
Joint Virtual Reality Conference of EuroVR - EGVE (2011)
R. Blach, S. Coquillart, M. D’Cruz, A. Steed, and G. Welch (Editors)

Adapting Standard Video Codecs for Depth Streaming

Fabrizio Pece Jan Kautz Tim Weyrich

{f.pece, j.kautz, t.weyrich}@cs.ucl.ac.uk
Department of Computer Science, University College London, UK

Figure 1: Graphical overview of the proposed method. The original 16-bit depth map is encoded in an 8-bit, three-channel image and is then
processed by a video encoder and transferred over the network. When received, the three-channel image is decoded through the video decoder
and is then processed by our method to reconstruct the original 16-bit depth map.

Abstract

Cameras that can acquire a continuous stream of depth images are now commonly available, for instance the
Microsoft Kinect. It may seem that one should be able to stream these depth videos using standard video codecs,
such as VP8 or H.264. However, the quality degrades considerably as the compression algorithms are geared
towards standard three-channel (8-bit) colour video, whereas depth videos are single-channel but have a higher
bit depth. We present a novel encoding scheme that efficiently converts the single-channel depth images to standard
8-bit three-channel images, which can then be streamed using standard codecs. Our encoding scheme ensures that
the compression affects the depth values as little as possible. We show results obtained using two common video
encoders (VP8 and H.264) as well as the results obtained when using JPEG compression. The results indicate that
our encoding scheme performs much better than simpler methods.

Categories and Subject Descriptors (according to ACM CCS): I.4.2 [Image Processing and Computer Vision]: Com-
pression (Coding)—Approximate methods

1. Introduction

In the last few years depth acquisition has become a popular
topic of research, and this has reflected in a larger availabil-
ity of depth cameras that allow direct acquisition of scenes’
depth information. While there is a large number of applica-
tions that can take advantage of this, new problems are in-
troduced. For instance, streaming the information available
from depth cameras is a non-trivial task due to the type of
data employed by these units (16 bits per depth or higher)
and the required bandwidth. While some work has been done

to develop ad-hoc depth encoders that allow streaming of 3D
content, we have no knowledge of working solutions that
adapt existing video encoders (i.e., VP8 or H.264) to depth
streaming. Such a solution is highly desirable for applica-
tions that are being built today, as special depth compression
codecs are not generally available and, consequently, have
not been widely adopted. Furthermore, being able to use
the same video codec for transferring both colour and depth
frames enhances consistency and simplifies the streaming ar-
chitecture.

© The Eurographics Association 2011.

F. Pece & J. Kautz & T. Weyrich / Adapting Standard Video Codecs for Depth Streaming

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 60,000
0

50

100

150

200

250

Depth Encoding Scheme with np = 2048 and w = 216

L
Ha

Hb

(a) L(d) (blue), Ha(d) (green) and Hb(d) (red)
with w = 216. For illustration, np = 2048 is set
unusually large, and the ordinate shows integer
values rather than [0,1]-normalised values.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

np = 512

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

np = 104

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

np = 2048

L
Ha

Hb

(b) Plots of L(d) (blue), Ha(d) (green) and
Hb(d) (red) for increasing values of np. Here,
input depths and output channel values are nor-
malised to lie within 0 . . .1.

0 512 1024 2048 4096 8192
150

200

250

300

350

400

450

500

550

600

Mean Error for increasing values of np ! JPEG Compression at 75%

np

M
ea

n
Er

ro
r

(c) Mean Error for increasing np values.

Figure 2: Analysis of the three functions, L, Ha and Hb, used for depth encoding.

This work presents a novel scheme to encode 16-bit depth
maps into three-channel, 8-bit images. Once encoded, the
depth maps can be transferred using standard video en-
coders with no further changes. We show how our scheme
successfully encodes and decodes various depth configura-
tions using three different compression schemes, JPEG, VP8
and H.264, at different levels of compression. The proposed
technique has been successfully tested on a variety of scenes
and depth configurations, and it is now used at the core of an
Immersive Collaborative Virtual Environment (ICVE) plat-
form. The applications for the proposed algorithm are nu-
merous: 3D video, Video Mediated Communication (VMC)
Systems or ICVEs are some of them.

