
Micro-Rendering for Scalable, Parallel Final Gathering

T. Ritschel? T. Engelhardt† T. Grosch? H.-P. Seidel? J. Kautz‡ C. Dachsbacher†

MPI Informatik? Universität Stuttgart† University College London‡

Figure 1: Our method computes global illumination by rasterizing many thousands of tiny micro-buffers (middle left) in parallel, using a
sub-linear point rendering technique with an importance-warped projection. Two interior levels of the hierarchy with 1M points are shown
on the left. The middle image renders at 1.1 Hz (512× 512 res.). The right scene (700K triangles converted to 1M points) renders at 0.7 Hz.

Abstract
Recent approaches to global illumination for dynamic scenes
achieve interactive frame rates by using coarse approximations to
geometry, lighting, or both, which limits scene complexity and
rendering quality. High-quality global illumination renderings of
complex scenes are still limited to methods based on ray tracing.
While conceptually simple, these techniques are computationally
expensive. We present an efficient and scalable method to compute
global illumination solutions at interactive rates for complex and
dynamic scenes. Our method is based on parallel final gathering
running entirely on the GPU. At each final gathering location we
perform micro-rendering: we traverse and rasterize a hierarchical
point-based scene representation into an importance-warped micro-
buffer, which allows for BRDF importance sampling. The final
reflected radiance is computed at each gathering location using the
micro-buffers and is then stored in image-space. We can trade qual-
ity for speed by reducing the sampling rate of the gathering loca-
tions in conjunction with bilateral upsampling. We demonstrate the
applicability of our method to interactive global illumination, the
simulation of multiple indirect bounces, and to final gathering from
photon maps.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Shading

Keywords: global illumination, real-time rendering, GPU, final
gathering

1 Introduction
High-quality global illumination at interactive speed is a difficult
challenge, especially in complex and fully dynamic scenes. On
the one hand, conventional methods for off-line rendering pro-

duce photo-realistic results, but do not allow interactivity. On the
other hand, available interactive or real-time techniques often har-
ness the computational power available in modern GPUs, but suf-
fer from various limitations, such as static geometry [Sloan et al.
2002], precomputed movement [Dachsbacher et al. 2007], low-
frequency lighting [Sloan et al. 2007], or low-glossy indirect illu-
mination [Ritschel et al. 2008].

In principle, a global illumination solution – at least for one
indirect bounce – can be computed easily: render the directly il-
luminated scene from every visible point (either using rasterization
or ray tracing) and convolve it with the BRDF. While this method,
commonly called final gathering [Ward et al. 1988], is conceptually
simple, it is quite expensive, and most GPU-based global illumina-
tion techniques try to avoid it, often leading to rather intricate meth-
ods. We return to the final gathering idea and propose a GPU-based
rasterization approach that turns it into a highly efficient interactive
technique. There are two main challenges that we face. First, the
costly standard triangle-based rasterization needs to be avoided as
it is inefficient when executed many times (e.g., for every surface
point), and second, importance sampling is vital to reduce unneces-
sary computation but is difficult to incorporate on the GPU.

We present micro-rendering to address these issues: At the core,
we perform final gathering of the incident illumination at a large
number of visible surface points. Our final gathering technique op-
erates in parallel on the GPU, and rasterizes the scene into a large
number of micro-buffers by traversing a hierarchical point-based
representation of it. The micro-buffers employ a non-linear pro-
jective mapping to allow for importance sampling of the BRDFs.
Convolution of the incident illumination with the BRDF is a simple
sum of each micro-buffers’ content due to importance sampling.
For high-quality results, we perform final gathering at every image
location. Faster renderings can be achieved by performing final
gathering at a subset of all image locations followed by bilateral
upsampling [Sloan et al. 2007]. Our main contributions include:

• A novel, scalable GPU-based micro-rendering technique to ef-
ficiently gather incident radiance in large and dynamic scenes.

• A method to perform BRDF-based importance warping for ras-
terization of a point-based hierarchical scene representation.

• Techniques for the efficient computation of multiple-bounce in-
direct illumination and photon mapping walkthroughs.

We demonstrate our method for complex, fully dynamic scenes
with indirect, diffuse and glossy illumination, for final gathering
from photon maps, and for radiosity-style global illumination.

1.1 Related Work

We briefly review related work, with a focus on final gathering and
global illumination (GI).
Final Gathering Final gathering refers to the process of calcu-
lating the amount of indirect illumination at a surface point. For
instance, it is an integral part of photon mapping [Jensen 1996]. It
is usually the most time consuming part in GI and, not surprisingly,
many algorithms aim at reducing the final gathering cost.

Irradiance caching [Ward et al. 1988] performs final gathering
only at a sparse set of locations in the image, and interpolates ir-
radiance values at other locations. Irradiance gradients [Ward and
Heckbert 1992] additionally compute the gradient of the irradiance
to enable better interpolation. Křivánek et al. [2005] extended ir-
radiance caching to glossy surfaces by storing incident radiance
instead of irradiance. Our micro-rendering technique speeds up
the final gathering process itself and is independent of the cache
placement strategy.

