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Abstract
Precomputed Radiance Transfer allows interactive rendering of

objects illuminated by low-frequency environment maps, including
self-shadowing and interreflections. The expensive integration of
incident lighting is partially precomputed and stored as matrices.

Incorporating anisotropic, glossy BRDFs into precomputed ra-
diance transfer has been previously shown to be possible, but none
of the previous methods offer real-time performance. We propose
a new method, matrix radiance transfer, which significantly speeds
up exit radiance computation and allows anisotropic BRDFs. We
generalize the previous radiance transfer methods to work with a
matrix representation of the BRDF and optimize exit radiance com-
putation by expressing the exit radiance in a new, directionally lo-
cally supported basis set instead of the spherical harmonics. To
determine exit radiance, our method performs four dot products per
vertex in contrast to previous methods, where a full matrix-vector
multiply is required. Image quality can be controlled by adapting
the number of basis functions. We compress our radiance transfer
matrices through principal component analysis (PCA). We show
that it is possible to render directly from the PCA representation,
which also enables the user to trade interactively between quality
and speed.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Bitmap and frame buffer operations; I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism—
Color, Shading, Shadowing and Texture

Keywords: Shading, Reflectance & Shading Models, Spherical
Harmonics, Orthogonal Projection.

1 Introduction
Lighting from area sources, soft shadows and interreflections are

important effects in realistic image synthesis. Unfortunately, most
methods for integrating over area light sources are too expensive
for interactive rendering.

Recently, precomputed radiance transfer has been introduced as
a means to shade objects with distant, low-frequency illumination,
including self-shadowing and interreflections [Sloan et al. 2002].
This method is fast enough to achieve interactive and in certain
cases even real-time rates. It only supports Phong-like [Phong
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1975] glossy BRDFs, but can be extended to work with arbitrary
spatially varying reflectance models [Kautz et al. 2002]. Both these
techniques represent the precomputed transfer as well as the BRDF
in spherical harmonics (SH). The method by Sloan et al. [2002] rep-
resents the BRDF as a 2D filter kernel, whereas Kautz et al. [2002]
model the BRDF by view-dependent SH coefficients.

We take another approach and achieve higher performance with
less memory consumption. Our contributions are:
Efficient evaluation of exit radiance. We express exit radiance at
the vertices in a directionally compactly supported basis instead of
the spherical harmonics. Our method does not restrict the choice
of the basis functions, and particularly does not require the basis to
be orthonormal; we use a collection of piecewise bilinear functions
defined on the hemisphere above each vertex. In order to determine
exit radiance into the viewing direction, only four of these basis
functions’ coefficients need to be determined; thus only four dot
products are computed for each vertex. This is in contrast with the
previous methods, where a full matrix multiply is always needed.
The basis change decouples the number of terms used in the pre-
computed transfer simulation and the BRDF representation from
the runtime workload. We also analyze the error introduced by the
change of basis; this information can be used for guiding decisions
on the number of basis functions to be used.
Matrix BRDF representation. To allow general, anisotropic
BRDFs, we use the matrix representation of Westin et al. [1992].
With BRDFs represented as matrices, we express the whole chain
from incident lighting (in SH) to exit radiance (in the directional
basis) by a matrix operating on the incident lighting’s SH coeffi-
cients.
Compression. We reduce memory consumption to a practical level
by applying principal component analysis (PCA) to the radiance
transfer matrices. We achieve a 1:25 compression ratio with visual
results very close to uncompressed results; greater compression ra-
tios of above 1:100 produce pleasing results for non-self-transferred
models. We show that it is possible to render directly from the
PCA representation. Runtime adjustment of the number of princi-
pal components used provides fine-grained quality/speed tradeoff.

2 Related Work
This work allows rendering of glossy reflections from rigid ob-

jects illuminated by environment maps, incorporating effects such
as self-shadowing and interreflections. Related work can be found
in three areas: environment mapping, precomputed transfer, and
spherical harmonics for shading. We briefly summarize previous
work in these areas.

The environment map technique for rendering mirror-like reflec-
tions on curved objects was first introduced by Blinn and Newell
[1976]. Greene [1986a; 1986b] observed that a pre-convolved en-
vironment map could be used for simulating diffuse and glossy re-
flections. Instead of storing the incident radiance, Greene simply
stored exit radiance.

