point on the model.

Spherical harmonics have been used to represent incident radi-
ance and BRDFs for offline rendering and BRDF inference [4]
[38][42]. Westin, et al. [42] use a matrix representation for 4D
BRDF functions in terms of the SH basis identical to our transfer
matrix. But rather than the BRDF, we use it to represent global
and spatially varying transport effects like shadows. The SH basis
has also been used to solve ambiguity problems in computer
vision [12] and to represent irradiance for rendering [34].

3. Review of Spherical Harmonics

Definition Spherical harmonics define an orthonormal basis over
the sphere, S, analogous to the Fourier transform over the 1D
circle. Using the parameterization

(, ,) (sin cos , sin sin , cos)s x y z q j q j q= = ,

the basis functions are defined as
| |(,) (cos), ,m m im m

l l l
Y K e P l l m l

jq j q= Œ - £ £N

where Pl

m are the associated Legendre polynomials and Kl

m are
the normalization constants

()!(2 1)

4 ()!

m

l

l ml
K

l mp

-+
=

+

 .

The above definition forms a complex basis; a real-valued basis is
given by the simple transformation

0 0 0

2Re(), 0 2 cos() (cos), 0

2 Im(), 0 2 sin() (cos), 0

, 0 (cos), 0

m m m

l l l

m m m m

l l l l

l l l

Y m K m P m

y Y m K m P m

Y m K P m

j q

j q

q

-

Ï Ï> >
Ô ÔÔ Ô

= < = - <Ì Ì
Ô Ô= =
Ô ÔÓ Ó

Low values of l (called the band index) represent low-frequency
basis functions over the sphere. The basis functions for band l
reduce to polynomials of order l in x, y, and z. Evaluation can be
done with simple recurrence formulas [13][44].

Projection and Reconstruction Because the SH basis is or-
thonormal, a scalar function f defined over S can be projected
into its coefficients via the integral

 () ()m m

l l
f f s y s ds= Ú (1)

These coefficients provide the n-th order reconstruction function

1

0

() ()
n l

m m

l l

l m l

f s f y s
-

= =-

=Â Â� (2)

which approximates f increasingly well as the number of bands n
increases. Low-frequency signals can be accurately represented
with only a few SH bands. Higher frequency signals are bandlim-
ited (i.e., smoothed without aliasing) with a low-order projection.

Projection to n-th order involves n2 coefficients. It is often con-
venient to rewrite (2) in terms of a singly-indexed vector of
projection coefficients and basis functions, via

2

1

() ()
n

i i

i

f s f y s
=

=Â� (3)

where i=l(l+1)+m+1. This formulation makes it obvious that
evaluation at s of the reconstruction function represents a simple
dot product of the n2-component coefficient vector fi with the
vector of evaluated basis functions yi(s).

Basic Properties A critical property of SH projection is its
rotational invariance; that is, given () (())g s f Q s= where Q is an
arbitrary rotation over S then

 () (())g s f Q s=
�� (4)

This is analogous to the shift-invariance property of the 1D
Fourier transform. Practically, this property means that SH
projection causes no aliasing artifacts when samples from f are
collected at a rotated set of sample points.

Orthonormality of the SH basis provides the useful property that
given any two functions a and b over S, their projections satisfy

2

1

() ()
n

i i

i

a s b s ds a b

=

=ÂÚ �� . (5)

In other words, integration of the product of bandlimited functions
reduces to a dot product of their projection coefficients.

Convolution We denote convolution of a circularly symmetric
kernel function h(z) with a function f as *h f . Note that h must
be circularly symmetric (and hence can be defined as a simple
function of z rather than s) in order for the result to be defined on
S rather than the higher-dimensional rotation group SO(3).
Projection of the convolution satisfies

 () 0 0 04
*

2 1

m m m

l l l l ll
h f h f h f

l

p
a= =

+

 . (6)

In other words, the coefficients of the projected convolution are
simply scaled products of the separately projected functions.
Note that because h is circularly symmetric about z, its projection
coefficients are nonzero only for m=0. The convolution property
provides a fast way to convolve an environment map with a
hemispherical cosine kernel, defined as () max(,0)h z z= , to get
an irradiance map [34], for which the 0

l
h are given by an analytic

formula. The convolution property can also be used to produce
prefiltered environment maps with narrower kernels.

Product Projection Projection of the product of a pair of spheri-
cal functions () () ()c s a s b s= where a is known and b unknown
can be viewed as a linear transformation of the projection coeffi-
cients bj via a matrix â :

()

() ()
() () ()

ˆ() () () () () ()

i j j i

i j j k i j k j ij j

c a s b y s y s ds

a s y s y s ds b a y s y s y s ds b a b

=

= = =

Ú
Ú Ú

 (7)

where summation is implied over the duplicated j and k indices.
Note that â is a symmetric matrix. The components of â can be
computed by integrating the triple product of basis functions using
recurrences derived from the well-known Clebsch-Gordan series
[13][44]. It can also be computed using numerical integration
without SH-projecting the function a beforehand. Note that the
product’s order n projection involves coefficients of the two factor
functions up to order 2n-1.

Rotation A reconstruction function rotated by Q, ()()f Q s� , can
be projected into SH using a linear transformation of f’s projec-
tion coefficients, fi. Because of the rotation invariance property,
this linear transformation treats the coefficients in each band
independently. The most efficient implementation is achieved via
a zyz Euler angle decomposition of the rotation Q, using a fairly
complicated recurrence formula [13][44]. Because we deal only
with low-order functions, we have implemented their explicit
rotation formulas using symbolic integration.