The lightcuts method [Walter et al. 2005] pursues a similar goal,
but assumes that all (indirect) lighting is represented as a hierar-
chical collection of point lights. For every visible surface point, a
cut through the hierarchy is computed, and the contributions of all
clustered point lights are summed up; visibility is resolved by ray-
casting toward the center of each cluster. In contrast, our method
uses a hierarchy of point samples, which we rasterize in parallel
into micro-buffers at less cost while enabling more accurate visi-
bility. Recently, lightcuts were also extended to combine several
cuts through a hierarchy of lights, visibility, and BRDFs [Cheslack-
Postava et al. 2008]. While this extension allows for interactive
performance, it does assume static geometry. Matrix row-column
sampling [Hašan et al. 2007] computes a single set of point lights
instead of varying it per image location. However, importance sam-
pling is not possible and rendering quality is limited due to the low
number of gathering samples used. Recently, Christensen [2008]
proposed a CPU-based method to speed up final gathering for dif-
fuse and moderately glossy scenes using a point-based represen-
tation of direct illumination stored in an octree. At each irradi-
ance cache location, distant points are rasterized into a cube map
and nearby points are raycast, but since no importance warping is
used, glossiness is directly limited by the buffer’s resolution. Our
method follows a similar goal: speeding up global illumination
through a hierarchical representation of illumination. In contrast to
Christensen [2008], our method exploits GPU compute power and
employs importance sampling for arbitrary BRDFs – both for ras-
terization and on-demand raycasting. In concurrent work, Wang et
al. [2009] demonstrate interactive global illumination using GPU-
based final gathering with ray-tracing. It enables complex lighting
effects but relies on sparse gathering locations for efficiency.
Real-time GI Real-time global illumination for static scenes is
possible with a number of different techniques. One of the early
methods is precomputed radiance transfer (PRT) [Sloan et al. 2002].
Most of the PRT variants require static geometry, although some
recent extensions also allow the movement of rigid objects [Iwasaki
et al. 2007]. Low-resolution dynamic scenes are possible, assuming
low-frequency illumination [Ren et al. 2006; Sloan et al. 2007].
Recently, Lehtinen et al. [2008] presented an interactive PRT-based
illumination method for static scenes using a hierarchical, point-
based representation. Light transport was simulated in a similar
manner to radiosity [Cohen and Wallace 1993]. We also employ
a hierarchical point-based representation but only for emitters; re-
ceiver points are selected in image-space and gathering is only per-
formed for those.
Interactive GI in Dynamic Scenes Interactive frame rates for
GI in moderately complex scenes can be achieved using anti-
radiance [Dachsbacher et al. 2007], but computing a link hierarchy
for fully dynamic scenes requires additional work [Meyer et al.

2009]. Bunnel [2005] approximated ambient occlusion and indi-
rect illumination in small scenes using a hierarchy of linked disc
elements. Instant radiosity [Keller 1997] is the basis for many in-
teractive GI approaches but is too slow for complex scenes in its
basic form. However, it can be efficiently implemented on GPUs
using reflective shadow maps [Dachsbacher and Stamminger 2005;
Dachsbacher and Stamminger 2006] when indirect visibility is ig-
nored. Imperfect shadow maps [Ritschel et al. 2008] achieve in-
teractive frame rates for moderately complex and fully dynamic
scenes using approximate visibility, but ultimately fail to handle
large scenes due to a non-hierarchical point representation. Fur-
ther, indirect shadows are generally smoothed out considerably. In
contrast, our approach enables high-quality, indirect illumination
for both diffuse and glossy scenes of high geometric complexity.
Discussion Most of the above techniques share the goal of eval-
uating the rendering equation more densely, when one of the factors
inside the integral is high, and less densely everywhere else. This
goal is also the inspiration of our technique but in contrast to many
of the above techniques we evaluate everything on the fly. Tra-
ditional importance sampling in ray tracing [Dutré et al. 2006] is
probably the best-known method that tries to focus computation
on where it is most needed. It has usually been coupled with ray
tracing, since visibility needs to be checked in arbitrary directions.
We make this idea amenable to GPU-based rendering by rasteriz-
ing our hierarchy of points into warped micro-buffers, effectively
performing importance sampling.

1.2 Overview

Our method allows the rendering of global illumination in fully dy-
namic scenes. It is scalable such that the user can trade rendering
quality for speed, with a smooth transition ranging from fast pre-
views to solutions that are close to ground truth. At the heart of our
method is an efficient micro-rendering technique which performs
a BRDF importance sampled final gathering of the incident radi-
ance. The term “micro” refers to the low overhead of launching
the rendering, as well as to the low resolution of the frame buffer.
We demonstrate that our method runs an order of magnitude faster
than previous approaches and reaches preview quality at interac-
tive speeds of up to 10 frames per second. The key points of our
algorithm are:
• We generate a hierarchical point-based representation of the

scene’s surfaces for adaptive level-of-detail rendering.
• Our novel micro-rendering technique facilitates a highly parallel

rendering of arbitrary (in our case hemispherical) mappings on
the GPU, in order to gather the incident radiance at many surface
points at the same time.

• We integrate importance sampling into the micro-rendering al-
lowing us to efficiently compute final gathering for diffuse and
glossy surfaces with arbitrary BRDFs.

• For preview quality we compute final gathering at a subset of the
image pixels and use bilateral upsampling [Sloan et al. 2007].
High-quality renderings at approximately 0.5 to 1 frames per
second perform final gathering at every pixel (512× 512 res.).

Micro-rendering is beneficial for many different global illumination
methods. It directly renders one-bounce indirect illumination when
point samples are directly lit, and multiple bounces when used with
instant radiosity techniques. It can also be used to compute and dis-
play radiosity solutions, and for interactive walkthroughs of photon
mapping results with final gathering.

2 Scalable, Parallel Final Gathering
In this section we describe all steps of the micro-rendering method
in detail, starting with the basic technique, which is then extended
with importance sampling and bilateral upsampling.

bounding sphere normal cone

leaf-nodes interior nodesA B C D

E F

G

A B C D E F G

Figure 2: We represent the scene’s surfaces using a point hierarchy,
similar to QSplat, which is stored as a complete binary tree. This
allows for easy traversal and fast updates at run-time.

