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Percentage Closer Filtering CSM with 7x7 blur and mip-mapping

Figure 1: Standard percentage closer filtering does not support tri-linear filtering and suffers from severe aliasing artifacts
during minification. In contrast, Convolution Shadow Maps (CSM) enable tri-linear filtering of shadows and thereby achieve
effective screen-space anti-aliasing. Additional convolution can hide shadow map discretization artifacts.

Abstract
We present Convolution Shadow Maps, a novel shadow representation that affords efficient arbitrary linear fil-
tering of shadows. Traditional shadow mapping is inherently non-linear w.r.t. the stored depth values, due to the
binary shadow test. We linearize the problem by approximating shadow test as a weighted summation of basis
terms. We demonstrate the usefulness of this representation, and show that hardware-accelerated anti-aliasing
techniques, such as tri-linear filtering, can be applied naturally to Convolution Shadow Maps. Our approach can
be implemented very efficiently in current generation graphics hardware, and offers real-time frame rates.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation–Bitmap and Frame Buffer Operations; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism–Color, Shading, Shadowing and Texture

1. Introduction

Shadow Mapping [Wil78] has grown into a de facto stan-
dard for rendering shadows in movie productions and video
games. As it is a purely image-based approach, Shadow
Mapping is robust against increased scene complexity, and
translates well to graphics hardware. Shadow Maps are con-
structed by rasterizing a depth image from the light source’s

vantage point, thereby recording the distance to the clos-
est surfaces. Any scene point can be projected into the
light’s view to retrieve the corresponding blocker distance.
If this distance is smaller than the actual distance to the light
source, the point is in shadow.

Unfortunately, Shadow Mapping has its problems. Since
the blockers are discretized, aliasing artifacts like jagged
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edges can occur. Novel variants of Shadow Mapping have
been introduced to alleviate discretization [FFB01, SD02,
SCH03], but these methods do not offer a solution for
screen-space aliasing. In particular, detailed shadows may
give rise to Moiré patterns when viewed from far, especially
as geometric complexity increases. For texture mapping,
screen-space aliasing can be dealt with efficiently through
high-quality filtering, which is commonly found on graphics
hardware. Unfortunately, filtering the Shadow Map’s depth
values does not produce the desired solution, as one wants
to filter the results of the shadow test. Reeves et al. [RSC87]
were the first to switch the order of filtering and testing.
This led to the Percentage Closer Filtering (PCF) algorithm,
and is available on current graphics hardware. PCF per-
forms filtering by taking multiple shadow samples and av-
eraging them together. Unfortunately, it cannot support pre-
filtering, and is therefore limited to small filter kernels for ef-
ficiency reasons. Mip-mapping is an efficient version of pre-
filtering [Wil83], which fetches pre-convolved texture sam-
ples from an image pyramid and allows for effective anti-
aliasing. Since the shadow test depends on the distance be-
tween the query point and the light source, which can change
at run-time, this kind of pre-filtering is not possible. How-
ever, Variance Shadow Mapping [DL06] showed that a sta-
tistical estimate of a convolved depth test can be computed
at run-time allowing for filtered shadows. Unfortunately, this
estimate is biased and leads to disturbing high-frequency ar-
tifacts for scenes with high depth complexity.

This paper introduces the Convolution Shadow Map, a
novel Shadow Mapping variant that permits filtering of
Shadow Maps with arbitrary convolution filters. Convolution
Shadow Maps support mip-mapping, which enables high
quality tri-linear and anisotropic filtering, in order to prevent
screen-space aliasing. In addition, we can directly blur the
Convolution Shadow Map in order to soften shadow borders,
which is particularly useful for concealing discretization ar-
tifacts and simulating penumbrae. Key to our approach is
that we encode a binary visibility function instead of explic-
itly storing depth values at each pixel. These functions are
approximated with a basis function expansion, which allows
a “linearization” of the shadow test. Compared to Variance
Shadow Maps [DL06], our approach is unbiased and can
deal with arbitrary depth complexity. We demonstrate that
Convolution Shadow Maps can be efficiently implemented
on current graphics hardware.