4. Radiance Self-Transfer

Radiance self-transfer encapsulates how an object O shadows and
scatters light onto itself. To represent it, we first parameterize
incident lighting at points pŒO , denoted Lp(s), using the SH
basis. Incident lighting is therefore represented as a vector of n2
coefficients (Lp)i. We sample the lighting dynamically and
sparsely near the surface, perhaps at only a single point. The
assumption is that lighting variation over O not due to its own
presence is small (see Section 6.1). We also precompute and
store densely over O transfer vectors or matrices.

A transfer vector (Mp)i is useful for diffuse surfaces and repre-
sents a linear transformation on the lighting vector producing
scalar exit radiance, denoted

p
L¢ , via the inner product

2

1

() ()
n

p p i p i

i

L M L

=

=¢ Â . (8)

In other words, each component of (Mp)i represents the linear
influence that a lighting basis function (Lp)i has on shading at p.

A transfer matrix ()
p ij

M is useful for glossy surfaces and repre-
sents a linear transformation on the lighting vector which
produces projection coefficients for an entire spherical function of
transferred radiance ()

p
L s¢ rather than a scalar; i.e.,

2

1

() () ()
n

p i p ij p j

j

L L

=

=¢ Â M . (9)

The difference between incident and transferred radiance is that
()

p
L s¢ includes shadowing/scattering effects due to the presence
of O while Lp(s) represents incident lighting assuming O was
removed from the scene. Components of ()

p ij
M represent the

linear influence of the j-th lighting coefficient of incident radiance
(Lp)j to the i-th coefficient of transferred radiance ()

p i
L¢ . The next

sections derive transfer vectors for diffuse surfaces and transfer
matrixes for glossy surfaces due to self-scattering on O.

4.1 Diffuse Transfer [transfer vector for known normal]

First assume O is diffuse. The simplest transfer function at a
point pŒO represents unshadowed diffuse transfer, defined as the
scalar function

()() () ()DU p p p NpT L L s H s dsr p= Ú

producing exit radiance which is invariant with view angle for
diffuse surfaces. Here,

p
r is the object’s albedo at p, Lp is the

incident radiance at p assuming O was removed from the scene,
Np is the object’s normal at p, and () max(,0)Np pH s N s= i is the
cosine-weighted, hemispherical kernel about Np. By SH-
projecting Lp and HNp separately, equation (5) reduces TDU to an
inner product of their coefficient vectors. We call the resulting
factors the light function, Lp, and transfer function, Mp. In this
first simple case, () ()DU

p NpM s H s= .

Because Np is known, the SH-projection of the transfer function
()DU

p iM can be precomputed, resulting in a transfer vector. In
fact, storing is unnecessary because a simple analytic formula
yields it given Np. Because

DU

pM is inherently a low-pass filter,
second-order projection (9 coefficients) provides good accuracy in
an arbitrary (even non-smooth) lighting environment [34].

To include shadows, we define shadowed diffuse transfer as

()() () () ()DS p p p Np pT L L s H s V s dsr p= Ú

where the additional visibility function, () {0,1}
p

V s Æ , equals 1
when a ray from p in the direction s fails to intersect O again (i.e.,
is unshadowed). As with unshadowed transfer, we decompose
this integral into two functions, using an SH-projection of Lp and
the transfer function

() () ()DS

p Np pM s H s V s= . (10)

Separately SH-projecting Lp and Mp again
reduces the integral in TDS to an inner
product of coefficient vectors.

Transfer is now nontrivial; we precompute
it using a transport simulator (Section 5),
storing the resulting transfer vector (Mp)i at
many points p over O. Unlike the previous
case, second-order projection of DS

pM may

be inaccurate even for smooth lighting environments since Vp can
create higher-frequency lighting locally, e.g., by self-shadowing
“pinholes”. 4-th or 5-th order projection provides good results on
typical meshes in smooth lighting environments.

Finally, to capture diffuse interreflections as well as shadows, we
define interreflected diffuse transfer as

() ()() () () () 1 ()DI p DS p p p Np pT L T L L s H s V s dsr p= + -Ú

where ()
p

L s is the radiance from O itself in the direction s. The
difficulty is that unless the incident radiance emanates from an
infinitely-distant source, we don’t actually know ()

p
L s given the

incident radiance only at p because
p

L depends on the exit
radiance of points arbitrarily far from p and local lighting varies
over O. If lighting variation is small over O then

p
L is well-

approximated as if O were everywhere illuminated by Lp. TDI
thus depends linearly on Lp and can be factored as in the previous
two cases into a product of two projected functions: one light-
dependent and the other geometry-dependent.

Though precomputed interreflections must make the assumption
of spatially invariant incident lighting over O, simpler shadowed
transfer need not. The difference is that shadowed transfer de-
pends only on incident lighting at p, while interreflected transfer
depends on many points q pπ over O at which

q p
L Lπ . Thus,

as long as the incident radiance field is sampled finely enough
(Section 6.1), local lighting variation can be captured and shad-
owed transfer will be correct.

The presence of L makes it hard to explicitly denote the transfer
function for interreflections, ()DI

pM s . We will see how to com-
pute its projection coefficients numerically in Section 5.

4.2 Glossy Transfer [transfer matrix for unknown direction]

Self-transfer for glossy objects can be defined similarly, but
generalizes the kernel function to depend on a (view-dependent)
reflection direction R rather than a (fixed) normal N. Analogous
to the H kernel from before, we model glossy reflection as the
kernel G(s,R,r) where a scalar r defines the “glossiness” or broad-
ness of the specular response. We believe it is possible to handle
arbitrary BRDFs as well using their SH projection coefficients
[38] but this remains for future work.