2.1 Hierarchical Point-Based Representation

Our micro-rendering method is based on a hierarchical point-based
representation of the scene, since point-based representations al-
low for efficient level-of-detail rendering on GPUs [Dachsbacher
et al. 2003; Ritschel et al. 2008], often provide a simple point selec-
tion criterion [Rusinkiewicz and Levoy 2000], and have shown to
be well-suited for approximative global illumination [Christensen
2008]. In comparison to triangle-based rendering, point-based ren-
dering has a lower setup and rasterization cost for low image reso-
lutions. Similar to QSplat, we use a hierarchy of bounding spheres,
where leaf nodes represent a single surface element (an oriented
disc with radius r) and interior nodes represent a collection of sur-
face elements. For rendering, this hierarchy is traversed starting
from the root node: each node’s bounding sphere is projected into
micro screen space to compare its size to a given threshold. This
determines if the respective disc is rendered and the traversal is
terminated, or if its child-nodes are to be tested recursively. We re-
place the ‘size-in-screen-space’-test of the original QSplat method
with a test based on the solid-angle subtended by a node. This crite-
rion will allow us to define warped projective mappings, and thus to
integrate importance sampling easily. Note that warped mappings
would be difficult to combine with triangle rasterization.

Point Hierarchy Generation The point-based representation of
the scene is generated in an offline preprocessing step. First, we
create random points on the triangles of the scene, proportional to
the triangle areas, using a best candidate sampling. For every point
sample, we store the triangle index and the barycentric coordinates
of the point relative to its triangle. The barycentric coordinates al-
low us to recompute positions and normals for deforming geometry
[Ritschel et al. 2008]. The point density, which is initially constant,
determines the radius of the point samples. Under deformations we
scale the points’ radii to compensate for the varying point densities.

These point samples form the leaf nodes of our hierarchical point
representation (Fig. 2). We build the hierarchy by computing a
binary-space partitioning of the point samples, which we store as
a complete binary tree (hence the number of points n is a power
of two). This enables us to compute skip-pointers on-the-fly during
traversal, instead of storing additional offsets. The construction first
sorts the leaf nodes and works as follows: we take the list of leaf
nodes (the initially created point samples) as input and determine
along which coordinate axis the point list has the largest extent.
We then sort all points along this axis, split the list into two parts
with an equal number of points, and recursively process both sub-
lists in the same manner. In total, the cost for sorting all points is
O(n log2 n) for n points. As we use a complete tree, the order of
the points in the list implicitly defines the hierarchy. Consider the
example shown in Fig. 2: nodes A to D are the leaf nodes after
sorting. As the tree is complete, nodes A and B are children of the
node E, and so on. For all interior nodes, we compute the minimum
bounding sphere enclosing all child nodes, as well as the cone of
normals (stored as direction plus cone angle).

Ω(x3,y3)

Ф(x1,y1)

Ф(x2,y2)

E

F

G

B
A

Figure 3: Every pixel (xi, yi) of a micro-buffer corresponds to a
direction Φ(xi, yi) and subtends a solid angle Ω(xi, yi). The point
hierarchy is traversed and rasterized such that nodes project to no
more than one pixel in the micro-buffer. In this example, the nodes
A, B, and F, of the point hierarchy in Fig. 2, are selected.

Deforming and Moving Geometry For deforming geometry, we
leave the hierarchy itself unchanged and only update the per-node
data. At run-time at the beginning of every frame, we recompute
the leaf nodes’ positions and normals, and update the interior nodes,
i.e., we recompute the minimum bounding sphere and cone of nor-
mals, containing the two child-nodes’ bounding spheres and nor-
mals, respectively. This process works bottom-up by successively
merging two nodes at a time, yielding a total of O(n) operations
for n leaves. This keeps the run-time cost for maintaining the point
hierarchy low, and we can reasonably handle deforming geome-
try. For moving objects we create separate point hierarchies. The
normals and normal cones are used for lighting computation and
back-face culling during the point hierarchy traversal.

2.2 Final Gathering Using Micro-Rendering

Final gathering is used for high-quality renderings to compute the
indirect illumination at every visible surface point p. It involves
gathering incident radiance Lin(ωi) from direction ωi of the upper
hemisphere at p. Usually BRDF importance sampling is used to
gather more from directions that contribute more to the reflected
radiance towards the observer. Due to the typically large number of
gather directions involved, this is an expensive operation and com-
monly used in the context of offline rendering only. Our method
enables parallel final gathering and achieves interactive frame rates
through micro-rendering, which has been developed with the high
parallelism of contemporary and future GPUs in mind. In the fol-
lowing we first detail the basic micro-rendering procedure for a
single gather point. In Section 3 we then describe the implemen-
tation details, and how we ensure that the computational power of
such hardware is utilised to a very high degree.

Micro-rendering generates images using the mapping Φ(x, y) =
ω relating a pixel (x, y) of the micro-buffer to a gather direction ω.
We denote the solid angle subtended by the pixel under this map-
ping as Ω(x, y) (see Fig. 3). Such a mapping can be any standard
hemispherical projection; however, we use our own mapping as de-
scribed in the next subsection. The micro-buffers store an index of
the nearest visible node as well as its distance at every pixel (i.e.,
we maintain an index and depth buffer); A micro-buffer is typically
small, ranging from 8× 8 to 24× 24 pixels in our examples.