2. Related Work

Shadows. Ray tracing [Whi79] naturally takes care of shad-
owing, but is currently not feasible on commodity hard-
ware. Shadow Volumes [Cro77] offer crisp shadows in a
rasterization-based renderer, but they are strongly depen-
dent on geometric complexity. Shadow Mapping [Wil78] is
a purely image-based approach, and is therefore less sensi-

tive to geometric complexity. This paper proposes a novel
way of filtering Shadow Maps for anti-aliasing.

Anti-Aliasing. After its introduction, a lot of effort has fo-
cused on tackling the inherent aliasing problem with Shadow
Mapping. First, efficient filtering techniques similar to tex-
ture filtering [Hec89] have been investigated. Reeves et
al. [RSC87] observed that shadows should be anti-aliased
by filtering Shadow Map pixels after the depth test. This
idea was later implemented in graphics hardware. Unfor-
tunately, high quality texture map filtering based on mip-
mapping [Wil83] is not directly applicable since the re-
sult of the filter cannot be precomputed. Deep Shadow
Mapping [LV00] precomputes the aggregate result of bi-
nary shadow tests within each texel for excessively complex
scenes like hair, yielding a continuous visibility function for
each texel, which can be queried at render-time. Our tech-
nique bears some similarity to Deep Shadow Maps, since we
also store a visibility function. However, we are only inter-
ested in using binary visibility functions, and applying spa-
tial convolution instead of intra-pixel averaging.

In a recent effort, Donnelly and Lauritzen [DL06] intro-
duced Variance Shadow Maps for rendering filtered shad-
ows. They compute only a statistical upper bound to the
result of the filter, which yields noticeable artifacts (“light
leaking”). The upper bound becomes an equality only when
the receiver and occluders are planar and parallel, and there-
fore the artifacts quickly worsen as depth complexity in-
creases (see Fig. 9). Our method requires less stringent as-
sumptions, and even though it is also approximate, it con-
verges to the exact solution instead of an upper bound.

Researchers have also tried to tackle aliasing by extending
the Shadow Map representation. Adaptive Shadow Mapping
[FFB01] hierarchically refines shadow borders. Perspective
Shadow Mapping [SD02] computes the Shadow Map in a
perspectively distorted space which yields a better sampling
distribution with respect to the vantage point. It is possible
to find an optimal distribution [AL04], but unfortunately it is
irregular and therefore does not map well to current graph-
ics hardware. Shadow Silhouette Maps [SCH03] embed sil-
houettes for rendering perfectly hard shadows, but cannot
deal with every possible configuration of shadow bound-
aries. Combinations between Shadow Mapping and Shadow
Volumes are also possible [CD04]. These technique offer
ways for rendering sharper shadows, but they do not address
aliasing in screen-space. Our method could be used in con-
junction with some of these techniques (e.g., [SD02]).

Soft Shadows. Accurate real-time display of soft shadows
due to extended light sources, is a topic of ongoing research.
See Guennebaud et al. [GBP06] and references therein for
recent work, and Hasenfratz et al. [HLHS03] for a survey.
Instead of physically-based computation, rendering inaccu-
rate but visually plausible soft shadows in order to lessen
computational effort, is a viable alternative. Chan and Du-
rand [CD03] and Wyman and Hansen [WH03] create plausi-
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Figure 2: Fig. (a) illustrates shadow mapping. Point x1 is
lit, while point x2 is in shadow. Fig. (b) depicts convolution
using a filter kernel w. Filtering for a point x is performed in
shadow map space around point p. See text for more infor-
mation on q and y.

ble penumbrae, but overestimate umbra size and also require
costly silhouette information. Brabec and Seidel [BS02] at-
tenuate light rays near blockers to reproduce the outward de-
cay in visibility with respect to the umbra region, but rely on
a costly neighborhood search in the depth map. Our tech-
nique follows up on this line of work: we provide a way
to mimic soft shadows by applying a large convolution fil-
ter. This effectively creates a soft penumbra, but its width is
constant with respect to the projected Shadow Map size. This
refrains us, for instance, from creating hard contact shadows
where blocker and receiver meet. However, our approach is
cheaper compared to previous techniques. Our method is
similar to Soler and Sillion’s convolution method [SS98],
which convolves binary blocker images. We extend their ap-
proach to depth maps [Wil78], but we are currently limited
by a constant-sized convolution kernel.