2. Related Work

Depth streaming is a novel problem with very few, ad-hoc
solutions so far. While some work has been done to develop
specific depth codecs, the same cannot be said for the task
of adapting depth maps to conventional video streaming.
Depth streaming is a central topic in free viewpoint video
(FVV) and 3D television (3DTV) [KAF∗07] applications.
An interesting overview of suitable technology for such ap-
plications is given by Smolic and Kauff [SK05]. A popu-
lar format for 3DTV uses a conventional monoscopic colour
video and an associated per pixel depth image correspond-
ing to a single, central viewing position. This format, named
“video-plus-depth”, has been adopted by the ATTEST sys-
tem [RdBF∗02], one of the first European project that could
demonstrate the feasibility of a 3DTV processing chain. By
employing such format, the ATTEST system is able to ob-
tain backwards compatibility to existing 2D services for dig-
ital video broadcast, efficient compression capabilities and
a high adaptability to 3D display properties and viewing
conditions [Feh04]. While the monoscopic video stream is
encoded with the standard MPEG video coding, the auxil-
iary depth information is compressed by using an adapted
version of the H.264/AVC standard [MWS06]. As a first
step towards standardisation of technologies for 3DTV and
FVV applications, a new standard addressing algorithms for
Multi-view video (MVV) data compression — Multi-view

Video Coding (MVC) — has been developed by the Joint
Video Team (JVT) of VCEG and MPEG [IMYV07]; how-
ever, MVC is intended to encode stereoscopic (two views)
images by adapting the H.264 codec [MBX∗06], it does not
lend itself for direct depth encoding.

Merkle et al. [MMS∗09] acknowledge the need of special
solutions to enable video codecs, such as H.264, to depth
compression. Video codecs are often optimised for image
statistics and human perception, and thus a naïve adaption of
such codecs to the depth case is not sufficient. In this work,
the authors present a different depth-optimised encoding for
adaptive pixel blocks that are separated by a single edge,
and assign to such block a constant or linear depth approx-
imation. Pajak et al. [PHE∗11] present an automatic solu-
tion for efficient streaming of frames rendered from a dy-
namic 3D model. The proposed algorithm is based on an ef-
ficient scheme that relies on inter frame prediction, avoiding
any future frame prediction. Maitre and Do [MD08] present
a different approach based on joint colour/depth compres-
sion. The authors exploit the strong correlation between
colour and depth to develop an ad-hoc codec that relies on
a shape-adaptive wavelet transform and an explicit repre-
sentation of the locations of major depth edges. However,
this solution is limited by its semiautomatic approach. Also
region-of-interest specifications and depth-value redistribu-
tion can improve depth compression and transmission qual-
ity, as showed by Krishnamurthy et al. [CSSH04].

Finally, interesting solutions for depth compression have
been developed for telepresence and video-conferencing
systems. Lamboray et al. [LWG04] propose a communica-
tion framework for distributed real-time 3D video rendering
and reconstruction. They introduce several encoding tech-
niques and analyse their behaviour with respect to resolu-
tion, bandwidth and inter-frame jitter. Also Würmlin et al.
[WLG04] propose a point-based system for real-time 3D re-
construction, rendering and streaming. As their system oper-
ates on arbitrary point clouds, no object shape assumptions
are made, and topological changes are handled efficiently.

Even if the works presented in this section provide solu-

© The Eurographics Association 2011.

F. Pece & J. Kautz & T. Weyrich / Adapting Standard Video Codecs for Depth Streaming

tions for depth streaming based on already existing codecs
(mainly H.264), none of them can be used with the origi-
nal implementations of such codecs. In fact, they all rely on
strong changes on the original video codec and thus on mod-
ified implementation. In contrast, our solution can be used
with any existing, unmodified codec implementation, as it is
completely independent from the video encoding technique.