The basic image formation process starts with computing the cut
in the point hierarchy, which also determines which point sample is
visible for every micro-pixel. We then gather the incident radiance
for every micro-pixel, and convolve it with the BRDF, yielding the
radiance reflected towards the observer. Importance sampling can
be integrated easily at little additional cost by changing the mapping
function Φ(x, y) appropriately (Section 2.3).
Point Hierarchy Cut We compute the cut using a depth-first
search in the point hierarchy starting from the root node. For
each node, we evaluate the selection criterion: we first compute

viewer

Ф(x2,y2)

Ф(x1,y1)

Ω(x3,y3)

Figure 4: The warping function Φ(xi, yi) = ωi relates pixels in
the micro-buffer to directions distributed according to the BRDF.
Consequently the solid angle, Ω(xi, yi), corresponding to each pixel
varies as well.

the direction ωi to the node’s center, the solid angle Ωi that it sub-
tends, and the pixel (xi, yi) = Φ−1(ωi) that the direction maps to.
If Ωi > Ω(Φ−1(ωi)), then the node is larger than 1 pixel under the
projective mapping, and we will proceed with the child-nodes. Oth-
erwise, we perform a depth test and if the node’s distance is smaller
than the depth value at (xi, yi), we store its index and update the
depth buffer.
On-demand Ray Casting When encountering leaf nodes, a fur-
ther refinement is not possible. Such nodes potentially project onto
several pixels, with possibly distorted shapes. We opt to resolve
the exact visibility of such nodes using ray casting after computing
the cut. To this end, we store their indices in a post-traversal list,
which we maintain for every micro-rendering, for later processing.
That is, after traversal and rasterizing all 1-pixel-sized nodes, we
cast rays, one for every pixel in the micro-buffer, to find the closest
intersection with the nodes in the post-traversal list and update the
micro-buffer accordingly. From this, we obtain an accurate micro-
rendering with water-tight surfaces.
Convolution After ray casting, the micro-buffer stores the index
to the nearest visible node in the point hierarchy for every pixel. To
obtain the reflected radiance, we compute the radiance Lin(ωi) from
every node, weight it by the respective solid angle, multiply by the
BRDF, and sum up all contributions. Note that there are different
strategies to obtain Lin(ωi). We can determine it dynamically by
extracting the position and normal of each node and computing the
lighting including shadowing using shadow maps (for direct light-
ing or instant radiosity lighting). When using only diffuse surfaces,
we can store the reflected radiance inside the point hierarchy [Chris-
tensen 2008], or we can obtain a radiance estimate for every node
from a photon mapping solution (Fig. 8). We demonstrate results
for all these strategies, and also describe a radiosity-like light prop-
agation scheme using the point hierarchy in Section 4.

2.3 BRDF Importance Sampling

We have yet to specify the mapping Φ(x, y) that relates a pixel
to a gather direction ω. One could use a standard hemispher-
ical parameterization, such as a Nusselt projection: Φ(x, y) =
(x, y,

√
1− x2 − y2). However, if the surface point p is highly

glossy, much of the information stored in the micro-buffer is prac-
tically irrelevant, as incident radiance from only a small solid angle
(and thus few pixels) will be reflected towards the viewer. There-
fore, we apply importance sampling of the BRDF. In the context
of micro-rendering, this means that we require more pixels in the
micro-buffer to correspond to important sample directions.

This can be achieved by defining the mapping Φ(x, y) appropri-
ately. For a given point p in the scene, we know the current viewing
direction ωo. We take the 2D light-dependent slice f ωo

r (ω) of the
BRDF fr(ωo, ω) at that point, i.e., we fix the view direction ωo,
and parameterize it by the x- and y-coordinate of ω: f ωo

r (ωx, ωy).
After normalizing the slice with 1/ρ, where ρ =

∫
f ωo
r (ω)dω, we

Figure 5: Micro-buffer for a glossy BRDF with a standard hemi-
spherical mapping (BRDF -weighted) and with importance-warped
mapping (Phong, N = 20). The importance-warped micro-buffer
uses the available space more efficiently. On the right, we show the
importance-warped micro-buffer for Phong N = 5 and N = 1.

regard it as a 2D probability distribution function (PDF). We com-
pute its inverse cumulative marginal and conditional distributions,
M−1 and C−1, which are used to map from uniformly distributed x
and y (the pixels) to ωx(x) = M−1(x) and ωy(y) = C−1(y|ωx(x)).
These are then used to define the importance-warped mapping
Φ(x, y) =

(
ωx(x), ωy(y),

√
1− ωx(x)2 − ωy(y)2

)
. This particular

mapping performs importance sampling according to ωz fr(ωo, ω).
The cosine term ωz is implicitly included due to the chosen pa-
rameterization of the BRDF slice. Fig. 4 illustrates a BRDF-
based mapping function Φ(x, y) and its associated Ω(x, y). Fig. 5
shows a micro-buffer for a glossy gather sample with and without
importance-warping.

While for some BRDFs this mapping can be derived analytically
(e.g., specular Phong component), we opt for generality; i.e., we al-
ways tabulate the PDF and compute the inverse distributions numer-
ically. Note that we require the inverse mapping Φ−1(ω) = (x, y)
in order to project a node onto our micro-buffer, while the forward
mapping is required for ray casting. In practice, we compute both
the forward and inverse mapping. Further, we need to know what
the subtended solid angle of a pixel is, i.e., we need to define Ω(x, y)
as well. We use a first-order approximation by taking the magnitude
of the gradient of Φ(x, y). Note that we jitter the local coordinate
system slightly at every gather sample to avoid banding artifacts.