We can then define the analogous three glossy transfer functions
for the unshadowed, shadowed, and interreflected cases as

()

(, ,) () (, ,)

(, ,) () (, ,) ()

(, ,) () () (, ,) 1 ()

GU p p

GS p p p

GI p GS p p p

T L R r L s G s R r ds

T L R r L s G s R r V s ds

T L R r T L L s G s R r V s ds

=

=

= + -

Ú
Ú

Ú

which output scalar radiance in direction R as a function of Lp and
R, quantities both unknown at precomputation time. Since trans-
fer is no longer solely a function of s, it can’t be reduced to a
simple vector of SH coefficients

Instead of parameterizing scalar transfer by R and r, a more useful
decomposition is to transfer the incident radiance Lp(s) into a
whole sphere of transferred radiance, denoted ()

p
L s¢ . Assuming

the glossy kernel G is circularly symmetric about R (i.e., a simple
Phong-like model) ()

p
L s¢ can then be convolved with

()*() ,(0,0,1),
r

G z G s r= and evaluated at R to produce the final

(a) unshadowed (b) shadowed (c) interreflected

Figure 3: Diffuse Surface Self-transfer.

(a) unshadowed (b) shadowed (c) interreflected

Figure 4: Glossy Surface Self-transfer.

result (see bottom of Figure 2, and further details in Section 6).

Transfer to pL¢ can now be represented as a matrix rather than a
vector. For example, glossy shadowed transfer is

 (,) () ()GS

p p p pL s L s V s=M (11)

a linear operator on Lp whose SH-projection can be represented as
the symmetric matrix ˆ

p
V via equation (7). Even with smooth

lighting, more SH bands must be used for pL¢ as O’s glossiness
increases; non-square matrices (e.g., 25×9) mapping low-
frequency lighting to higher-frequency transferred radiance are
useful under these conditions. For shadowed glossy transfer (but
not interreflected), an alternative still uses a vector rather than a
matrix to represent GS

pM by computing the product of Vp with Lp
on-the-fly using the tabulated triple product of basis functions in
equation (7). We have not yet implemented this alternative.

4.3 Limitations and Discussion

An important limitation of precomputed transfer is that material
properties of O influencing interreflections in TDI and TGI (like
albedo or glossiness) must be “baked in” to the preprocessed
transfer and can’t be changed at run-time. On the other hand, the
simpler shadowed transfer without interreflection does allow run-
time change and/or spatial variation over O of the material proper-
ties. Error arises if blockers or light sources intrude into O’s
convex hull. O can only move rigidly, not deform or move one
component relative to the whole. Recall also the assumption of
low lighting variation over O required for correct interreflections.

Finally, note that diffuse transfer as defined produces radiance
after leaving the surface, since it has already been convolved with
the cosine-weighted normal hemisphere, while glossy transfer
produces radiance incident on the surface and must be convolved
with the local BRDF to produce the final exit radiance. It’s also
possible to bake in a fixed BRDF for glossy O, making the convo-
lution with G unnecessary at run-time but limiting flexibility.

5. Precomputing Radiance Self-Transfer

As a preprocess, we perform a global illumination simulation over
an object O using the SH basis over the infinite sphere as emitters.
Our light gathering solution technique is a straightforward adapta-
tion of existing approaches [7][25] and could be accelerated in
many ways; its novelty lies in how it parameterizes the lighting
and collects the resulting integrated transfers. Note that all
integrated transfer coefficients are signed quantities.

The simulation is parameterized by an n-th order SH projection of
the unknown sphere of incident light L; i.e., by n2 unknown
coefficients Li. Though the simulation results can be computed
independently for each Li using the SH basis function yi(s) as an
emitter, it is more efficient to compute them all at once. The
infinitely-distant sphere L will be replaced at run-time by the
actual incident radiance field around O, Lp.

An initial pass simulates direct shadows from paths leaving L and
reaching sample points pŒO . In subsequent passes, interreflec-
tions are added, representing paths from L that bounce a number
of times off O before arriving at p (Lp, LDp, LDDp, etc.). In each
pass, energy is gathered to every sample point p. Large emitters
(i.e., low-frequency SH basis) make a gather more efficient then a
shooting-style update [6]. Note that this idea of caching onto
diffuse (or nearly diffuse) receivers is not new [21][41].

To capture the sphere of directions at sample points pŒO , we
generate a large (10k-30k), quasi-random set of directions {sd},

d
s ŒS . We also precompute evaluations for all the SH basis
functions at each sd. The sd are organized in hierarchical bins
formed by refining an initial icosahedron with 1→2 bisection into
equal-area spherical triangles (1→4 subdivision does not lead to
equal area triangles on the sphere as it does in the plane). We use

6 to 8 subdivision levels, creating 512 to 2048 bins. Every bin at
each level of the hierarchy contains a list of the sd within it.

In the first pass, for each pŒO , we cast shadow rays in the
hemisphere about p’s normal Np, using the hierarchy to cull
directions outside the hemisphere. We tag each direction sd with
an occlusion bit, 1 ()p dV s- , indicating whether sd is in the hemi-
sphere and intersects O again (i.e., is self-shadowed by O). An
occlusion bit is also associated with the hierarchical bins, indicat-
ing whether any sd within it is occluded. Self-occluded directions
and bins are tagged so that we can perform further interreflection
passes on them; completely unoccluded bins/samples receive only
direct light from the environment.

For diffuse surfaces, at each point pŒO we further compute the
transfer vector by SH-projecting Mp from (10). For glossy sur-
faces, we compute the transfer matrix by SH-projecting

p
M from

(11). In either case, the result represents the radiance collected at
p, parameterized by L. SH-projection to compute the transfers is
performed by numerical integration over the direction samples sd,
summing into an accumulated transfer using the following rules:

diffuse: ()0
() () () ()p i p p d N d i dM V s H s y sr p+ =

glossy:
0() () () ()p ij p d j d i dV s y s y s+ =M

Transfer integration over sd [shadow pass, iteration 0]

The superscript 0 refers to the iteration number. The vector Mp or
matrix

p
M at each point p is initialized to 0 before the shadow

pass, which then sums over all sd at every p. The rules are derived

using equation (1) for diffuse transfer integration, and equation
(7) for glossy transfer integration.