3. Depth Encoding and Decoding

In this section we describe the depth encoding and decoding
scheme presented in this work. Our aim is to encode depth
maps acquired from depth cameras (i.e., Microsoft Kinect,
PMD Camcube or PointGrey Bumblebee), with depths typ-
ically described with 16-bit precision, such that they can be
streamed using existing video codecs.

Our goal is to reconstruct the original depth values as ac-
curately as possible after compression/decompression. Com-
pression schemes for videos are highly tuned for colour
video, taking into account human perception, e.g., by spend-
ing fewer bits on colour than luminance information, and so
forth. Of course, these insights do not apply to depth com-
pression. On the plus side, video codecs compress 24 bits of
data per pixel (3×8 bits), whereas we only have 16 bits per
pixel as input. As we will demonstrate in Section 4, naïvely
multiplexing the 16-bit depth values into two 8-bit values
and passing those into a video codec (leaving the third chan-
nel empty) creates severe artefacts; duplicating some of the
bits in order to fill the available 3×8 bits does not improve
quality much.

We propose a robust encoding of 16-bit depth values into
3×8 bits, such that the decoded depth maps suffer from very
few compression artefacts, see Figure 1 for an overview. The
scheme is designed to be resilient to quantisation, and com-
paratively robust against down-sampling (convolution) and
altered intensities due to lossy compression.

We express our scheme as a mapping from integer depth
values d ∈ {0, . . . ,w− 1} (w = 216 for a 16-bit depth map)
to three [0,1]-normalised (colour) channels L(d), Ha(d)
and Hb(d). L(d) is a linear mapping of d into [0,1] and,
since subject to quantisation, is interpreted as a low-depth-
resolution representation of d,

L(d) = (d + 1/2)/w ,

while Ha and Hb are chosen as fast-changing, piece-wise lin-
ear functions (triangle waves) whose slopes are high enough
to be expressed in the low-precision output representation:

Ha(d) =


(L(d)

p
2

mod 2
)

if
(L(d)

p
2

mod 2
)
≤ 1

2−
(L(d)

p
2

mod 2
)

otherwise
,

Hb(d) =


(L(d)− p

4
p
2

mod 2
)

if
(L(d)− p

4
p
2

mod 2
)
≤ 1

2−
(L(d)− p

4
p
2

mod 2
)

otherwise .

np is the integer period of Ha and Hb in the input depth do-
main and needs to be at most twice the number of output
quantisation levels (np ≤ 512 for 8-bit output); p =

np
w is this

period normalised to a 0 . . .1 depth range. Thus designed to
be resilient to quantisation, Ha and Hb will be used to de-
code fine-grain depth variations, while L will anchor these
variations in the global depth frame.

In practice, L(d), Ha(d) and Hb(d) can be tabulated for
any d in the input depth range, reducing depth encoding to a
simple look-up with negligible computational overhead.

As shown in Figure 2(a), Ha and Hb are triangle waves
with equal period and different phase. The phases are cho-
sen, so that for any depth value d̄ encoded by L, either Ha or
Hb is linear within d̄± p/4. Accordingly, given an encoded
triple (L̄, H̄a, H̄b), the original depth value d̄ can be decoded
by determining a depth offset L0 from L and adding a fine-
scale depth correction δ:

d̄(L̄, H̄a, H̄b) = w ·
[
L0(L̄)+δ(L̄, H̄a, H̄b)

]
,

δ(L̄, H̄a, H̄b) =


p
2 H̄a if m(L̄) = 0
p
2 H̄b if m(L̄) = 1
p
2 (1− H̄a) if m(L̄) = 2
p
2 (1− H̄b) if m(L̄) = 3

,

with
L0(L̄) = L̄−

(
L̄− p

8
mod p

)
+

p
4

m(L̄)− p
8
,

m(L̄) =
⌊
4

L(d̄)
p
−0.5

⌋
mod 4 .