As the micro-buffer is now importance-warped, a simple sum of
all pixels scaled by ρ yields the convolved indirect illumination; no
more multiplication with the BRDF fr(ωo, ω)ωz or the pixel’s solid
angle is required.
Discussion Rendering with highly glossy materials is demand-
ing in terms of warping, raycasting and point sampling. Although
warping itself does not restrict glossiness if analytic formulas for
mapping BRDFs are available, tabulation might miss features, ef-
fectively limiting glossiness. Highly glossy BRDFs also require
more point samples in the hierarchy, because surface edges and tex-
tures can become visible in reflections. Also, the projection of more
nodes is likely to be larger than 1 pixel in diameter, thus requiring
raycasting.

Similar to our method, Jensen [1995] uses an importance-warped
table to roughly record directions that contribute most to the re-
flected radiance in order to improve importance sampling for path
tracing. This table is computed from nearby photons in a photon
map only, thus possibly containing holes. In contrast, we use a
BRDF-warped micro-buffer to accurately record all incident light-
ing, directly yielding reflected radiance after summation.

2.4 Bilateral Upsampling

For interactive previews we compute the indirect illumination at a
lower resolution image only, and upsample the shading results using
bilateral upsampling [Sloan et al. 2007] to the full resolution; direct
lighting is always computed at full resolution. During upsampling,
we avoid interpolating across discontinuities in the geometry, i.e.,
across silhouettes or over large differences in normal. For this, we
compute interpolation weights as proposed in Sloan et al. [2007].
Indirect illumination is typically low-frequency and thus can be in-

Figure 6: Multi-bounce indirect illumination for instant radios-
ity. Instead of directly using instant radiosity to illuminate a scene
(left), we shade the points in our hierarchical scene representation
with instant radiosity (visualized in the middle) and perform a final
gathering step (right, 0.7 Hz, no upsampling). The additional final
gathering step removes many of the artifacts of instant radiosity.

terpolated and, in addition, direct illumination often masks possible
artifacts.

Nevertheless, we can detect pixels where the interpolation is de-
ficient. This is the case when the interpolation weights are nearly
zero. For such pixels we can compute the indirect illumination in an
additional render pass rather than interpolating (similar to [Dachs-
bacher and Stamminger 2005]). Unfortunately, a high overhead due
to additional memory transfers (in our CUDA implementation), not
the micro-rendering cost, slows down this approach significantly.

Preview quality using indirect illumination computed at 1/16-th
image resolution (i.e., 1/4 in each dimension) typically renders at 4
to 10 Hz, whereas the full simulation runs at 0.5 to 1.0 Hz. There
are more sophisticated techniques [Ward and Heckbert 1992] to
determine where to compute indirect illumination, and how to in-
terpolate irradiance. Note that these techniques could be combined
with our method, but the integration into a GPU-based framework
is challenging.

3 Implementation
Micro-rendering has been designed to exploit the parallelism of
GPUs. We implemented our method using NVIDIA’s CUDA and
thus we will use the respective terminology in this section.

3.1 Data Structures

Our micro-rendering implementation is based on two important
data structures: the scene’s geometry stored as a point hierarchy,
and the micro-buffers and post-traversal lists for efficiently com-
puting parallel final gathering.

We create the point hierarchy in a preprocessing step (Sec-
tion 2.1), and store it as an array in global memory that is used by
all rendering threads. For each node, we allocate 128 bits storing a
node’s position and radius (4× 16 bits), normal and surface albedo
(both quantized to 3× 5 bits, packed into one 32 bit value), and the
cone angle (quantized to 8 bits). In contrast to the original QSplat
data structure, we store absolute positions and radii to allow direct
access to interior nodes, and to avoid stack maintenance which is
expensive on GPUs. This packing leaves 24 bits free, which we
experimentally used to store the reflected radiance for every point
sample. As expected, the clamping to 8 bits per channel corrupts
the results, and we thus opt for storing the reflected radiance as half-
floats in a separate array instead. The update of the point hierarchy
data is done using CUDA at the beginning of every frame.

The micro-buffers are allocated in local memory, storing 32 bits
for every pixel, out of which 8 bits are used for the depth compo-
nent, and 24 bits for the node index. Thus our current implemen-
tation is limited to a point hierarchy with a maximum of 224 nodes
(i.e., 223 point samples), which is significantly more than what we
used in our examples. In addition to the micro-buffer, we allocate
the post-traversal list of the same size providing space for the in-
dices of the nodes whose visibility is resolved using ray casting.

Figure 7: Direct illumination (left), one-bounce indirect illumina-
tion (middle) and two-bounce indirect illumination (right). Multiple
bounces are computed at 5.0 Hz by gathering incident illumination
at the hierarchy level 12 (4 k nodes) followed by a final gathering
step at 128×128 surface locations. The final image is obtained from
bilateral upsampling with anti-aliasing.

3.2 Parallel Micro-Rendering using CUDA

In order to perform as many micro-renderings in parallel as pos-
sible, we launch one CUDA thread for each micro-rendering, i.e.,
every gather sample. Each thread first computes the BRDF warping
functions, and then continues to compute the point hierarchy cut
for the respective gather sample. Note that we compute the BRDF
warping for every single micro-rendering, which allows for arbi-
trary, spatially-varying BRDFs. The output of this first step is a par-
tially finished micro-buffer and the post-traversal list. Ray casting
is typically only necessary for 10% to 30% of the micro-renderings
(i.e., the post-traversal list is empty for the other 70%-90%). The
threads with a non-empty list cast one ray for every micro-pixel,
according to the tabulated warping function, and intersect it with
the nodes stored in their respective post-traversal list to find the
closest intersection. We also experimented with splitting the micro-
rendering into two kernels: computing the warping and the point
hierarchy cut in one thread, and next casting rays through all pix-
els of a micro-buffer in parallel by using many threads. However,
the increased parallelism did not amortize due to the overhead of
memory transfers required for this approach. Instead of ray casting
we have also experimented with rasterization of large (multi-pixel)
point samples, which turns out to be costly due to the warped pro-
jective mapping. We found the required accuracy, i.e., no holes in
the micro-buffer, to be cheapest to achieve with ray casting.