Later interreflection passes traverse the
bins having the occlusion bit set during
the shadow pass. Instead of shadow
rays, they shoot rays that return trans-
fer from exiting illumination on O. If
the ray (p,sd) intersects another point
qŒO (where q is closest to p), we sample the radiance exiting
from q in the direction –sd. The following update rules are used,
where the superscript b is the bounce pass iteration:

diffuse: () () 1
() 1 () () ()

b b

p i p p d q i N dM V s M H sr p
-

+ = -

glossy:

()

()* 1

() 1 ()

() () reflect(,) ()
q

b

p ij p d

b

k r k q kj k d q i d

k

V s

G y s N y sa
-

+ = -

Ê ˆ
-Á ˜Ë ¯Â

M

M

Transfer integration over sd [interreflection passes, iteration b]

As in the shadow pass, we begin by initializing transfer vectors or
matrices to 0 before accumulating transfer over directions sd. The
diffuse rules are derived from the definition of TDI and equation
(1); glossy rules from the definition of TGI and equations (6) and
(7). The middle factor in the glossy transfer definition represents
radiance emanating from q back to p from the previous bounce
pass, b-1. Since

q
M stores incident radiance, it must be con-

volved with O’s BRDF at q to obtain exiting radiance in the

d
s- direction, yielding a summation over k. Recall that

k
a is the

k-th convolution coefficient, expressed in singly-indexed notation.
The “reflect” operator simply reflects its first vector argument
with respect to its second. We observe that equation (7) implies
()p ijM is a symmetric matrix for shadowed glossy transfer since it
is formed by the product of two spherical functions; this is untrue
for interreflected glossy transfer.

Interreflection passes are repeated until the total energy of a given
pass falls below a threshold. For typical materials, it diminishes
quite rapidly. The sum of transfers from all bounce passes then

p

q
N

p

s
d

O

accounts for interreflections. Our implementation simulates
diffuse and glossy transfer at the same time.

A simple enhancement to this simulation allows mirror-like
surfaces within O. We do not record transfers on such surfaces.
Instead, a ray striking a mirrored surface is always reflected and
then propagated until a non-mirrored surface is reached. Thus our
paths at successive iterations can be represented as (L[S]*p,
L[S]*D[S]*p, L[S]*D[S]*D[S]*p, etc.), where D is a diffuse or
glossy bounce and S is a specular one. This captures caustics
onto diffuse or glossy receivers that respond dynamically to
lighting change (Figure 9).

6. Run-time Rendering of Radiance Transfer

We now have a model O capturing radiance transfer at many
points p over its surface, represented as vectors or matrices.
Rendering O requires the following steps at run-time:

1. compute incident lighting {LPi} at one or more sample points
Pi near O in terms of the SH basis,

2. rotate these LPi to O’s coordinate frame and blend them (see
below) to produce a field of incident lighting Lp over O, and

3. perform a linear transformation on (Lp)i at each point p on O
to obtain exit radiance. This requires a dot product with (Mp)i
for diffuse surfaces (equation (8)), or a matrix-vector
multiplication with ()p ijM for glossy surfaces (equation (9)).

4. Glossy surfaces need a final step in which the radiance vector
resulting from step 3 is convolved with O’s BRDF at p, and
then evaluated at the view-dependent reflection direction R.

Step 1 can load a precomputed environment map, evaluate ana-
lytic lighting models in software, or sample radiance using
graphics hardware. Rotation for Step 2 is outlined in Section 3,
and is done once per object, not for each p. It is necessary be-
cause transfer is stored using a common coordinate system for O.
If O is rigidly moving, it is more efficient to rotate the few radi-
ance samples in LPi to align with O than it is to rotate O’s many
transfer functions. We currently perform this rotation in software.

For diffuse surfaces, a simple implementation of step 3 is to store
the transfer vector per vertex and perform the dot product in a
vertex shader. The transfer vectors can also be stored in texture
maps rather than per-vertex and evaluated using a pixel shader.
Since the coefficients are signed quantities not always in the [-1,1]
range, DirectX 8.1 pixel shaders (V1.4) or their OpenGL counter-
part (extension by ATI) must be used, since they provide a larger
range of [-8,8]. Our pixel shader needs 8 instructions to perform
the dot-product and stores LP’s coefficients in constant registers.

For colored environments or simulation of color bleeding on O,
three passes are required, each performing a separate dot-product
for the r, g, and b channels. Otherwise a single pass suffices.

For glossy self-transfer, we perform the matrix transform from
equation (9) in software because the transfer matrix is too big to
be manipulated in either current vertex or pixel shaders. The
result is ()p iL¢ the SH coefficients of transferred radiance at points
p over O. Then in a pixel shader, we perform a convolution with
a simple cosine-power (Phong lobe) kernel for G* and evaluate
the result in the reflection direction R. The result can be written

 () ()
2 2

*

1 1

()
n n

i i p p i
ij j

i j

G L y Ra

= =

Ê ˆ
Á ˜Ë ¯

Â Â M (12)

We evaluate SH-projections up to n=5 on graphics hardware.

6.1 Spatial Sampling of the Incident Radiance Field

A simple and useful approach for dynamically sampling incident
radiance is to sample it at O’s center point. To handle local
lighting variation over O, a more accurate technique samples
incident lighting at multiple points (Figure 5). A good set of
sample points can be obtained using the ICP (iterated closest

point) algorithm [28] as a preprocess, given a desired number of
points as input. This produces a representative set of points Pi
near O and distributed uniformly over it where incident lighting
can be sampled at run-time. We can also precompute coefficients
at each p over O that blend contribution from each of the resulting
sampled radiance spheres LPi to produce an incident radiance field
over O, denoted previously by Lp.