Since then, several approaches have been proposed for sim-
ulating glossy reflections based on pre-filtered environment
maps. These algorithms either assume a simple, fixed BRDF
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model [Greene 1986a; Greene 1986b; Heidrich and Seidel 1999;
Kautz et al. 2000; McAllister et al. 2002; Ramamoorthi and Han-
rahan 2001b] or generalize to isotropic BRDFs [Cabral et al. 1999;
Kautz and McCool 2000; Latta and Kolb 2002; Ramamoorthi and
Hanrahan 2002]. Some of these techniques [Kautz et al. 2000;
Ramamoorthi and Hanrahan 2001b; Ramamoorthi and Hanrahan
2002] can handle dynamic illumination, but none of them can han-
dle spatially varying BRDFs, self-shadowing and interreflections.

Precomputed transfer for micro-geometry has been proposed in
various ways. Heidrich et al. [2000] generalized horizon map-
ping [Max 1988] to diffuse and glossy interreflections, though
changes due to dynamic lighting were not quite real-time. Poly-
nomial texture maps [Malzbender et al. 2001] allow real-time but
view-independent interreflection effects as well as shadowing. A
similar approach using a steerable basis for directional lighting was
used by Ashikhmin and Shirley [2002]. These methods precompute
a simple representation of transfer, but are only valid for directional
light sources, thus requiring multiple integration in order to sim-
ulate area light sources. The work by Sloan et al. [2002] and by
Kautz et al. [2002] will be reviewed in more detail in the next sec-
tion.

Spherical harmonics (SH) [Edmonds 1960] have often been
utilized in computer graphics, as they have properties similar to
the Fourier basis, but over the unit sphere, and are thus well
suited for representing bandlimited spherical functions. Cabral et
al. [1987] utilized spherical harmonics to derive isotropic BRDFs
from heightfields and made the observation that their use reduces
the lighting integral to a dot product. Kautz et al. [2002] used
this insight to extend precomputed radiance transfer to arbitrary
BRDFs. Westin et al. [1992] used spherical harmonics for off-line
BRDF inference from geometric models. In their method both view
and light dependence of the BRDF are represented as a large matrix
using the spherical harmonics basis. In our work we make use of
this matrix representation. The previously mentioned environment
map techniques by Ramamoorthi and Hanrahan [2001b; 2002] are
also based on spherical harmonics.

3 Precomputed Radiance Transfer
Here we review the original techniques of Sloan et al. [2002]

and Kautz et al. [2002], since our new method is based on their
work. Both techniques store a matrix representation of self-transfer
directly over the object’s vertices.

Sloan et al. assume that the object is illuminated by distant low-
frequency illumination Lin(l̂), represented for example by an en-
vironment map. To compute exit radiance from a point p on an
object’s surface, the integral

Lout,p(v̂) =
∫

Ω
Lin(l̂)Vp(l̂) fr(v̂, l̂) max(0, n̂ · l̂) dl̂ =

=
∫

Ω
Lin(l̂)Vp(l̂) f ∗r (v̂, l̂) dl̂ (1)

needs to be evaluated at each p, where n̂ is the surface normal at
p, Lin(l̂) is the incident radiance, Vp(l̂) is the visibility function
— zero for directions along which the environment cannot be seen
due to self-shadowing and one if the environment can be seen —
and f ∗r (v̂, l̂) is the reflectance model including the cosine term. The
result Lout,p is the radiance leaving the point p to the direction v̂,
properly attenuated by self-shadowing.

3.1 Transferred Radiance
In the general case the integral in Equation (1) is expensive to

compute, since the visibility function Vp(l̂) changes at every point
on the object. Fortunately, under the assumption that the object is
rigid, this function remains constant for each point, and thus has
to be computed only once. Furthermore, if the incident lighting is
represented as a coefficient vector in the spherical harmonics basis,

Variable Meaning
v̂, v̂ω viewing direction (global/local)
r̂v̂, r̂v̂ω reflected viewing direction (global/local)
l̂, l̂ω light direction (global/local)
Lin or L incident radiance
Lout or Lo exit radiance
Vp(l̂) visibility function
L∗

p(l̂) transferred radiance, in global coordinates
L′

p(l̂) transferred radiance, in local coordinates
fr(l̂, v̂) BRDF
f ∗r (l̂, v̂) BRDF product function, fr(l̂, v̂) max(0, n̂ · l̂)
f ∗r (l̂ω, v̂ω) BRDF product function, in local coordinates
M2 number of new basis functions
m order of exit radiance SH expansion
n order of incident lighting SH expansion
B BRDF matrix, m2 ×n2