Ha and Hb are chosen to be triangle waves to be robust
against spatial filtering; alternative choices, such as a saw-
tooth wave, would have suffered from strong distortions at
their discontinuities. While other mappings may still be pos-
sible, we argue that C0 continuity is a desirable property, in
particular where the codec downsamples individual colour
channels. When increasing np above its maximum value, the
slopes of Ha(d) and Hb(d) are decreased (Figure 2(b)), grad-
ually becoming subject to quantisation. Figure 2(c) shows
how the reconstruction error increases accordingly. For the
results shown in this paper we set np = 512 and w = 216.

On first glance, our code bears resemblance to phase-
shift encoding, due to the undulating Ha and Hb with π/4

phase shift. Our decoding scheme, however, does not employ
quadrature decoding but rather evaluates only one H{a,b} at
the time (depending on L(d)).

4. Results

In this section we present the results obtained on a vari-
ety of depth-plus-colour videos acquired with a Microsoft
Kinect unit. We tested three dynamic sequences with a num-
ber of frames between 300 and 450 (for each test all the
frames have been used to compute the evaluation metrics),

© The Eurographics Association 2011.

F. Pece & J. Kautz & T. Weyrich / Adapting Standard Video Codecs for Depth Streaming

50 55 60 65 70 75 80 85 90 95
20

25

30

35

40

45

JPEG Quality

JPEG ! PSNR

OUR
BIT1
BIT2

(a) PSNR – JPEG compression

50 55 60 65 70 75 80 85 90 95
0

2000

4000

6000

8000

10000

12000

14000

JPEG Quality

JPEG ! Mean Error

OUR
BIT1
BIT2

(b) Mean Error – JPEG compression

Figure 4: Results of the different depth encoding schemes using JPEG compression. Note how our encoding scheme yields a
much better PSNR and a much lower mean error. Results are computed on 450 frames with a resolution of 640×480 pixels.

50 55 60 65 70 75 80 85 90 9543

44

45

46

47

48

49

50

JPEG Quality

PSNR ! Our Method

Seq. 1
Seq. 2
Seq. 3

(a) PSNR of our method – JPEG compression

50 55 60 65 70 75 80 85 90 95200

250

300

350

400

450

500
Mean Error ! Our Method

JPEG Quality

Seq. 1
Seq. 2
Seq. 3

(b) Mean error of our method – JPEG compression

Figure 5: Results of our technique using JPEG compression for the three sequences. 300–450 frames, 640×480 pixels.

Figure 3: BIT1 interleaving scheme. Please note that each
value in the 8-bit variable cells refers to the corresponding
bit index in the 16-bit variable.

and with a resolution of 640×480 pixels. As quality met-
rics we decided to compute the Peak-Signal-to-Noise-Ratio
(PSNR) and the absolute value of the mean error (ME). To
integrate the results analysis we also show point-cloud ren-
derings of the depth maps before and after the transmission.
For comparison purpose, we implemented two depth encod-
ing schemes based on “bit multiplexing”. In both cases we
split the original 16-bit buffer in three chunks with varying

sizes, but never bigger than 8 bits, and we then pack them
in a three-channel image. In the first case (which we will
call BIT1) we interleave the original bit sequence with the
scheme shown in Figure 3. For the second case (which we
will call BIT2) we store the first six most important bits in
the first six most important bits of the first channel, the sub-
sequent five bits in the five most important bits of the second
channel, and the final five bits in the five most important bits
of the third channel. We then pad the remaining bits with ze-
ros. We decided to employ both JPEG and VP8/H.264 com-
pression to show the results of our encoding scheme with
different compression techniques. While JPEG’s compres-
sion is purely based on the image statistics, VP8 [BWX11]
and H.264 [Ric03] encoders take advantage of both temporal
and spatial properties of the input sequence.