3. Convolution Shadow Maps

We first formally introduce Shadow Mapping, before we go
on to Convolution Shadow Maps. Let x ∈ R3 be the world-
space position of a pixel. We will use boldface characters to
indicate positions; other variables are scalars. Point p ∈ R2

represents the position of a shadow map pixel, which is ob-
tained via a surjective mapping T : R3 →R2 between world-
space and shadow map space, such that p = T (x). This map-
ping basically warps a pixel into Shadow Map space via a
perspective projection. The Shadow Map itself encodes a
function z(p), that represents the depth of the blocker that
is closest to the light source for each p. A pixel with world-
space position x is considered in shadow when d(x) > z(p),
with d(x) being the depth of x (again, with respect to the
light source). See Fig. 2. We now formally define a shadow
function s, that basically encodes the shadow test:

s(x) := f
(
d(x),z(p)

)
(1)

where f (d,z) is a binary function that returns 0 if d > z and
1 otherwise.

Convolution In order to have anti-aliased shadows, we need
to filter the shadow function s(x) (e.g., using a low pass fil-
ter). Generally speaking, a convolution (or linear filtering)
operation on a function g with kernel w supported over a
neighborhood N , is defined as:[

w∗g
]
(p) := ∑

q∈N
w(q)g(p−q) (2)

Let us now try to convolve the shadow function s(x), and
denote the result as s f (x):

s f (x) = ∑
q∈N

w(q) f
(
d(y),z(p−q)

)
(3)

Even though s f is formulated in terms of x, the actual con-
volution happens in Shadow Map space, i.e. over variable p.
Eq. 3 contains a new variable y, which is informally defined
as the point that lies near x, such that T (y) = p−q. Unfortu-
nately, there is no unique y = T−1(p−q), because T is not
invertible, see Fig. 2b. In order to arrive at a mathematically
sound formulation of Shadow Map convolution, we need to
assume that d(y)≈ d(x), so that we can write:

s f (x) = ∑
q∈N

w(q) f
(
d(x),z(p−q)

)
=

[
w∗ f

(
d(x),z

)]
(p) (4)

This assumption d(y) ≈ d(x) basically states that d(x) is
a representative distance for the neighborhood N , which is
only correct for a planar receiver, parallel to the Shadow
Map’s image plane. Note that a similar approximation is
made for percentage closer filtering [RSC87], and in Soler
et al.’s work [SS98].

It is important to see that we cannot directly apply con-
volution to z(p), because f is nonlinear with respect to its
arguments. In other words:[

w∗ f
(
d(x),z

)]
(p) 6= f

(
d(x),(w∗ z)(p)

)
(5)

This explains why regular texture filtering cannot be applied
to z(p) (i.e., the Shadow Map): filtering z(p)-values is not
equivalent to filtering the result of the shadow test. It is pos-
sible however, to carry out the summation in Eq. 5 directly at
runtime [RSC87]. However, our goal is to apply pre-filtering.
In other words, to apply a filter before it is actually used. This
would enable efficient separable filtering, and more impor-
tantly, to employ mip-mapping.

To achieve this, we transform the z-values such that the
shadow test can be written as a sum. This will allow us to
“linearize” the depth test. Let us therefore expand f (d,z) as
follows:

f (d,z) =
∞
∑
i=1

ai(d)Bi(z) (6)

Here, Bi are basis functions in terms of z, which we will
concretely define in Section 3.1. Each basis is weighted by
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corresponding coefficients ai depending on d. The expan-
sion has to be truncated in practice to some truncation order
N (and we silently omit the ≈-relation in the following for-
mulas). We see that the expansion does not yield a direct
linear dependence on z, but it is linear with respect to the ba-
sis set Bi=1...N . In order to apply this expansion in practice,
we convert the Shadow Map to “basis images” by applying
each basis function to the Shadow Map: Bi

(
z(p)

)
. Conse-

quently, the shadow function in Eq. 1 can be translated to
linear combination of these basis images:

s(x) =
N

∑
i=1

ai
(
d(x)

)
Bi

(
z(p)

)
(7)

To see why this is useful, we fill in the expansion from
Eq. 7 in the convolution in Eq. 4:

s f (x) =
[
w∗ f

(
d(x),z

)]
(p)

=
[
w∗

N

∑
i=1

ai
(
d(x)

)
Bi

]
(p)

=
N

∑
i=1

ai
(
d(x)

)[
w∗Bi

]
(p) (8)

The last equation is the key observation in our paper: any
convolution operation on the shadow function is equivalent
to convolving the individual basis images Bi

(
z(p)

)
. It is im-

portant to see that in order to reach Eq. 8, each term in the
expansion (Eq. 6) had to be separable with respect to vari-
ables d and z. Decoupling d(x) from z(p) is important, be-
cause it enables us to convolve the images Bi

(
z(p)

)
before

the shadow test.