C change of basis matrix, M2 ×m2

G Gram matrix, M2 ×M2

Tp transfer matrix for vertex p, n2 ×n2

Rp SH rotation matrix (global to local coordinates)
Yi spherical harmonic functions
g j basis functions with small directional supports

Figure 1: List of used variables/terms.

the transferred radiance L∗
p(l̂) = Lin(l̂)Vp(l̂), or more precisely its

coefficient vector in the SH basis, can be computed with a matrix-
vector multiplication from the SH projection coefficients ~L of the
incident lighting. This transfer matrix Tp, which varies with the
surface location p, can also be extended to include interreflection
effects in addition to self-shadowing when determining transferred
radiance [Sloan et al. 2002]. The transferred radiance is often re-
quired to be represented in the local tangent space of a vertex; this
can be achieved by multiplication with a high-dimensional rotation
matrix Rp. We denote the transferred radiance SH vector in local
coordinates by~L′

p.

3.2 Exit Radiance
Three methods have been proposed for the remaining task of

computation of exit radiance by integrating the transferred radi-
ance against the BRDF. These methods make different assumptions
about the BRDF.

Diffuse BRDF. If the BRDF is ideally diffuse, a single dot prod-
uct is required per vertex to evaluate the exit radiance [Sloan et al.
2002].

Phong-like BRDF: Integration via Convolution. If the BRDF
is symmetric with respect to the local reflected view direction r̂v̂,
which is the case for e.g. the Phong [1975] model, the computa-
tion of the integral simplifies to a spherical convolution by a BRDF
kernel, followed by evaluation of an SH expansion in the reflected
viewing direction r̂v̂ω [Sloan et al. 2002]. Because the BRDF convo-
lution kernel is also represented in spherical harmonics, the convo-
lution operation becomes a scaled component-wise multiplication
between the transferred radiance SH coefficients ~L′

p and the filter
kernel’s coefficients [Ramamoorthi and Hanrahan 2001a]. The op-
eration results in an SH coefficient vector for the exit radiance. To
obtain actual exit radiance, the SH expansion must be evaluated at
the local reflection direction r̂v̂ω .

General BRDF: Integration via Projection. The method of
Kautz et al. [2002] allows arbitrary, anisotropic BRDFs. They
reparametrize f ∗r by the local viewing direction v̂ω to get a spheri-
cal function fv(l̂ω) for each v̂ω. The functions fv(l̂ω) are projected
into the SH basis, yielding view-dependent SH coefficients fi(v̂ω).
The coefficients are stored in a parabolic texture map indexed by
the viewing direction. For each vertex, exit radiance is computed
by performing a dot product of the view-dependent BRDF coeffi-
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cient fi(v̂ω) with the incident illumination coefficients. The BRDF
f ∗ is represented in the local surface frame, which varies over the
object while the incident lighting uses a global coordinate system.
The two coordinate systems must be aligned at every vertex by ro-
tating the incident lighting into the local coordinate frame with a
high-dimensional rotation matrix.

3.3 Summary
In both of the algorithms for glossy reflection discussed in the

previous section, the following steps need to be taken. First the per-
vertex transfer matrices are precomputed off-line. At run-time the
incident lighting is projected into the SH basis. After projection, the
incident lighting is multiplied with the transfer matrix at each vertex
to get transferred radiance. The method of Sloan et al. computes a
pair-wise multiplication of transferred radiance with the BRDF ker-
nel, followed by an SH evaluation in the reflected viewing direction.
The method of Kautz et al. first rotates the transferred radiance into
the local tangent frame of each vertex and then computes a dot prod-
uct with the view-dependent BRDF coefficients, directly resulting
in exit radiance.

Rendering can be sped up by fixing the lighting, because then
transferred radiance can be precomputed (and also prerotated),
eliminating the matrix-vector multiplication at run-time. If the view
is fixed, a similar speed up can be achieved [Kautz et al. 2002].

Our goal is to speed up the computation for the general case,
where both the lighting and the view can change simultaneously.