4.1. JPEG Compression

As first test, we combined our depth encoding scheme with
the JPEG compression algorithm and compared our solution
with the two bit-multiplexing schemes. Hence, we first en-
coded the video depth maps in an RGB image using either
our compression algorithm or one of the bit-multiplexing
schemes, then we applied JPEG compression with a certain
quality level q, and finally we de-compressed the JPEG im-
age and decoded the resulting RGB into a single-channel,
16-bit map.

© The Eurographics Association 2011.

F. Pece & J. Kautz & T. Weyrich / Adapting Standard Video Codecs for Depth Streaming

0 0.5 1 1.5 2 2.5 30.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.6 3.2
x 104

10

20

30

40

50

60

70

80

Bitrate (kbits)

VP8 ! PSNR

OUR
BIT1
BIT2

(a) PSNR – VP8 compression

0 0.5 1 1.5 2 2.5 30.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.6 3.2
x 104

0

2000

4000

6000

8000

10000

12000

14000

Bitrate (kbits)

VP8 ! Mean Error

OUR
BIT1
BIT2

(b) Mean error – VP8 compression

Figure 6: Results of the different depth encoding schemes using VP8 compression. Note how our encoding scheme yields a
much better PSNR and a much lower mean error. Results computed on 450 frames with a resolution of 640×480 pixels.

0 0.5 1 1.5 2 2.5 3 3.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.6 3.2
x 104

54

56

58

60

62

64

66

68

70

72

Bitrate (kbits)

PSNR ! Our Method

Seq. 1
Seq. 2
Seq. 3

(a) PSNR score of our method – VP8 compression

0 0.5 1 1.5 2 2.5 3 3.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.6 3.2
x 104

20

30

40

50

60

70

80

90

100

110

120

Bitrate (kbits)

Mean Error ! Our Method

Seq. 1
Seq. 2
Seq. 3

(b) Mean error of our method – VP8 compression

Figure 7: Results of our technique using VP8 compression for the three sequences. 300–450 frames, 640×480 pixels.

The result of this test, which we ran on the first video
sequence, are shown in Figure 4. The experiment has been
conducted with increasing quality for the JPEG compression
(quality level of 50 – 95). The performance of the proposed
method is clearly superior to the bit-multiplexing schemes.
Both PSNR and mean error show how our method is able
to compress and decompress the depth range without los-
ing much precision. These results are also supported by the
analysis of a point cloud of one of the compressed depth
maps. Figure 11 shows the decoded depth maps obtained
with the three methods. The depth maps transmitted using
our method are superior to the ones obtained with the bit-
multiplexing schemes. In fact, while bit multiplexing leads
to many grossly corrupted depth values, the quality of the
depths obtained with our algorithm compares favourably to
the ground truth. These results are confirmed by the tests
run on the other two sequences (Figures 5 and 12, second
column).

4.2. VP8/H.264 Compression

The tests run on JPEG compression indicate that our depth
encoding algorithm generates 3×8-bit images that, when
compressed with the JPEG algorithm, do not lose informa-
tion that will be needed for the reconstruction of the orig-
inal maps. However, the vast majority of the codecs used
for streaming, in contrast to the JPEG standard, are based
not only on image statistics, but also on temporal and spa-

tial features. Therefore, we run other tests on our depth en-
coder (similarly to the ones described in Section 4.1) using
two of the most common codecs used for real-time stream-
ing, VP8 and H.264. For these tests, and for both codecs,
we have used the codec implementations included in ffmpeg
(www.ffmpeg.org). Both VP8 and H.264 perform a colour-
space transformation (RGB to YUV422) before starting the
frame encoding, with higher precision in the Y channel. To
ensure that the information contained in L(d) is transferred
as accurately as possible, we pack the encoded triples L(d),
Ha(d) and Hb(d) into Y , U , and V channel, respectively, and
feed them directly to the ffmpeg encoder. Similarly for the
bit-multiplexing techniques, we distribute values over Y , U
and V according to their significance. We encoded the depth
as the most significant 8 bits in the Y channel, and the re-
maining bits in the chroma channels.