6.2 Sampling SH Radiance on Graphics Hardware

Graphics hardware is useful to capture the radiance samples {LPi}
in a dynamic scene. To do this, 6 images are rendered from each
Pi corresponding to the 6 faces of the cube map spherical parame-
terization. O itself should be removed from these renderings.
Cube map images can then be projected to their SH coefficients
using the integral in equation (1), as was done in [4].

For efficiency, we precompute textures for the basis functions
weighted by differential solid angle, () () ()m m

l lB s y s ds s= , each
evaluated over the cube map parameterization for s. The result-
ing integral then becomes a simple dot product of the captured
samples of LP(s) with the textures ()m

l
B s .

Ideally, this computation would be performed on the graphics
hardware. Precision issues and inability to do inner products in
hardware force us to read back the sampled radiance images and
project them in software. In this case, it is important to reduce
the resolution of read-back images as much as possible.

Low-order SH projection can be computed with very low-
resolution cube maps, assuming they have been properly bandlim-
ited. For example, spherical signals already bandlimited to 6-th
order can be projected using six 4×4 images with about 0.3%
average-case squared error and about 1% worst-case squared
error, where error is normalized by assuming unit-power signals
(i.e., signals whose integrated square over the sphere is 1).1 For
6×8×8 maps, this error reduces to 0.003% mean and 0.02% worst-
case. Unfortunately, typical signals aren’t spherically bandlimited.
Another analysis shows that, assuming continuous bilinear recon-
struction over the sampled 2D images, projection to 6-th order
using 6×8×8 images yields 0.7% and 2% average and worst-case
squared error, while 6×16×16 yields 0.2% and 0.5% squared
error, and 6×32×32 yields 0.05% and 0.1% squared error.

We extract 6×16×16 images from the hardware. As is always true
in point-sampled rendering, aliasing of the 2D images is still a
problem because the above analysis uses bilinear reconstruction
from point samples as the reference. To reduce aliasing, we
supersample the cube map images by a factor of 2 in each dimen-
sion, and do a box-filtered decimation in hardware before reading
back and projecting. The basis function textures are also super-
sampled and decimated in the same way as a preprocess. A
radiance sample, including read-back and SH projection, takes
about 1.16ms on a PIII-933 PC with an ATI Radeon 8500.

1
 More precisely, average-case error is the integrated squared difference between the

reference and reconstruction signals, averaged over all unit-power signals. Worst-

case error is the same integrated error, but for the worst-case unit-power signal.

(a) single sample (b) ICP points (c) multiple samples

Figure 5: ICP can be used to precompute good locations for sampling

the incident radiance field over an object. Note the improved locality of

lighting in (c) compared to (a) when the lighting is sampled at the 8
points in (b) rather than at the object center.

7. Self-Transfer for Volumetric Models

Self-transfer on volumetric data uses the same framework as
surfaces. The resulting precomputed model allows run-time
changes to the lighting, with correct shadowing and interreflec-
tions in any low-frequency lighting environment (Figure 6).

Our simple simulator currently works only for diffuse volumes.
As with surface transfer, a preprocessing step simulates lighting
on the volume using the SH basis functions as emitters. For
shadowed transfer without interreflection (i.e., direct shadowing),
we gather energy from the emitter to every voxel p of the volume,
attenuated by its path through the volume. The required numeri-
cal integration over directions sd can be expressed as

0() () ()p i d i dM A p p Ds y s+ = Æ +

where ()A p qÆ is the volume’s integrated attenuation along the
path from p to q, and D is the distance until the ray (p,sd) exits the
volume. To include interreflections, we traverse every voxel p
and forward-scatter its transfer along random directions sd. The
transfer is deposited to all voxels q along sd until exiting the
volume, using the rule

1() () ()b b

q i p iM A p q M -

+ = Æ

More passes over the volume produce further indirect bounces.

Rendering is performed in the traditional way: by drawing slices
through the 3D volume in back to front order using alpha blending
to account for transparency. Each slice is a 2D image containing
samples of the transfer vector. A pixel shader computes the dot-
product between the lighting’s coefficients and the transfer vec-
tor’s required to shade each slice.

8. Radiance Neighborhood-Transfer

Neighborhood-transfer precomputes an object O’s influence on
its neighboring environment with respect to parameterized, low-
frequency lighting. Transport simulation is identical to that for
self-transfer in Section 5, but takes place with respect to points in
a 3D space surrounding O, not on it. At run-time, an arbitrary
receiver R can be placed in this volume to capture shadows,
reflections, and caustics cast by O onto R without knowing R in
advance. For example, a moving vehicle O can cast shadows
over a terrain R (Figure 7). Cast shadows and lighting also
respond to lighting change; for example, moving the lights move
soft shadows on R. This generalizes irradiance volumes [15] by
accounting for glossy transfer and allowing dynamic lighting.

Because R is unknown during the precomputation step, O’s
neighborhood volume must store a transfer matrix rather than a
vector. This is true even for diffuse receivers, because we do not
know in advance what R’s normal will be. Our current imple-
mentation precomputes the transfer matrix

p
M at each point

within a simple 3D grid surrounding O. At run-time, we perform
the matrix transform from equation (9) in software at each point

in the volume and upload the result to the graphics hardware. The
result is a volume texture containing coefficients of transferred
radiance ()

p i
L¢ which is applied to R.