4 Matrix Radiance Transfer
In this section we explain how the computation of exit radiance

is made more efficient by expressing exit radiance in a directionally
locally supported basis. We also present a new way of integrating
the transferred radiance against the BRDF product function; to this
end we utilize a matrix representation for the BRDF. Using these
results, we show how precomputed transfer with arbitrary, spatially
varying BRDFs and efficient exit radiance representation can be
cast into a general matrix expression.

4.1 Transfer
In our framework, the incident lighting is projected into the SH

basis, forming a coefficient vector ~L. At each vertex, this coeffi-
cient vector is transformed into transferred radiance by multiplica-
tion with the transfer matrix Tp, which may taken to be the iden-
tity transformation if self-shadowing and interreflections are not re-
quired.

4.2 BRDF Matrix
We use the method of Westin et al. [1992] for representing

BRDFs as matrices — we double-project the 4D BRDF product
function f ∗r (l̂ω, v̂ω) into the SH basis. This is achieved by first pro-
jecting the view-dependence of the BRDF, followed by the light-
dependence. This results in a matrix representation for the general,
anisotropic BRDF. We briefly reiterate the development here.

For each incident direction l̂ω, the BRDF product function is
a function over the unit hemisphere. If this function is projected
into the SH basis Yi(v̂ω) utilizing a suitable extension [Westin et al.
1992] to the whole unit sphere, we get

f ∗r (l̂ω, v̂ω) ≈
m2

∑
i=1

bi(l̂ω)Yi(v̂ω), (2)

with the coefficient vectors bi depending on the incident direction.
Since the projection coefficients bi(l̂ω) are functions over the hemi-
sphere, we project the coefficients themselves into SH:

bi(l̂ω) ≈
n2

∑
j=1

bi jY j(l̂ω). (3)

Hence, the final doubly-projected form for the BRDF product func-
tion is

f ∗r (l̂ω, v̂ω) ≈
m2

∑
i=1

(

n2

∑
j=1

bi jY j(l̂ω)

)

Yi(v̂ω). (4)

We denote the matrix with elements bi j by B .
Since the transferred, rotated radiance ~L′p is also represented by

SH coefficients, we can substitute its SH expansion and the BRDF
expansion from Equation (4) into the lighting Equation (1):

Lout,p(v̂ω) =

∫

Ω

[

n2

∑
i=1

L′
p,iYi(l̂ω)

][

m2

∑
j=1

(

n2

∑
k=1

bp, jkYk(l̂ω)

)

Y j(v̂ω)

]

dl̂ω,

from where by reordering the summations and integration and using
the orthonormality of the SH basis we get the vector of coefficients
of full spherical outgoing radiance, expressed in m2 SH coefficients:

~Lout,p = Bp ·~L′
p

= Bp Rp Tp ·~L. (5)

This means that for each vertex, the incident lighting ~L is first
transformed by the transfer matrix, resulting in transferred radi-
ance, which is then rotated into the local tangent space of vertex p.
The local transferred radiance is then multiplied with the location-
dependent BRDF matrix Bp, resulting in a SH coefficient vector
representing the exit radiance function Lout,p(v̂ω) at the vertex p.
Finally, this SH expansion needs to be evaluated for the actual view-
ing direction v̂ω to get a final exit radiance value:

Lout,p(v̂ω) =
m2

∑
i=1

Lout,p,i Yi(v̂ω). (6)

4.3 Change of Basis
To compute exit radiance using Equation (6), a matrix-vector

multiplication is necessary regardless of the viewing direction v̂ω;
all the SH coefficients~Lout,p are required, since the SH basis func-
tions have global support over the sphere. On the other hand, if
exit radiance would be expressed in a basis set with local supports,
one would only need to evaluate the basis functions “close” to the
viewing direction. Motivated by this observation, we project the
exit radiance into a new basis, the span of a set of functions locally
supported on the hemisphere above each vertex.

The exit radiance function at point p, given by Equation (6),
represented in the SH basis by coefficients ~Lout,p, can be trans-
formed into an expansion in another basis function set g j(v̂ω), with
j = 1, ...,M2, with coefficients ~Lg

out,p. We choose to perform this
transformation by orthogonal projection [Kreyszig 1989], which is
a linear transformation, and can thus be represented by a matrix op-
erating on the coefficients~Lout,p. In addition, orthogonal projection
has the property of minimizing the transformation error in the L2
norm. The orthogonal projection matrix has the form G−1C , where
the elements of the M2 ×m2 change of basis matrix C and those of
the symmetric M2 ×M2 matrix G are defined as

C ji =
∫

Ω
Yi(ω̂)g j(ω̂)dω̂, G ji =

∫

Ω
gi(ω̂)g j(ω̂)dω̂. (7)

Now the coefficients of the exit radiance function expressed in the
new basis are given by

~Lg
out,p = G−1 C~Lout,p. (8)
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Please refer to Appendix A for a full derivation of the basis change
matrices.