The success of our technique will obviously depend on the
chosen expansion. As detailed in the next section, we choose
the Fourier series. For clarity, we note that the Fourier expan-
sion will not be used for applying the convolution theorem
to perform spatial filtering; convolution of the basis images
Bi

(
z(p)

)
will be done explicitly.

3.1. Fourier Expansion

We expand the shadowing function f according to Equa-
tion 6 using a Fourier series. In general, we can decompose
any periodic function g(t) as an infinite sum of waves:

g(t) =
1
2

a0 +
∞
∑
n=1

[
an cos(

2πn
T

t)+bn sin(
2πn
T

t)
]
, (9)

where the coefficients an and bn are obtained by integrating
the cosine and sine basis functions against g, respectively.
This is the standard Fourier series and will be used to repre-
sent the shadowing function.

f is a function in terms of 2 variables, but it can be ex-
pressed with as the Heaviside step (or the “unit step”) func-
tion, H(t), as follows: f (d,z) = H(d − z). Let us first fo-
cus on expanding H(t). We represent it using a square wave

function, in order to make it periodic (a requirement to ap-
ply a Fourier series approximation). Let S(t) be a square
wave function with period 2. For t ∈ (−1,1) we have H(t) =
1
2 + 1

2 S(t). For this particular case of S(t), the (truncated)
Fourier series expansion yields:

S(t)≈ 4
π

M

∑
k=1

1
2k−1

sin
[
(2k−1)πt

]
(10)

Now, returning to f we have:

f (d,z)≈ 1
2

+2
M

∑
k=1

1
ck

sin
[
ck(d− z))

]
, (11)

with ck = π(2k−1). We convert the previous summation into
a form similar to Eq. 6 using the trigonometric identity

sin(a−b) = sin(a)cos(b)− cos(a)sin(b) (12)

Now we have:

f (d,z)≈ 1
2

+2
M

∑
k=1

1
ck

cos(ckd)sin(ckz)

−2
M

∑
k=1

1
ck

sin(ckd)cos(ckz)

(13)

We see that Eq. 13 complies with Eq. 6, and have separable
terms w.r.t. d and z:

a(2k−1)(d) = 2
ck

cos(ckd), a(2k)(d) = −2
ck

sin(ckd)
B(2k−1)(z) = sin(ckz), B(2k)(z) = cos(ckz)

(14)

with k = 1 . . .M (note that N = 2M in Eq. 6). We add the
constant term 1

2 separately.

3.2. Discussion of Fourier Expansion

We opted for the Fourier expansion for two reasons. First, it
is shift-invariant w.r.t. d and z, which is a general property of
the Fourier transform (cf. rotational invariance of Spherical
Harmonics [SKS02]). Intuitively speaking, this enables us to
“move” the Heaviside step around without any loss in preci-
sion. In fact, this can be done by independently changing d
and z, while keeping the approximation error due to trunca-
tion constant. The second reason is that the basis functions
(sine and cosine waves) are bounded: they always map to
the interval [−1,1]. This affords a fixed point representation,
which we can even quantize to 8 bits in practice. The Fourier
series does not come without disadvantages. First, as with
any Fourier representation, it is prone to ringing. Second,
the Fourier expansion smoothes the step function, which can
result in incorrect shadowing if not handled. We deal with
both problems as shown the following subsections.

3.2.1. Ringing

A Fourier expansion potentially suffers from ringing (Gibbs
phenomenon), particularly when the expansion is truncated
to a small number of terms M. We reduce this effect by at-
tenuating each k-th term by exp

(
− α( k

M )2). Parameter α
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Figure 3: Reconstruction and various tradeoffs. The x-axis
encodes the difference (d− z) along a shadow ray (lookup).
(a) illustrates the conflict of increasing M to achieve a more
reliable shadow test and introducing high frequencies no-
ticeable as ringing artifacts. (b) shows the impact of attenua-
tion to suppress ringing as the red turns into the blue signal.
Plots in (c) and (d) show methods to enhance the shadow
test. In (c) an offset is applied to d before reconstruction,
which prevents incorrect darkening of lit areas. (d) shows
how scaling makes the transition steeper and how it also pre-
vents incorrect darkening. Please compare (c) and (d) with
the results in Fig. 4. Note that for illustration purposes the
range has been scaled to emphasize the effects.

controls the attenuation strength (α = 0 leaves the series un-
changed). The magnitude of the high frequencies is always
reduced more, while the low frequencies remain almost the
same. This incurs an important tradeoff: reducing ringing
also means that the reconstructed Heaviside step becomes
less steep (see Fig. 3).