Then in a pixel shader this transferred radiance is used to light the
receiver. A diffuse receiver convolves the radiance with the
cosine weighted hemisphere H* using equation (6) and then
evaluates the resulting SH projection at R’s normal vector.
Glossy receivers perform equation (12).

Receivers having precomputed self-transfer raise the difficulty
that O and R do not share a common coordinate system. Thus,
one of the two object’s dense set of transfer samples must be
dynamically rotated to align with the other’s. The SH-rotation
operation required is currently impractical for hardware evalua-
tion. Improving hardware should soon ease this difficulty.

Compared to self-transfer, neighborhood-transfer incurs some
additional approximation errors. Cast shadow or light from
multiple neighborhood-transfer objects onto the same receiver is
hard to combine. Local lighting variation not due to O or R’s
presence is also a problem; lighting must be fairly constant across
O’s entire neighborhood to provide accurate results. In particular,
errors such as missing shadows will result when objects besides O
and R intrude into O’s neighborhood. O’s neighborhood must
also be large enough to encompass any cast shadow or light it
may cast on R. Nevertheless, neighborhood transfer captures
effects impossible to obtain in real-time with previous methods.

9. Results

Full statistics are summarized in Table 1. We achieve real-time
performance for all models except the transfer matrix ones (tea-
pot, buddha, glider). For these models, multiplication with 25x25
or 9x25 transfer matrices over the surface in software forms the
bottleneck. Real-time results can be achieved even for these
models after first fixing the light (allowing the view to be moved)
or the view (allowing the light to be changed) and represent the
second and third “render rate” entries in the table after slashes.
The reason is that fixing either the view (which then fixes the

Figure 6: Volumetric self-transfer captures how this cloud model
shadows itself. Lighting can be changed in real-time (first row). The
same model can also be placed in other environments (second row).

Figure 7: Neighborhood transfer captures how this hang glider blocks

light to a volume of points below it. This allows cast soft shadow onto a

bumpy terrain as the glider moves.

model transfer
type

transfer
shape

transfer
sampling

preproc.
time

render
rate

head (fig 1) DS 25-M 50k ver. mesh 1.1h 129

bird (fig 4) DS 25-M 50k ver. mesh 1.2h 125

ring (fig 9) DS 25-M 256x256 grid 8m 94

 buddha_d (fig 11) DS 25-M 50k ver. mesh 2.5h 125

 buddha_g (fig 11) GS 25x25-M 50k ver. mesh 2.5h 3.6/16/125

 tyra_d (fig 11) DS 25-M 100k ver. mesh 2.4h 83

 tyra_g (fig 11) GS 25x25-M 100k ver. mesh 2.4h 2.2/9.4/83

teapot (fig 5) GS 25x25-M 150k ver. mesh 4.4h 1.7/7.7/49

cloud (fig 6) DV 25-M 32x32x32 vol. 15m 40

glider (fig 7) N 9x25-M 64x64x8 vol. 3h 4/120/4

Table 1: Results. Transfer types are DS=diffuse surface self-transfer,
GS=glossy surface self-transfer, DV=diffuse volume self-transfer, and
N=neighborhood transfer. Timings are on a 2.2GHz Pentium 4 with ATI
Radeon 8500 graphics card. Render rates are in Hz.

reflection vector R) or the light Lp reduces the computation in (12)
to a simple dot product, which can then be done in hardware.
Fixed light rendering is slower than fixed view because the fixed
light mode requires evaluation of the SH basis at a changing view
vector, followed by a dot product, while fixed view requires only
the dot product and is identical in performance to diffuse transfer.

Rendering quality can be judged from images in this paper (Fig-
ures 1 and 3-12) all of which were computed with the PC graphics
hardware. Self-shadowing and interreflection effects are convinc-
ing and robust. No depth tolerances are required to prevent self-
shadowing artifacts as they are with the standard shadow buffer
technique [43]. Even when the lighting contains very high fre-
quencies (Figure 9, top row of Figure 10, and Figure 12), pleasing
images are produced without temporal artifacts but with some
blurring of self-shadows; the result looks, and indeed is, identical
to blurring the incident lighting.

Figure 10 compares shadowing results across different SH orders.
Small light sources (top row) require more bands; larger ones are
approximated very well with fewer bands. Using up to the quartic
band (fifth order with 25 coefficients) provides good results and is
a good match to today’s graphics hardware. Note that quality is
not dictated solely by how much energy is ignored in SH-
projecting the lighting – diffuse and glossy objects are effective
low-pass filters of incident radiance. With self-transfer effects
though, the extent of this low-pass filtering depends on the ob-
ject’s geometry, varies spatially, and typically requires more than
third order (quadratics), unlike unshadowed diffuse transfer [34].

Because of its rotational invariance (equation (4)), we consider
the SH basis especially useful for our low-frequency lighting
application compared to alternatives like spherical wavelets [37].
When dynamically sampling incident radiance, this property
eliminates aliasing which would otherwise produce temporal
artifacts, like shading “wobble”, if projected to other bases with
the same number of coefficients. Ringing or Gibbs phenomenon
(oscillatory undershoot and overshoot in the reconstruction
function) can be a problem when the lighting environment has
significant energy near its highest represented band [10][42]. We
notice ringing artifacts only on very simple models such as the
ones in Figures 9 and 10; artifacts are masked on complex
meshes. Of course, reducing lighting frequency by attenuating
higher frequency bands, called “windowing”, also reduces ringing
(see Figure 10, columns f and g).

10. Conclusions and Future Work

Much important shading variation over a complex object such as a
human face is due to itself. Precomputed radiance self-transfer is
a general method for capturing the occlusion and scattering effects
an object has on itself with respect to any low-frequency lighting
environment. When the actual incident lighting is substituted at
run-time, the resulting model provides global illumination effects
like soft shadows, interreflections, and caustics in real-time.
Using graphics hardware, incident lighting can be sampled every
frame and at multiple points near the object allowing dynamic,
local lighting. Neighborhood-transfer generalizes the concept by
recording transfer over 3D space, allowing cast soft shadows and
caustics onto arbitrary receivers.

