
Eurographics Symposium on Rendering (2007)
Jan Kautz and Sumanta Pattanaik (Editors)

Interactive Illumination with Coherent Shadow Maps

Tobias Ritschel1 Thorsten Grosch1 Jan Kautz2 Stefan Müller1

1University of Koblenz-Landau 2University College London

Figure 1: The left image shows a scene with two dragons (280k faces each), where light position, shape and color, as well as
object position, orientation, and all material parameters can be manipulated freely (3.3 FPS). The middle image shows bump,
diffuse and specular maps, all with physically plausible shadows (4.6 FPS). In the right image, a fixed local linear light of
arbitrary shape is used (1.8 seconds). All images are rendered with an NVIDIA GF 8 at 1024× 768 pixels.

Abstract
We present a new method for interactive illumination computations based on precomputed visibility using coherent
shadow maps (CSMs). It is well-known that visibility queries dominate the cost of physically based rendering.
Precomputing all visibility events, for instance in the form of many shadow maps, enables fast queries and allows
for real-time computation of illumination but requires prohibitive amounts of storage. We propose a lossless
compression scheme for visibility information based on shadow maps that efficiently exploits coherence. We
demonstrate a Monte Carlo renderer for direct lighting using CSMs that runs entirely on graphics hardware. We
support spatially varying BRDFs, normal maps, and environment maps — all with high frequencies, spatial as
well as angular. Multiple dynamic rigid objects can be combined in a scene. As opposed to precomputed radiance
transfer techniques, that assume distant lighting, our method includes distant lighting as well as local area lights of
arbitrary shape, varying intensity, or anisotropic light distribution that can freely vary over time.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [COMPUTER GRAPHICS]: Three-Dimensional
Graphics and Realism; I.3.3 [COMPUTER GRAPHICS]: Color, Shading, Shadowing and Texture

1. Introduction

Physically-based rendering is an important problem in feature
films, product visualization and many other areas. However,
accurate physically-based rendering is expensive, which is
largely due to time-consuming visibility tests. In this paper,
we develop a data structure, coherent shadow maps (CSMs),
that allows fast visibility queries by storing visibility infor-

mation in the form of shadow maps around an object. To this
end, depth maps of an object are created from many differ-
ent positions and directions, capturing all geometric details.
We introduce a lossless compression method that effectively
compresses this large collection of depth maps by exploiting
coherence between them. Yet, this compressed data structure
allows for fast visibility queries. We demonstrate the effec-

c© The Eurographics Association 2007.

T. Ritschel, T. Grosch, J. Kautz and S. Müller / Interactive Illumination with Coherent Shadow Maps

tiveness of CSMs with an interactive Monte-Carlo renderer
that runs entirely on the GPU. This approach to interactive
illumination removes many drawbacks introduced by alter-
native illumination techniques (e.g., precomputed radiance
transfer or soft shadow approximations), as described in the
next section.

Our key contributions are:

• We introduce a novel data structure for fast visibility
queries based on precomputed depth maps.

• We develop a compression scheme that allows to store the
visibility information from a large collection of depth maps
in a single texture.

• We demonstrate an interactive Monte-Carlo renderer that
enables direct illumination computation on the GPU. We
support local and distant lightsources, spatially varying
BRDFs, bump mapping, high-frequency reflections, and
moving rigid objects.

After reviewing previous work in Section 2, we describe our
method in Section 3 and give details on the Monte-Carlo
renderer in Section 5. Results are presented in Section 6,
before we conclude with Section 7.

2. Previous Work

Static Precomputed Radiance Transfer PRT permits the
rendering of various illumination effects on static objects,
such as soft shadows and glossy reflections, in real-time
[SKS02,NRH03,LSSS04]. The illumination solution is pa-
rameterized by the incident lighting, that is assumed to be
represented by means of basis functions, such as spherical
harmonics [SKS02] or wavelets [NRH03], allowing for effi-
cient rendering. PRT exploits the limitation to static objects
by pre-computing all the visibility queries and baking them
into the parameterized solution.

Much work has focused on integrating arbitrary BRDFs
[LSSS04,NRH04,WTL06,SM06], bump mapping [Slo06],
and enhancing the original low-frequency technique to enable
all-frequency lighting [NRH03, NRH04, GKMD06, SM06].
Our method seamlessly supports arbitrary BRDFs, bump map-
ping, and all-frequency lighting combining the advantages of
a number of previous methods.

Generally, lighting in PRT is assumed to be distant. How-
ever, low-frequency localized lighting can be integrated
[AKDS04]. When only indirect illumination is considered,
local point and spot lights are possible [KAMJ05, KTHS06,
HPB06]. In contrast, our technique supports all kinds of inci-
dent lighting, including area sources and light field illumina-
tion [GGHS03]).