3.2.2. Offsetting and Scaling

The Fourier expansion of the step function introduces a
smooth transition, which is especially obvious with low-
order expansions M, see Fig. 3(a). This means that for lit sur-
faces, where (d− z) ≈ 0, the shadow function f (d,z) eval-
uates to 0.5. This is undesirable, as all lit surfaces would be
50% shadowed. We can correct this, by offsetting the ex-
pansion of the Heaviside step, see Fig. 3(c). After offset-
ting, f (d,z) goes through 1 for (d− z) ≈ 0, which results
in correctly lit surfaces. The shift-invariance property of the
Fourier expansion allows us to formulate a constant offset,
which only depends on the truncation order and can thus
be applied at every pixel. Of course, offsetting makes the
transition from unshadowed to shadowed more obvious near
contact points.

Scaling the expansion by 2.0 makes the transition steeper

(a) Scaling (b) Offset

Figure 4: Difference of scaling f or subtracting an offset
from d. (a) illustrates that scaling f sharpens the transition
but also reduces filtering (shadows are sharper). (b) shows
that subtracting an offset preserves convolution results but
may exhibit reconstruction limitations near contact points
(depending on M). Here we used a 5× 5 Gauss filter and
M = 16.

and also ensures that all lit surfaces (around d−z≈ 0) are ac-
tually correctly lit, see Figure 3(d). However, scaling sharp-
ens shadows and can potentially reintroduce aliasing. The
shadow value is always clamped to [0,1]. Figure 4 shows
renderings with offsetting and scaling.

3.2.3. Alternatives to Fourier Expansion

We have considered two other possible expansions: Taylor
expansion and locally supported functions. The Heaviside
step function can be approximated by a smooth analytic
function (e.g. the sigmoid function), and subsequently ex-
panded around (d − z) = 0. With some algebraic manipu-
lation, it is possible to group terms in a factorized sum like
Eq. 6. But, the approximation error will not be constant w.r.t.
(d− z). Moreover, it often happens that |d− z| is large, in
which case the approximation diverges. Locally supported
functions like the block or hat basis, also produce a variable
error because they lack shift-invariance. Furthermore, they
are prone to severe temporal artifacts (popping). In general,
any basis expansion always incurs an error due to truncation
and may need to be accounted for (see previous subsection).

The Fourier series serves our purpose well, but it is con-
ceivable that other viable solutions exist as well. We leave
the investigation of alternatives as future work.

4. Anti-Aliasing Using CSMs

Aliasing from shadow map minification (multiple shadow
map texels falling onto the same image pixel) as well as from
shadow map discretization (jagged boundaries) are difficult
problems, since pre-filtering techniques cannot be easily ap-
plied. However, Convolution Shadow Maps enable filtering
with arbitrary convolution kernels, and therefore enable the
use of pre-filtering techniques for anti-aliasing.

In particular, we perform mip-mapping as well as blurring

c© The Eurographics Association 2007.



T. Annen, T. Mertens, P. Bekaert, H.-P. Seidel & J. Kautz / Convolution Shadow Maps

(a) Shadow Map (linear depth) (b) CSM basis textures

Figure 5: Visualization of a shadow map and its correspond-
ing basis textures for M = 16 (RGBA channels are split in
separate images for visualization purposes).

of the shadow map, i.e. of the basis functions to be more pre-
cise, in order to remove aliasing artifacts from both minifi-
cation as well as discretization.