Note that all codecs considered (including JPEG) down-
sample colour information spatially, which is another reason
to store data of higher significance in the luminance chan-
nel. It further implies that our experiments also test for re-
silience to (moderate) spatial down-sampling and respective
pre-convolution of the chromaticity of the image.

4.2.1. VP8

Similarly to what we did for the JPEG case, we run a test on
the first of three sequences using our depth encoding scheme
and the two bit-multiplexing techniques with VP8 compres-

© The Eurographics Association 2011.

file:www.ffmpeg.org

F. Pece & J. Kautz & T. Weyrich / Adapting Standard Video Codecs for Depth Streaming

0 0.5 1 1.5 2 2.5 30.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.6 3.2
x 104

10

20

30

40

50

60

70

Bitrate (kbits)

H.264 ! PSNR

OUR
BIT1
B2T1

(a) PSNR – H.264 compression

0 0.5 1 1.5 2 2.5 30.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.6 3.2
x 104

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Bitrate (kbits)

H.264 ! Mean Error

OUR
BIT1
BIT2

(b) Mean error – H.264 compression

Figure 8: Results of the different depth encoding schemes using H.264 compression. Note how our encoding scheme yields a
much better PSNR and a much lower mean error. Results computed on 450 frames with a resolution of 640×480 pixels.

0 0.5 1 1.5 2 2.5 3 3.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.6 3.2
x 104

42

44

46

48

50

52

54

56

58

60

62

Bitrate (kbits)

PSNR ! Our Method

Seq. 1
Seq. 2
Seq. 3

(a) PSNR score of our method – H.264 compression

0 0.5 1 1.5 2 2.5 3 3.50.1 0.2 0.3 0.4 0.5 0.60.6 0.8 0.9 1.6 3.2
x 104

50

100

150

200

250

300

350

400

450

Bitrate (kbits)

Mean Error ! Our Method

Seq. 1
Seq. 2
Seq. 3

(b) Mean error of our method – H.264 compression

Figure 9: Results of our technique using H.264 compression for the three sequences. 300–450 frames, 640×480 pixels.

sion. Figure 6 shows the results of this initial test. The exper-
iment has been conducted with increasing bit-rate (256 kbit –
32768 kbit) using ffmpeg with default parameters. Our com-
pression scheme yields the best performance for both PSNR
and mean error, in contrast to the two bit-multiplexing tech-
niques. Moreover, our method generates depth maps that are
almost identical to the original ones (Figure 12(c)). Figure 7
shows the performance obtained by our algorithm for the
other two video sequences, confirming the results of the pre-
vious test. The error introduced by our compression scheme
is low, as is also clear from the point clouds showed in the
third column of Figure 12.

4.2.2. H.264

As a last test we combined our encoding scheme with the
H.264 video compressor. As done in the previous experi-
ments, we run an initial test on the first of three sequences us-
ing our depth encoding scheme and the two bit-multiplexing
techniques. The results of this experiment (Figure 8) re-
vealed that our technique yields the best performance for
both mean error and PSNR. Moreover, the amount of er-
ror introduced in the reconstructed maps do no seem to ad-
versely affect the reconstructed depth maps (Figure 12(d)).
This is also the case for the last two sequences (Figure 9,
Figure 12(h) and Figure 12(l)).

As with VP8, the overall scene’s details are well pre-
served, and the error is mostly located around the edges.

From this, we can conclude that our solution can be used
successfully with both VP8 and H.264 compression for
depth streaming.