A parallel execution works best if the instruction sequences of
CUDA threads are as similar as possible. This is the case if two
threads compute a similar cut and post-traversal list. In order to
support this, we enumerate all micro-renderings according to a 3D
Morton-order space-filling curve to provide high spatial coherence.

After filling the micro-buffers, each thread computes the re-
flected radiance by summing up its content. We then hand the
results to OpenGL for bilateral upsampling and final display.

4 Applications
Our micro-rendering method can be used in various ways to achieve
high-quality interactive renderings, and full-resolution renderings
comparable to off-line ray tracing methods such as PBRT [Pharr
and Humphreys 2004]. In this section we outline four applications.
One-Bounce Indirect Illumination When directly lighting the
point hierarchy, e.g. using shadow mapping techniques, and then
using micro-rendering for final gathering, we achieve renderings
with one bounce of indirect light. As shown in Fig. 1 we can capture
all L{S|D}2E light paths.
Multiple Bounces with Instant Radiosity The basic technique
can be extended to handle additional diffuse bounces by using in-
stant radiosity to generate a set of virtual point lights [Keller 1997],
which is then used to illuminate the points in our hierarchy. This
enables us to render LD∗{S|D}2E light paths (Fig. 6). Note that

Figure 8: Final gathering for photon mapping. We first perform
density estimation on the photon map (computed offline) for every
point in our hierarchy (left). On the GPU, we then perform final
gathering (right, note the glossy floor), which allows for interactive
walkthroughs of photon mapped scenes (at 2 Hz) using bilateral
upsampling with anti-aliasing from 128×128 to 1024×1024.

the typical instant radiosity artifacts, such as bright splotches and
shadow aliasing, diminish thanks to final gathering.
Multiple Bounces with Radiosity The hierarchical point repre-
sentation of the scene’s surfaces can also be used to compute light
transport similar to hierarchical radiosity. We use micro-rendering
to perform gathering in a Jacobi-iteration scheme: in every itera-
tion we gather the indirect lighting at the point samples from other
surfaces in the hierarchy to compute the reflected radiance. It is
usually sufficient to do this for an interior node level and then to
update the illumination of the entire hierarchy using push-pull [Co-
hen and Wallace 1993]. We initialize this computation with the
direct illumination at all points. The final rendering pass consists
of performing micro-rendering at every pixel, effectively displaying
the radiosity solution using final gathering; see Fig. 7 (right).
Photon Mapping We can use our method to interactively display
solutions stored in diffuse photon maps. In a preprocess, we obtain
a radiance estimate for each leaf node of the point hierarchy through
density estimation from the photon map, and compute the radiance
values for the interior nodes using pull steps. Micro-rendering is
then used for final gathering; see Fig. 8.

5 Results
In the following, we present our results rendered at interactive
frame rates on a quad-core 2.4Ghz CPU with an NVIDIA GeForce
280 GTX. As mentioned before, all scene components (geometry,
lighting, BRDFs) are allowed to change on-the-fly. Unless other-
wise mentioned, result images are rendered at 512 × 512 pixels
using 24× 24 micro-buffers with one-bounce indirect illumination
and direct lighting of the points in the hierarchy using shadow maps.

Fig. 14 shows four different scenes rendered with our method
with gather samples at every pixel and at every 4th pixel (in each
dimension) using bilateral upsampling, and we compare to a refer-
ence solution computed with Monte-Carlo path tracing [Pharr and
Humphreys 2004]. Broadly speaking, the differences between the

Figure 9: Comparison between ISMs [Ritschel et al. 2008] and our
proposed method. At the same rendering speed (5 Hz) our method
achieves higher quality than ISMs.

Figure 10: Final gathering at every pixel (0.83 Hz, top), 1/4 of all
pixels (2.2 Hz, middle), and 1/16 (4.2 Hz, bottom). Preview qual-
ity can be achieved with a very low number of gather samples for
diffuse or low-glossy materials.

reference solution (taking minutes to hours to compute) and ours
are minor. When using bilateral upsampling, the differences are
slightly more perceptible; however, we achieve interactive frame
rates of up to 10 Hz.

Fig. 9 compares our method using bilateral filtering to
ISMs [Ritschel et al. 2008]. We adjusted the number of gather
locations to achieve roughly the same speed as ISMs. Note how
our method achieves superior quality in indirect shadows compared
to ISMs. Furthermore, ISMs can only be used for low-glossy
scenes, otherwise VPLs will become visible; this precludes scenes
as shown in Fig. 1.

The number of required gather locations is scene dependent, and
scenes with higher geometric complexity or glossy materials natu-
rally require more samples. In Fig. 10 we compare the rendering
quality using different numbers of sample locations. For diffuse
surfaces 1/16 resolution is visually sufficient, whereas for the glossy
dragon we need more locations (1/4 resolution).

Fig. 11 demonstrates what happens if we omit the post-traversal
ray casting step. Holes occur in the micro-buffers and the render-
ing quality decreases, especially around edges. Post-traversal ray
casting is therefore an integral step in our method.

In Fig. 12, we compare the influence of the size of the micro-
buffer on rendering quality. 24 × 24 pixels (used for all other fig-
ures) is the maximum we can fit into local memory on our GPU but
even lower resolutions still achieve acceptable results at a higher
frame rate. However, note that at any resolution there is a possibility
that we miss small holes (e.g., see the plant in Fig. 14), as is the case
for all rasterization-based methods.