In future work, we want to apply precomputed transfer to more
sophisticated transport models, especially subsurface scattering
[22]. We believe the smoothness of exiting radiance produced by
this model makes it particularly suitable for SH-parameterized
transfer. It would also be valuable to combine existing shadowing
techniques with ours, by decomposing the scene’s lighting into
high and low frequency terms. Compression of transfer fields is
an important but unaddressed problem. Extension to deformable
objects like human characters could be achieved by parameteriz-

ing the precomputed self-transfer in the same way as the
deformation, assuming the number of independent degrees of
freedom remains manageable. Finally, we are interested in
tracking fast-improving PC graphics hardware so that all compu-
tation, including transfer matrix transforms and SH-rotation, may
eventually be performed on the GPU.

Acknowledgements: Thanks to Paul Debevec for his light probes
(http://www.debevec.org), to the Stanford University Computer
Graphics Laboratory for the happy Buddha model (http://www-
graphics.stanford.edu/data/3Dscanrep), and Cyberware for the
tyrannosaur model. Jason Mitchell and Michael Doggett of ATI
and Matthew Papakipos of NVidia kindly provided graphics
hardware. We also wish to acknowledge Michael Cohen for early
discussions and Charles Boyd and Hans-Peter Seidel for support.

References
[1] AGRAWALA, M, RAMAMOORTHI, R, HEIRICH, A, AND MOLL, L, Efficient Image-

Based Methods for Rendering Soft Shadows, SIGGRAPH ‘00, 375-384.

[2] AIREY, J, ROHLF, J, AND BROOKS, F, Towards Image Realism with Interactive

Update Rates in Complex Virtual Building Environments,1990 Symposium on

Interactive 3D Graphics, 24(2), 41-50.

[3] ASHIKHMIN, M, AND SHIRLEY, P, Steerable Illumination Textures, ACM

Transactions on Graphics, 2(3), to appear.

[4] CABRAL, B, MAX, N, AND SPRINGMEYER, R, Bidirectional Reflection Functions

from Surface Bump Maps, SIIGRAPH ‘87, 273-281.

[5] CABRAL, B, OLANO, M, AND NEMEC, P, Reflection Space Image Based Render-

ing, SIGGRAPH ‘99, 165-170..

[6] COHEN, M, AND WALLACE, J, Radiosity and Realistic Image Synthesis, Aca-

demic Press Professional, Cambridge, 1993.

[7] COOK, R, PORTER, T, AND CARPENTER, L, Distributed Ray Tracing, SIGGRAPH

‘84, 137-146.

[8] DEBEVEC, P, Rendering Synthetic Objects into Real Scenes: Bridging Tradi-

tional and Image-Based Graphics with Global Illumination and High Dynamic

Range Photogaphy, SIGGRAPH ’98, 189-198.

[9] DEBEVEC, P, HAWKINS, T, TCHOU, C, DUIKER, H, SAROKIN, W, AND SAGAR, M,

Acquiring the Reflectance Field of a Human Face, SIGGRAPH 2000, 145-156.

[10] DOBASHI, Y, KANEDA, K, NAKATANI, H, AND YAMASHITA, H, A Quick Render-

ing Method Using Basis Functions for Interactive Lighting Design,

Eurographics ’95, 229-240.

[11] DORSEY, J, SILLION, F, AND GREENBERG, D, Design and Simulation of Opera

Lighting and Projection Effects, SIGGRAPH ‘91, 41-50.

[12] D’ZMURA, M, Shading Ambiguity: Reflection and Illumination. In Computa-

tional Models of Visual Processing (1991), Landy and Movshon, eds., MIT

Press, Cambridge, 187-207.

[13] EDMONDS, A, Angular Momentum in Quantum Mechanics, Princeton Univer-

sity, Princeton, 1960.

[14] GREENE, N, Environment Mapping and Other applications of World Projec-

tions, IEEE CG&A, 6(11):21-29, 1986.

[15] GREGER, G., SHIRLEY, P, HUBBARD, P, AND GREENBERG, D, The Irradiance

Volume, IEEE Computer Graphics And Applications, 6(11):21-29, 1986.

[16] HAKURA, Z, AND SNYDER, J, Realistic Reflections and Refractions on Graphics

Hardware with Hybrid Rendering and Layered Environment Maps, Eurograph-

ics Workshop on Rendering, 2001, 289-300.

[17] HAEBERLI, P, AND AKELEY, K, The Accumulation Buffer: Hardware Support for

High-Quality Rendering, SIGGRAPH ‘90, 309-318.

[18] HEIDRICH, W, LENSCH, H, COHEN, M, AND SEIDEL, H, Light Field Techniques for

Reflections and Refractions, Eurographics Rendering Workshop 99,195-375.

[19] HEIDRICH, W, SEIDEL H, Realistic, Hardware-Accelerated Shading and Lighting,

SIGGRAPH ‘99, 171-178.

[20] HEIDRICH, W, DAUBERT, K, KAUTZ, J, AND SEIDEL, H, Illuminating Micro

Geometry based on Precomputed Visibility, SIGGRAPH ‘00, 455-464.

[21] JENSEN, H, Global Illumination using Photon Maps, Eurographics Workshop on

Rendering 1996, 21-30.

[22] JENSEN, H, MARSCHNER, S, LEVOY, M, AND HANRAHAN, P, A Practical Model for

Subsurface Light Transport, SIGGRAPH ‘01, ‘511-518.