In our implementation we use a set of M×M piecewise bilinear
functions (“tent” functions centered at grid points) defined over the
unit square as the new basis functions g j . The basis functions are
mapped from the unit square onto the unit hemisphere by an area-
preserving bijection [Shirley and Chiu 1997, p.6]. Due to the prop-
erties of the piecewise bilinear functions, only four basis functions
have a nonzero value for any given direction on the unit hemisphere.
The bilinear functions also have simple expressions.

4.4 Full Formulation
Combining the results from the previous sections we get the fol-

lowing equation for exit radiance at a vertex p on the object’s sur-
face:

Lg
out,p(v̂ω) =

M2

∑
j=1

g j(v̂ω)
(

G−1 C Bp Rp Tp ·~L
)

j

=
M2

∑
j=1

g j(v̂ω)
(

Ap ·~L
)

j
. (9)

This equation shows that we first have to compute a linear transfor-
mation on the SH coefficient vector~L of the incident lighting. The
result of this linear transformation is the spherical function repre-
senting outgoing radiance, expressed as a coefficient vector in the
new basis spanned by the functions g j . This spherical function is
then evaluated by multiplying the transformed coefficient vector
with the values of the basis functions gi evaluated at direction v̂ω
and summing the results.

Since we have chosen a set of locally supported basis functions,
it is not necessary to compute the full coefficient vector ~Lg

out,p, but
only the coefficients Lg

out,p,k, for which the basis functions gk(v̂ω)

are nonzero at v̂ω. The piecewise bilinear basis functions have the
property that only four gk(v̂ω) are non-zero for any given v̂ω; this
means that only four coefficients Lg

out,p,k need to be computed, and
thus the number of multiplication operations per vertex only de-
pends on n2, the number of coefficients used for representing inci-
dent lighting; our representation decouples the order of the BRDF
representation (m) and the total number of directional basis func-
tions (M2) from the computational complexity of exit radiance de-
termination.

Changing the spherical harmonics basis at the end instead of rep-
resenting incident lighting and performing all the computations in
the new basis has several advantages. Firstly, projection of the inci-
dent lighting into SH is fast, since the basis functions are orthonor-
mal. Furthermore, the alignment of the incident lighting’s coordi-
nate system with the vertices’ local coordinate systems can be done
exactly and without aliasing.

5 Analysis of the Basis Change
To analyze the error introduced by the basis change, we exam-

ine the average PSNR of exit radiance expansions projected into
the M ×M piecewise bilinear basis compared to the correspond-
ing original m-th order SH expansions with m2 coefficients. A
quadratic expression of the form

‖Lo −Lg
o‖

2
2 =~LT

o E~Lo, (10)

where ~Lo is the SH coefficient vector for Lo and E is an m2 ×m2

matrix, can be derived by expanding out the squared norm as
∫

Ω(Lo − Lg
o)

2dω = 〈Lo − Lg
o,Lo − Lg

o〉. The derivation is straight-
forward and we omit the details. Equation (10) allows to directly
compute the squared norm using only ~Lo and E , instead of com-
puting it using hemispherical sampling. Average PSNR can then be
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Figure 2: Error Analysis. Order of exit radiance SH epansion m
vs. average PSNR of bilinear projections of random SH expansions.

measured as

PSNRavg = −10log10
1

E{‖Lo −Lg
o‖2

2}
, (11)

with the expected value taken from uniformly distributed random
norm-1 coefficient vectors~Lo. Figure 2 shows average PSNRs mea-
sured from populations of 1000 coefficient vectors for different val-
ues of m and M. Poor PSNRs resulting from use of too few basis
functions do not directly translate to unusable image quality but
rather to lack of detail, as the error in the projection is coherent; see
Figure 4 for an example.