The performance of our method is sub-linear in the number of
input points, which is to be expected from a hierarchical represen-
tation; see the red curve in Fig. 13, which indicates running time
vs. scene complexity (dynamic horse scene represented with more
and more points). The blue curve indicates that tree update is sub-
linear until a hardware limitation is reached (at around 220 point
samples). As shown by the green curve in Fig. 13, we can process

Figure 11: Micro-rendering with (2.5 Hz) and without (2.9 Hz) the
post-traversal ray casting (256×256). Ray casting is an integral
step that is needed for high-quality results, especially around edges.

Figure 12: Influence of micro-buffer size on rendering quality
(256× 256). We use 8× 8 (3.2 Hz), 16× 16 (1.5 Hz), and 24× 24
(0.7 Hz). Smaller sizes are faster but quality decreases.

more gather samples per second when the total number of gather
samples increases. This is to be expected due to the increased co-
herency between gather samples.

The computation time of our GPU-based final gathering tech-
nique is (roughly) split as follows for a typical scene, such as the
teaser. 1.5% is spent on updating the hierarchy, 2% on building
the view-dependent per-pixel mappings Φ(x, y), 18% on evaluating
them, 60% on rasterizing the point hierarchy, 8% on ray casting,
and 11% on bilateral upsampling, tonemapping and direct lighting.

5.1 Discussion and Limitations

In typical scenes, our method is able to compute about 150M final
gathering samples with importance sampling (a 512 × 512 image
with 24 × 24 micro-buffers at every pixel renders at about 1Hz,
including tree update, shading, etc.). CPU-based ray tracing can
send out about 10M rays per second per core, if the rays are co-
herent [Shevtsov et al. 2007], i.e., about an order of magnitude
less than our method. Currently reported numbers on GPU-based
ray tracing indicate that about 20M rays can be traced in dynamic
scenes (including a complete rebuild of the acceleration structure)
[Zhou et al. 2008].

While our method deals well with complex scene and arbitrary
BRDFs, it has certain limitations. When glossy surfaces are present
in a scene, more gather samples are required. In this case our simple
regular gather sample distribution is not ideal and more elaborate
distributions should be used [Křivánek et al. 2005]. As mentioned
earlier, we have opted to prevent banding artifacts by jittering the
local coordinate system at each pixel. As a result some noise is vis-
ible in our images. While our method renders one-bounce indirect
caustics – simply by gathering from highly glossy surfaces – more
than two specular bounces are not supported. Other effects, such as
transparent objects and refractions are currently not simulated.

We implemented our method in CUDA to explore the potential
of parallelizing the various micro-rendering tasks (see Section 3).
In the end, performing all tasks in a single kernel was fastest. This
suggests that a pure OpenGL implementation might be just as fast.

6 Conclusions and Future Work
We have presented a novel technique for scalable and parallel final
gathering that enables the efficient computation of indirect illumi-
nation. It has been designed to harness the power of modern GPUs,
and can trade rendering quality for computation time in a simple
and intuitive manner. It handles large, fully dynamic scenes with
diffuse and glossy surfaces. We demonstrate various applications
of our method including single and multiple bounce indirect illu-
mination, and the computation and display of radiosity solutions.
Further, it can be used to compute final gathering for interactively
rendering photon mapping results, yielding a speedup of an order
of magnitude over a standard CPU implementation.

There are several possible avenues for future research. Our
method is geared towards diffuse and glossy surfaces; highly specu-
lar surfaces require a sufficient number of gather locations as well as
point samples to capture the illumination. We would like to inves-
tigate alternatives such as radiance caching on the GPU to handle

0
0,5
1
1,5
2
2,5
3
3,5
4

0

5

10

15

20

25

30

35

10 15 20

tim
e (sec)tim

e
 (m

s)

tree depth

tree update rendering

0

100

200

300

400

0 250 500 750 1000

10
³ s

am
pl
es

 /
 s
ec

final gather samples (10³ samples)

10³ samples/sec with space-filling curve
10³ samples/sec without space filling curve

0
0,5
1
1,5
2
2,5
3
3,5
4

0

5

10

15

20

25

30

35

10 15 20

tim
e (sec)tim

e
 (m

s)

0

100

200

300

400

0 250 500 750 1000

10
³ s

am
pl
es

 /
 s
ec

10³ samples/sec with space-filling curve
10³ samples/sec without space filling curve

Figure 13: Left: the red curve indicates computation time vs. scene
complexity (measured as tree depth, equals 2N point samples).
It indicates sub-linear complexity. The blue curve outlines tree-
updating time. Right: the number of processed gather samples per
second vs. the total number of gather samples in the image (green
with, blue without space-filling curve to support spatial coherence).

specular surfaces. Our hierarchical point representation allows for
large and complex geometry; however, scenes with a high depth
complexity, such as buildings with many rooms, would benefit from
portal decompositions and efficient culling techniques.

References
BUNNELL, M. 2005. Dynamic ambient occlusion and indirect

lighting. In GPU Gems 2, M. Pharr, Ed. Add. Wesley, 223–233.
CHESLACK-POSTAVA, E., WANG, R., AKERLUND, O., AND

PELLACINI, F. 2008. Fast, realistic lighting and material design
using nonlinear cut approximation. ACM Trans. Graph. (Proc.
SIGGRAPH Asia) 27, 5, 128:1–128:10.

CHRISTENSEN, P. 2008. Point-based approximate color bleeding.
Tech. Rep. 08-01, Pixar Animation Studios.

COHEN, M., AND WALLACE, J. 1993. Radiosity and Realistic
Image Synthesis. Academic Press Professional.

DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective
shadow maps. In Proc. I3D, 203–213.