[23] KAUTZ, J, AND MCCOOL, M, Interactive Rendering with Arbitrary BRDFs using

Separable Approximations, Eurographics Workshop on Rendering 99,.247-260.

[24] KAUTZ, J, VAZQUEZ, P, HEIDRICH, W, AND SEIDEL, H, A Unified Approach to Pre-

filtered Environment Maps, Eurographics Workshop on Rendering 2000, 185-196.

[25] KAJIYA, J, The Rendering Equation, SIGGRAPH ‘86, 143-150.

[26] KEATING, B, AND MAX, N, Shadow Penumbras for Complex Objects by Depth-

Dependent Filtering of Multi-Layer Depth Images, Eurographics Rendering

Workshop, 1996, pp.205-220.

[27] KELLER, A, Instant Radiosity, SIGGRAPH ‘97, 49-56.

[28] LINDE, Y, BUZO, A, AND GRAY, R, An algorithm for Vector Quantizer

Design, IEEE Transactions on Communication COM-28, 1980,84-95.

[29] LOKOVIC, T, AND VEACH, E, Deep Shadow Maps, SIGGRAPH ‘00,

pp.385-392.

[30] MALZBENDER, T, GELB, D, AND WOLTERS, H, Polynomial Texture

Maps, SIGGRAPH ‘01, 519-528.

[31] MAX, N, Horizon Mapping: Shadows for Bump-Mapped Surfaces,

The Visual Computer, July 1998, 109-117.

[32] MILLER, G, Efficient Algorithms for Local and Global Accessibility

Shading, SIGGRAPH ’94, 319-326.

[33] NIMEROFF, J, SIMONCELLI, E, AND DORSEY, J, Efficient Re-rendering

of Natural Environments, Eurographics Workshop on Rendering

1994, 359-373.

[34] RAMAMOORTHI, R, AND HANRAHAN, P, An Efficient Representation

for Irradiance Environment Maps, SIGGRAPH ‘01, 497-500.

[35] REEVES, W, SALESIN, D, AND COOK, R, Rendering Antialiased

Shadows with Depth Maps, SIGGRAPH ‘87, ‘283-291.

[36] SEGAL, M, KOROBKIN, C, VAN WIDENFELT, R, FORAN, J, AND HAE-

BERLI, P, Fast Shadows and Lighting Effects Using Texture Mapping,

SIGGRAPH ‘92, ‘249-252.

[37] SCHRÖDER, P, AND SWELDENS, W, Spherical Wavelets: Efficiently

Representing the Sphere, SIGGRAPH ‘95, ‘161-172.

[38] SILLION, F, ARVO, J, WESTIN, S, AND GREENBERG, D, A Global

Illumination Solution for General Reflectance Distributions, SIG-

GRAPH ‘91, 187-196.

[39] SOLER, C, AND SILLION, F, Fast Calculation of Soft Shadow Textures

Using Convolution, SIGGRAPH ‘98, ‘321-332.

[40] TEO, P, SIMONCELLI, E, AND HEEGER, D, Efficient Linear Re-rendering

for Interactive Lighting Design, October 1997 Report No. STAN-CS-

TN-97-60, Stanford University, 1997.
[41] WARD, G, RUBINSTEIN, F, AND CLEAR, R, A Ray Tracing Solution for

Diffuse Interreflection, SIGGRAPH ‘88, ‘85-92.

[42] WESTIN, S, ARVO, J, TORRANCE, K, Predicting Reflectance Functions

from Complex Surfaces, SIGGRAPH ‘92, 255-264.

[43] WILLIAMS, L, Casting Curved Shadows on Curved Surfaces, SIG-

GRAPH ‘78, 270-274.

[44] ZARE, R, Angular Momentum: Understanding Spatial Aspects in

Chemistry and Physics, Wiley, New York, 1987.

0°

20°

40°

 (a) linear

(n=2)
(b) quadratic

(n=3)
(c) cubic
(n=4)

(d) quartic*
(n=5)

(e) quintic
(n=6)

(f) high-order
(n=26)

(g) windowed
(n=26)

(h) ray traced

Figure 10: Comparison of SH orders for representing diffuse self-transfer. Shadows are cast onto a ground plane from a
single polygon seen obliquely at bottom. Angular radius of a constant circular light used for illumination is shown at left.
Higher-orders provide greater accuracy for small lights, but give rise to ringing (which is reduced by windowing in g). Note that
n2 coefficients are required for projection order n. We use the quartic projection (starred) for other result images in this paper.

Figure 9: Real-time,

dynamic caustics and

shadows using diffuse

self-transfer. The ring

model is rendered with a

traditional environment

map; the ground plane

was rendered using pre-

computed self-transfer

results from a caustic

simulation combining

both the specular ring

and a diffuse ground

(Section 5). A 25 com-

ponent transfer vector

was recorded over a

256x256 grid on the

ground plane. These two

images were generated

by rotating an acquired

environment around the

model. A frame rate of

130Hz is obtained in our

implementation .

(a) diffuse, unshadowed (b) diffuse, interreflected (c) glossy, unshadowed (d) glossy, interreflected

Figure 11: Diffuse and Glossy Self-transfer. Unshadowed transfer (a,c) includes no global transport effects. Interreflected transfer

(b,d) includes both shadows and interreflections.

(a) no interreflections (shadowed transfer) (b) 1-bounce interreflections (c) 2-bounce interreflections

Figure 12: Interreflections in Self-Transfer. Top row shows diffuse transfer; bottom row shows glossy transfer. Note the reflections

under the knob on the lid and from the spout onto the body. Run-time performance is insensitive to interreflections; only the preproc-

essed simulation must include additional bounces. Further bounces after the first or second typically provide only subtle change.