6 Matrix Compression
For each vertex p on the object, Ap is an M2 ×n2 matrix, where

n is the SH order of the incident lighting and M2 is the number of
exit radiance basis functions; n = 5 and M = 11 are representative
values. For an object with 50 000 vertices, the total amount of data
is approximately 600 MB.

We use principal component analysis (PCA) [Gonzales and
Woods 1993] to compress the data. We apply PCA directly to the
matrices Ap.1 This leads to the following representation:

Ap ≈
K

∑
k=1

wp,k APCA
k , (12)

where every matrix Ap is now represented as a weighted sum of
basis matrices APCA

k with varying weights wp,k for each vertex. K,
an integer between 1 and M2 n2, is the number of principal compo-
nents.

It is possible to render directly from the PCA-compressed repre-
sentation; to determine the exit radiance for each vertex, we need to
evaluate

Lg
out,p(v̂ω) ≈ ∑

j=s,t,r,o
g j(v̂ω)

(

K

∑
k=1

wp,k APCA
k ·~L

)

j

, (13)

where s, t,r and o are the indices of the basis functions that are
nonzero for v̂ω. With~LPCA

k := APCA
k ·~L, one can see that the ~LPCA

k
can be computed once and reused for all vertices. Furthermore,
since only four components of the ~LPCA

k are needed for each ver-
tex, the exit radiance expansion coefficients can be found by 4K
multiplications per color channel per vertex.

1We write the matrices Ap as column vectors of length M2 n2 by stacking
their columns and concatenate the vectors horizontally to get a matrix of size
M2n2 ×V , where V is the vertex count. After applying PCA to this matrix,
the principal components are reorganized back into matrices A PCA

k .
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Quality of the compression can be controlled by adjusting K.
Figure 3 shows average compression errors for different K, mea-
sured as the average PSNR of exit radiance expansions from com-
pressed vs. uncompressed matrices. The computation of PSNRs is
done similarly to the analysis of the basis change in section 5. An
Ashikhmin-Shirley BRDF was used, with Nu,v = 40 for the specular
and Nu,v = 5 for the diffuse case. The graph shows that self-transfer
effects and glossiness of the BRDF decrease the quality achieved by
PCA compression.
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Figure 3: PCA Quality. With each matrix Ap approximated by
Equation (12) as APCA

p , the error is measured as the average PSNR
of the exit radiance expansions produced by compressed matrices
with different number of principal components compared to uncom-
pressed matrices. Here m = 5.

7 Results
Figure 4 shows an object with the Ashikhmin-Shirley BRDF

[Ashikhmin and Shirley 2000] rendered using different methods.
The BRDF matrix representation makes points near object silhou-
ettes slightly darker compared to the method of Kautz et al. [2002];
this can be alleviated using a larger m in the BRDF approximation
at the cost of having to also increase M. We use m = 8 for all im-
ages in this paper, with empirically-determined windowing [Westin
et al. 1992] in the higher-order SH bands (> 5) to avoid ringing.
The change of basis produces visually pleasing results for M >= 9,
with differences to the direct evaluation of Equation (6) only no-
ticeable by close examination. Less basis functions may be used if
m is smaller.

Table 1 summarizes timings for our method. The figures include
only the calculation of lighting for the vertices, i.e. actual picture
generation is excluded. All methods are implemented in software
to allow fair comparison of the algorithms. 25 SH coefficients were
used for incident lighting in all cases. As expected, the change of
basis is faster than the previous method by a factor of 3 to 6, al-
though the speedup achieved without PCA compression is not quite
as big as looking at operations counts per vertex alone would sug-
gest. We explain this with cache misses, as a lot of memory is
accessed each frame. On the other hand, the rates achieved by ren-
dering directly from the PCA representation are much closer to the-
oretical estimates. Also, the speed of the PCA renderer depends on
K, which can be changed at run-time. With a lower K we achieve
render rates significantly higher than the other methods.