4.1. GPU Implementation

Convolution Shadow Maps require only a few modifications
to the standard shadow mapping pipeline. After rendering
the depth values from the light’s point of view, we evaluate
the basis functions (sin(ckz) and cos(ckz), see Eq. 14) using
the current z-values at each texel and store the result, which
correspond to the basis functions Bi

(
z(p)

)
from Eq. 7, in tex-

ture maps. Figure 5 shows the evaluated sine basis functions
for a given depth map (blue positive, red negative). Note that
we use linear depth values to increase the sampling preci-
sion [BAS03]. Depending on the Fourier expansion order
M and hardware capabilities, we perform multiple rendering
passes to convert a single shadow map into a set of sine and
cosine textures. For example, with M = 16 we need to gener-
ate 16 sine and also 16 cosine terms which we will pack into
four sine and four cosine 8-bit RGBA textures. 32-bit float-
ing precision did not produced noticeable differences and we
use 8-bits fixed point for all our renderings. With four Mul-
tiple Rendering Targets (MRTs) only two additional render
passes are necessary. Each pass renders a screen-align quad
and computes the sine and cosine terms based on the cur-
rent shadow map respectively. Results are packed into four
RGBA textures simultaneously.

Once this set of basis textures has been computed, we can
apply filtering to it. First, we apply a separable Gaussian fil-
ter kernel on the textures to hide aliasing from discretization.
Of course for high-resolution shadow maps, this is not nec-
essary. We then build a mip-map of this texture (using the
auto-mip-map feature of modern GPUs) to prevent minifica-
tion aliasing of shadows.

During the final rendering from the camera view we ex-
change regular shadow mapping (either binary or PCF) with
our shadow reconstruction as described by Equation 13. I.e.,
we evaluate a weighted sum at each pixel of the filtered

basis functions multiplied by coefficients ai(d) (defined in
Eq. 14), where d is the distance from the current pixel to
the light source. The resulting value s f (see Eq. 8) is the fil-
tered shadow value. Simply switching on mip-mapping or
even anisotropic filtering removes screen-space aliasing; no
shader magic is needed. Due to ringing, the resulting shadow
value can be outside outside the [0,1]-range and we therefore
clamp the result to lie within [0,1].

5. Results

In this section we present results highlighting the potential of
Convolution Shadow Maps. All figures have been rendered
using OpenGL on a Dual-Core AMD Opteron with 2.6GHz
and 2.75GB RAM equipped with an NVIDIA GeForce 8800
GTX graphics card. All results have been rendered using 8-
bit precision per basis function and using offsetting as de-
scribed earlier.

The amount of memory required by the CSM data struc-
ture only depends on the reconstruction order M. As we
fix the precision to 8-bits per channel, we require M

2 8-
bit RGBA textures to store the basis functions. Compared
to VSM, the CSM requires four times more memory for
M = 16 than a VSM with 32-bit floating point precision. For
scenes where M = 4 is sufficient, CSMs require the same
amount of memory as 32-bit VSMs. In practice, this is a rea-
sonable configuration, as we have seen in Figure 6 that this
setting yields good results.

Table 1 contains performance measurements for various
convolution sizes, shadow map sizes, and different recon-
struction orders M. Timings are stated in frames per second.
All images rendered with PCF use standard NVIDIA hard-
ware filtered shadow test. Note that all processing happens
on the GPU and that reconstruction order M determines the
number of texture fetches per pixel that is shaded. For M = 4
we need two, for M = 8 we need four, and for M = 16 we
need eight RGBA texture fetches. Timings include convolu-
tion (if applied) and mip-map generation for all basis tex-
tures. As can be seen, CSMs are generally slower than PCF
but enable effective anti-aliasing.

Figure 6 shows the relationship between reconstruction
order M and shadow intensity. A small M results in wrong-
fully brightened shadows when occluder and receiver are
close to each other (lower square), and near contact points
(slanted polygon), since the reconstructed step function is
very smooth (see Fig. 3(a)). As M grows, the reconstructed
step function becomes steeper, which produces correctly
shaded shadows. In practice M = 4 yields satisfactory shad-
ows without noticeable intensity artifacts. Even the slanted
plane in Figure 6(c) which touches the receiver plane is
achieves good shadowing quality using only 4 terms.

To demonstrate the image quality of CSMs, we chose a
scene with two tree models lit from the side, in order to
project long and thin shadows on a tilted plane. Figure 7(a)

c© The Eurographics Association 2007.