DACHSBACHER, C., AND STAMMINGER, M. 2006. Splatting in-
direct illumination. In Proc. I3D, 93–100.

DACHSBACHER, C., VOGELGSANG, C., AND STAMMINGER, M.
2003. Sequential point trees. ACM Trans. Graph. (Proc. SIG-
GRAPH) 22, 3, 657–662.

DACHSBACHER, C., STAMMINGER, M., DRETTAKIS, G., AND
DURAND, F. 2007. Implicit visibility and antiradiance for in-
teractive global illumination. ACM Trans. Graph. (Proc. SIG-
GRAPH) 26, 3.

DUTRÉ, P., BALA, K., AND BEKAERT, P. 2006. Advanced Global
Illumination. AK Peters.

HAŠAN, M., PELLACINI, F., AND BALA, K. 2007. Matrix
row-column sampling for the many-light problem. ACM Trans.
Graph. (Proc. SIGGRAPH) 26, 3, 26.

IWASAKI, K., DOBASHI, Y., YOSHIMOTO, F., AND NISHITA, T.
2007. Precomputed radiance transfer for dynamic scenes taking
into account light interreflection. In Proc. EGSR, 35–44.

JENSEN, H. W. 1995. Importance driven path tracing using the
photon map. In Proc. ESGR, 326–335.

JENSEN, H. W. 1996. Global illumination using photon maps. In
Proc. EGSR, 21–30.

KELLER, A. 1997. Instant radiosity. In SIGGRAPH ’97, 49–56.
KŘIVÁNEK, J., GAUTRON, P., PATTANAIK, S., AND BOUA-

TOUCH, K. 2005. Radiance caching for efficient global illu-
mination computation. IEEE TVCG 11, 5, 550–561.

LEHTINEN, J., ZWICKER, M., TURQUIN, E., KONTKANEN, J.,
DURAND, F., SILLION, F., AND AILA, T. 2008. A meshless hi-
erarchical representation for light transport. ACM Trans. Graph.
(Proc. SIGGRAPH) 27, 3, 37:1–37:9.

Figure 14: Comparison between 1. Fast preview images (1/16 resolution and upsampling), 2. Non-filtered micro-rendering for all 512× 512
pixels and 3. PBRT path tracing. The simple Cornell box achieves high-quality global illumination results even with bilateral upsampling.
The geometrically complex plant scene shows some slight differences (see insets), which we attribute to the discrete micro-buffers. For the
Sponza scene, our method produces results that are indistinguishable from the reference rendering. In fact, bilateral upsampling removes
noise and produces the visually most pleasing result. We also achieve very similar results for the glossy scene. However, as expected, bilateral
upsampling changes the glossy reflection on the sphere slightly. The error images are scaled by a factor of three.

MEYER, Q., EISENACHER, C., STAMMINGER, M., AND DACHS-
BACHER, C. 2009. Data-parallel hierarchical link creation for
radiosity. In Proc. EGPGV, 65–70.

PHARR, M., AND HUMPHREYS, G. 2004. Physically Based Ren-
dering: From Theory to Implementation. Morgan Kaufmann.

REN, Z., WANG, R., SNYDER, J., ZHOU, K., LIU, X., SUN, B.,
SLOAN, P.-P., BAO, H., PENG, Q., AND GUO, B. 2006. Real-
time soft shadows in dynamic scenes using spherical harmonic
exponentiation. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3,
977–986.

RITSCHEL, T., GROSCH, T., KIM, M. H., SEIDEL, H.-P.,
DACHSBACHER, C., AND KAUTZ, J. 2008. Imperfect shadow
maps for efficient computation of indirect illumination. ACM
Trans. Graph. (Proc. SIGGRAPH Asia) 27, 5, 129:1–129:8.

RUSINKIEWICZ, S., AND LEVOY, M. 2000. QSplat: A mul-
tiresolution point rendering system for large meshes. In Proc.
SIGGRAPH, 343–352.

SHEVTSOV, M., SOUPIKOV, A., AND KAPUSTIN, A. 2007.
Highly parallel fast kd-tree construction for interactive ray trac-
ing of dynamic scenes. Computer Graphics Forum (Proc. Euro-
graphics) 26, 3, 395–404.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precom-
puted radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. ACM Trans. Graph. (Proc.
SIGGRAPH) 21, 3, 527–536.

SLOAN, P.-P., GOVINDARAJU, N., NOWROUZEZAHRAI, D., AND
SNYDER, J. 2007. Image-based proxy accumulation for real-
time soft global illumination. In Proc. Pacific Graphics, 97–105.

WALTER, B., FERNANDEZ, S., ARBREE, A., BALA, K.,
DONIKIAN, M., AND GREENBERG, D. P. 2005. Lightcuts:
A scalable approach to illumination. ACM Trans. Graph. (Proc.
SIGGRAPH) 24, 3, 1098–1107.

WANG, R., WANG, R., ZHOUN, K., PAN, M., AND BAO, H.
2009. An efficient GPU-based approach for interactive global il-
lumination. ACM Trans. Graph. (SIGGRAPH) 28, 3, 91:1–91:8.

WARD, G., AND HECKBERT, P. 1992. Irradiance gradients. In
Proc. EGSR, 85–98.

WARD, G., RUBINSTEIN, F., AND CLEAR, R. 1988. A ray tracing
solution for diffuse interreflection. In Computer Graphics (Proc.
SIGGRAPH), vol. 22, 85–92.

ZHOU, K., HOU, Q., WANG, R., AND GUO, B. 2008. Real-time
kd-tree construction on graphics hardware. ACM Trans. Graph.
(Proc. SIGGRAPH Asia) 27, 5, 126:1–126:11.