4.3. Discussion

The results obtained during our tests show that the pro-
posed solution successfully adapts standard video codecs
to depth map streaming. Limited amount of noise is intro-
duced during compression, and the mean error shows that
our method affects the depth values very little. The major-
ity of the errors occupies the regions around depth discon-
tinuities. This, however, has been already noticed in previ-
ous works [MMS∗09, CSSH04, PJO∗09, PHE∗11], and thus
it has to be expected when depth discontinuities are not dealt
with separately. These limitations can be partially solved by
filtering the decoded depth maps, as shown in Figure 10. Fil-
tering these depth samples (left) based on local point-cloud
density helps removing outliers and improves the quality of
the reconstruction considerably (right).

5. Conclusion

We presented an efficient solution to adapt video codecs de-
signed for 3×8-bit images to 16-bit depth maps. Our so-
lution requires negligible computational overhead (see Ta-
ble 1), and works well with several compression algorithms

© The Eurographics Association 2011.

F. Pece & J. Kautz & T. Weyrich / Adapting Standard Video Codecs for Depth Streaming

(a) View One

(b) View Two

Figure 10: Initial decoded depth map (left) with outliers
marked in red. Filtered point cloud of depth samples (right).

Input resolution Encoding (ms) Decoding (ms)
320× 240 7.9791 10.7116
640× 480 29.4461 32.7017

1280× 960 94.6789 106.6898

Table 1: Computational times of our encoding/decoding
scheme on an Intel(R) Core(TM) i7 @ 2.93GHz

such as JPEG, VP8 and H.264. The proposed method al-
lows the use of the same codec for both colour and depth
frames. This simplifies streaming 3D videos, as colour and
depth frames can be compressed and transferred using the
same video codec, simplifying implementation in applica-
tions such as 3D Video, Virtual Environments and Video
Mediated Communications. Our scheme is independent of
the video codec employed and therefore does not require any
modification of the compression algorithm itself (see Fig-
ure 1). This distinguishes our work from previous solutions
for depth streaming. Finally, our method introduces a small
amount of error and noise in the reconstructed depth maps.
The vast majority of the noise lies around the depth discon-
tinuities present in the original map, as our method does not
explicitly treat them. A post-decoding filtering step seems to
be sufficient to remove sporadic noise, however, this solu-
tion is semiautomatic and cannot cope with clustered noise.
Therefore, a possible extension to our work could be a solu-
tion to automatically improve precision around the edges.

References
[BWX11] BANKOSKI J., WILKINS P., XU Y.: Technical

overview of vp8, an open source video codec for the web. In-
ternational Workshop on Acoustics and Video Coding and Com-
munication (2011). 4

[CSSH04] CHAI B.-B., SETHURAMAN S., SAWHNEY H. S.,
HATRACK P.: Depth map compression for real-time view-based
rendering. Pattern Recognition Letters 25 (May 2004), 755–766.
2, 6

[Feh04] FEHN C.: Depth-image-based rendering (DIBR), com-
pression, and transmission for a new approach on 3D-TV. In So-
ciety of Photo-Optical Instrumentation Engineers (SPIE) Confer-
ence Series (May 2004), A. J. Woods, J. O. Merritt, S. A. Benton,
& M. T. Bolas, (Ed.), vol. 5291 of Society of Photo-Optical In-
strumentation Engineers (SPIE) Conference Series, pp. 93–104.
2

[IMYV07] INCE S., MARTINIAN E., YEA S., VETRO A.: Depth
estimation for view synthesis in multiview video coding. 3DTV
Conference (3DTV-CON) (2007). 2

[KAF∗07] KAUFF P., ATZPADIN N., FEHN C., MÂŸLLER M.,
SCHREER O., SMOLIC A., TANGER R.: Depth map creation
and image-based rendering for advanced 3dtv services provid-
ing interoperability and scalability. Signal Processing: Image
Communication 22, 2 (2007), 217 – 234. Special issue on three-
dimensional video and television. 2

[LWG04] LAMBORAY E., WÃIJRMLIN S., GROSS M.: Real-
time streaming of point-based 3d video. In In To appear in: Pro-
ceedings of IEEE Virtual Reality (2004), IEEE Computer Society
Press, pp. 91–98. 2