T. Annen, T. Mertens, P. Bekaert, H.-P. Seidel & J. Kautz / Convolution Shadow Maps

(a) M=1 (b) M=2 (c) M=4 (d) M=8 (e) M=16

Figure 6: Quality comparison for shadow test reconstruction using different number of Fourier series order M. All signals have
been quantized to 8-bits per channel. When using a tightly fitted light frustum a single 8-bit RGBA texture usually faithfully
reconstructs the shadow test. Note that ringing causes varying lightness in shadowed areas for small M.

was rendered with percentage closer filtering and exhibits se-
vere artifacts and jagged edges (see close-up). Figures 7(b)-
(f) demonstrates different filter modes and blur sizes. Tri-
linear filtering using CSMs fully recovers the shape of the
branch close to the tree root. Additionally blurring of the
CSMs smooths the shadows as expected, and removes po-
tential aliasing from discretization.

Figures 8(a)-(h) present CSM examples of different
shadow map resolutions and filter widths. As can be seen,
even small shadow map resolution can produce nice shad-
ows without visible discretization artifacts, if a large enough
blur size is chosen. This can also be used as a crude approx-
imation to soft shadows.

Figure 9 compares Variance Shadow Maps [DL06] to our
approach. VSMs are based on a statistical method to com-
pute a filtered shadow test. However, when the variance in-
creases within a filter region due to high depth complexity,
light leaking artifacts appear, as illustrated in Figure 9(a).
Please note, that the fence itself does dot have high depth
complexity, thus light leaks only appear where addition ob-
jects behind the fence add more depth complexity and there-
fore increase the variance within the filter kernel. Convolu-
tion Shadow Maps do not suffer from these artifacts and can
deal with high depth complexity.

The final example emphasizes that filtering shadow maps
drastically reduces aliasing due to minification, e.g., when a
scene moves further away. The top row in Figure 10 shows
aliasing (spatial and temporal) in the PCF renderings. The
bottom row show the same scene rendered with CSMs. Note
how the shadow is anti-aliased (again spatial, as well as tem-
poral).

6. Conclusions

We have presented Convolution Shadow Maps, a new repre-
sentation for shadow maps, which enables linear filtering of
shadows. We demonstrate its use in the context of shadow
anti-aliasing, where we prevent aliasing from minifaction as
well as from discretization artifacts. In contrast to previous

C = no S : 2562 S : 5122 S : 10242 S : 20482

PCF 76 fps 74 fps 71 fps 69 fps
M = 4 64 fps 62 fps 60 fps 50 fps
M = 8 55 fps 53 fps 49 fps 38 fps
M = 16 47 fps 45 fps 39 fps 26 fps

C = 3x3 S : 2562 S : 5122 S : 10242 S : 20482

M = 4 63 fps 61 fps 57 fps 43 fps
M = 8 53 fps 50 fps 44 fps 30 fps
M = 16 42 fps 39 fps 32 fps 19 fps

C = 7x7 S : 2562 S : 5122 S : 10242 S : 20482

M = 4 62 fps 60 fps 53 fps 36 fps
M = 8 52 fps 49 fps 41 fps 24 fps
M = 16 41 fps 38 fps 28 fps 14 fps

Table 1: Frame rates for the complex scene (365k faces)
from Figure 10 for varying shadow map sizes S and vary-
ing reconstruction order M (screen resolution is 1024x768).
We compare 16× anisotropic tri-linear hardware filtering
without additional convolution, a 3x3 and a 7x7 convolution
kernel C.

methods, we do not have problems with light leaking, yet,
our technique is very efficient and generally applicable.

We would like to use Convolution Shadow Maps to render
approximate soft shadows. However, it is currently unclear
how to choose the distance value d appropriately. A further
avenue of research is the use of other basis functions in order
to reduce the number of terms M.
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Figure 9: Comparison of VSMs (a) and CSMs (b). Scenes with high depth complexity such as this fence in front of other objects
cause high variance in the convolution kernel. In such cases VSMs suffer from light leaking artifacts. (b) shows that CSMs
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(a) PCF (b) PCF (c) PCF

(d) CSM (e) CSM (f) CSM

Figure 10: Tri-linear filtering is especially important when a scene is moved far away from the camera and minification occurs.
Here we show that regular tri-linear filtering with a 5x5 filter kernel significantly reduces screen space aliasing and increases
temporal coherence when moving the scene. Even when the scene fades away, CSMs enable high quality shadows.
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