Figure 5 shows renderings with and without compression for dif-
ferent values for K using 11× 11 directional basis functions. As
expected, using more principal components achieves better qual-
ity. With K > 25, visual difference in non-self-transferred models
is in practice noticeable only near singularities of the tangent field,
where the possible anisotropy of the BRDF is most evident. Models
with self-transfer require more principal components to converge
visually; we have found K = 50 produces good results at faster
rates than when not using PCA. Using less components loses ac-
curacy gracefully.

model vertices a) fps b) fps c) fps d) fps e) fps
bird 50k 1.6 9.3 8.7 28.9 17.1
head 50k 2.9 9.7 8.7 26.6 17.6

Table 1: Timings. All timings were measured from a software
implementation running on an Intel P4 2.26 GHz with 1 GB of
DDR266 main memory. The bird model was rendered with self-
shadowing and the head model without. The timings are for light-
ing only. a) Kautz et al., b) Basis change 7x7 without PCA, c) Basis
change 11x11 without PCA, d) Basis change 11x11, K = 10 (1:285
compression), e) Basis change 11x11, K = 25 (1:114 compression).

a) PCA, 3 Components, 1:950 b) PCA, 10 Components, 1:285

c) PCA, 20 Components, 1:142 d) Uncompressed

Figure 5: PCA Comparison. Effect of PCA compression on a
change into an 11×11 basis with m = 8. The reconstructed results
and compression ratios are shown for different values of K. The
model is rendered without self-transfer.
8 Conclusions and Future Work

We have presented a method that allows rendering of objects illu-
minated by distant, low-frequency lighting with self-shadowing and
interreflection effects. Our method fully supports arbitrary view-
points and time-varying lighting and is faster than previous tech-
niques [Kautz et al. 2002; Sloan et al. 2002].

The speedup is achieved by expressing exit radiance from the
vertices of the object in a new, directionally locally supported func-
tion basis. This reduces the large per-vertex matrix-vector multi-
plication required by previous methods to four dot products and
removes the need for per-vertex SH function evaluations. We also
showed how a BRDF matrix representation [Westin et al. 1992] —
which allows anisotropic BRDFs — can be included into the pre-
computed radiance transfer framework. This enables us to express
the whole transformation from SH-projected incident irradiance to
exit radiance by a single matrix per vertex. Our method also has
the advantage that we can use a different BRDF at each point on
the object with no additional memory cost. Admittedly, our BRDF
matrices need to be quite large in order to represent high-frequency
BRDFs.

We compress the resulting large matrix data set by principal
component analysis (PCA). The compression reduces memory con-
sumption to a practical level and can be used to trade speed vs.
quality at runtime.
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a) Previous method [Kautz
et al. 2002] b) Equation (6) c) Basis Change 3×3 d) Basis Change 9×9 e) Basis Change 11×11

Figure 4: A Comparison of Methods. We compare the previous method and our new method with and without change of basis. The head
model is rendered without selfshadowing, using an isotropic Ashikhmin-Shirley BRDF (Nu,v = 40). The bird model is rendered with self-
shadowing and an anisotropic Ashikhmin-Shirley BRDF (Nu = 40, Nv = 10). 3× 3 basis change has been included as an example of using
too few basis functions. The images in column b) are rendered by directly evaluating Equation (6).

In the future we would like to implement our new method on
graphics hardware. Furthermore, we would like to try other com-
pression schemes, which hopefully increase run-time performance
even more and perform better with complex self-transfer effects.
Deformable models cannot be handled by our method; we would
like to extend our method to support them as well.
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Appendix A Orthogonal Projection
By definition [Kreyszig 1989], the orthogonal projection P f of a spherical function

f (ω) onto the span of M2 linearly independent functions gi(ω) is characterised by
〈 f −P f ,gi〉= 0 for all i; that is, the “approximation error” is required to be orthogonal
to the target basis. The problem is to find the coefficients lg

i for the representation

P f = ∑M2
i=1 lg

i gi(ω). Expanding the orthogonality requirement for each k = 1, . . . ,M2

we get

0 = 〈gk , f −P f 〉 =

〈

gk , f −
M2

∑
i=1

lg
i gi

〉

= 〈gk , f 〉−
M2

∑
i=1

lg
i 〈gk ,gi〉 , (14)

where we have used 〈X ,Y 〉 =
∫

Ω X(ω)Y (ω)dω for brevity. If the function f is defined

by an SH expansion as f = ∑m2
j=1 l jYj , Equation (14) becomes

m2

∑
j=1

l j 〈gk ,Yj〉−
M2

∑
i=1

lg
i 〈gk ,gi〉 = 0 ⇔ ~lg = G−1 C~l,

with C ji = 〈g j ,Yi〉 and G ji = 〈g j ,gi〉. The matrix G is called the Gram matrix of the
basis. It is guaranteedly nonsingular if the basis set is linearly independent.
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