[MBX∗06] MARTINIAN E., BEHRENS A., XIN J., VETRO A.,
SUN H.: Extensions of h.264/avc for multiview video compres-
sion. In IEEE International Conference on Image Processing
(2006). 2

[MD08] MAITRE M., DO M. N.: Joint encoding of the depth im-
age based representation using shape-adaptive wavelets. In Im-
age Processing, 2008. ICIP 2008. 15th IEEE International Con-
ference on (October 2008), pp. 1768 –1771. 2

[MMS∗09] MERKLE P., MORVAN Y., SMOLIC A., FARIN D.,
MUELLER K., DE WITH P. H. N., WIEGAND T.: The effects
of multiview depth video compression on multiview rendering.
Singal Processing: Image Communication 24, 1-2 (2009), 73–88.
2, 6

[MWS06] MARPE D., WIEGAND T., SULLIVAN G. J.: The
h.264/mpeg4 advanced video coding standard and its applica-
tions. Communications Magazine, IEEE 44, 8 (aug. 2006), 134
–143. 2

[PHE∗11] PAJĄK D., HERZOG R., EISEMANN E.,
MYSZKOWSKI K., SEIDEL H.-P.: Scalable remote rendering
with depth and motion-flow augmented streaming. Computer
Graphics Forum 30, 2 (2011). Proceedings Eurographics 2011.
2, 6

[PJO∗09] PARK Y. K., JUNG K., OH Y., LEE S., KIM J. K., LEE
G., LEE H., YUN K., HUR N., KIM J.: Depth-image-based ren-
dering for 3dtv service over t-dmb. Signal Processing: Image
Communication 24, 1-2 (2009), 122 – 136. Special issue on ad-
vances in three-dimensional television and video. 6

[RdBF∗02] REDERT A., DE BEECK M. O., FEHN C., IJSSEL-
STEIJN W., POLLEFEYS M., GOOL L. V., OFEK E., SEXTON I.,
SURMAN P.: Attest: Advanced three-dimensional television sys-
tem technologies. 3D Data Processing Visualization and Trans-
mission, International Symposium on 0 (2002), 313. 2

[Ric03] RICHARDSON I. E.: H.264 and MPEG-4 Video Com-
pression: Video Coding for Next Generation Multimedia, 1 ed.
Wiley, August 2003. 4

[SK05] SMOLIC A., KAUFF P.: Interactive 3-d video represen-
tation and coding technologies. Proceedings of the IEEE 93, 1
(January 2005), 98 –110. 2

[WLG04] WüRMLIN S., LAMBORAY E., GROSS M. H.: 3d
video fragments: dynamic point samples for real-time free-
viewpoint video. Computers Graphics (2004), 3–14. 2

© The Eurographics Association 2011.

F. Pece & J. Kautz & T. Weyrich / Adapting Standard Video Codecs for Depth Streaming

(a) Original – Sequence One (b) BIT1 (c) BIT2 (d) Our Method

(e) Original – Sequence Two (f) BIT1 (g) BIT2 (h) Our Method

(i) Original – Sequence Three (j) BIT1 (k) BIT2 (l) Our Method

Figure 11: Comparison of reconstructed depth maps using different depth coding strategies and JPEG compression (75%).

(a) Original – Sequence One (b) JPEG – 75% (c) VP8 – 1024 kbits/sec (d) H.264 – 1024 kbits/sec

(e) Original – Sequence Two (f) JPEG – 75% (g) VP8 – 1024 kbits/sec (h) H.264 – 1024 kbits/sec

(i) Original – Sequence three (j) JPEG – 75% (k) VP8 – 1024 kbits/sec (l) H.264 – 1024 kbits/sec

Figure 12: Depth maps reconstructed using our method. (Point cloud renderings.)

© The Eurographics Association 2011.