Dynamic Precomputed Radiance Transfer Dynamic
scenes are inherently difficult for PRT techniques, since visi-
bility cannot be precomputed anymore. Mei et al. [MSW04]
precompute visibility on a per-object basis for a discrete set

of directions and store it in the form of uncompressed shadow
maps. This allows them to render multiple rigidly moving
objects under low-frequency distant illumination. However,
dynamic local light sources remain infeasible. Similar in
spirit, Zhou et al. [ZHL∗05] propose the use of shadow fields,
that allow to move individual rigid objects under semi-local
(lights may not enter an object’s bounding sphere) or distant
illumination, producing correct inter-shadowing. In practice,
this technique was limited to low-frequency lighting, as all-
frequency lighting updates took several seconds for dynamic
scenes.

Related to the previous two techniques, intersection fields
[RHCB05] store visibility information along lines in space.
For efficiency, shadow computation is separated from illu-
mination computation (in the spirit of ambient occlusion),
which prohibits the use of large area sources. No compres-
sion is used and memory consumption is very high. Sun et
al. [SM06] extend wavelet product integrals in order to sep-
arate local and global visibility, which also enables rigidly
moving objects. However, interactive updates are limited to
fixed view and lighting. In the case of dynamic objects, only
low-frequency visibility information can be used that has to
be recomputed for every frame.

Our method combines the advantages of previous work.
We support all-frequency lighting, dynamically moving rigid
objects, local as well as distant light sources, and dynamic
material properties. Nonetheless, the method is fast, supports
progressive rendering for even faster updates, and is memory-
efficient through the use of coherent shadow maps.

Fully dynamic objects are very difficult to handle, as no pre-
computation can be employed. Hemispherical rasterization
[KLA04] and spherical harmonics exponentiation [RWS∗06]
have been proposed for small- or medium-sized scenes un-
der low-frequency-illumination. The focus of our work is on
high-frequency illumination of dynamic, rigid objects.

Shadows Many techniques exist for handling shadows in
interactive applications, including the widely used shadow
map [Wil78] and shadow volume [Cro77] algorithms. Much
work has been done to extend them to soft shadow generation,
e.g. [AAM03, GBP06] to name a few, see [HLHS03] for a
survey. These real-time soft shadow algorithms are generally
suitable for deformable objects. However, they only provide
approximate soft shadows to speed up shadow generation.
Furthermore, it is worth noting that none of these methods
provides accurate integration of BRDF and incident lighting.
Instead, it is assumed that the integral of products equals the
product of integrals.

We use a data structure that is based on shadow maps,
but enhance it such that it can be used for physically-based
real-time rendering. Our representation is suitable only for
rigid dynamic objects but does provide accurate illumina-
tion computation, including soft shadowing, partial and high-
frequency glossy reflections, and so on.

c© The Eurographics Association 2007.

T. Ritschel, T. Grosch, J. Kautz and S. Müller / Interactive Illumination with Coherent Shadow Maps

Direct illumination from environment maps using a small
number of uncompressed orthographic shadow maps has been
proposed by Havran et al. [HSK∗05], which forces visibility
information to be heavily discretized. A compression scheme
for a single shadow map was introduced by Arvo and Hirviko-
rpi [AH05]. In contrast to their work, we exploit coherence
between many shadow maps for compression, not within a
single shadow map.

Monte Carlo We employ Monte Carlo integration [PH04]
to accurately compute direct illumination in real-time. Many
different strategies exist for enhancing Monte Carlo inte-
gration in computer graphics. These strategies, such as ef-
ficient sampling for image-based lighting [KK03, ARBJ03,
ODJ04, Deb05] or direct sampling of product distributions
[VG95, BGH05, TCE05, CJAMJ05, CETC06], are (theoreti-
cally) orthogonal to our technique. However, in practice many
of these methods are difficult to use/implement on graphics
hardware or require an expensive pre-processing step and are
therefore not used in this work. Of course, we do make use
of importance sampling [PH04].

3. Coherent Shadow Maps

In physically-based rendering, most time is spent on visibility
queries. But in case of rigid objects, the query time can be
greatly reduced by precomputing visibility. We seek to effi-
ciently store the visibility information around an object in or-
der to evaluate the direct lighting equation (integral of BRDF,
lighting, and visibility) as quickly as possible. However, this
requires storing the full field of visibility information, such
that visibility queries can be performed at every point on the
object and for all possible directions.

This poses two main challenges: First, the memory cost
for storing the information at an adequate resolution is pro-
hibitive and compression is therefore mandatory. Secondly,
discretization introduces aliasing that requires appropriate
filtering.

Central to our approach is a lossless compressed repre-
sentation for visibility based on orthographic or perspective
depth maps. We propose to discretize and sample the visi-
bility space by placing a large number of depth maps in the
scene, that can be efficiently queried on a GPU at run-time.
The depth maps are compressed by exploiting the coherence
between neighboring depth maps, as we will detail in the next
subsection (Sec. 3.1).

The actual discretization, i. e., the placement and resolution
of depth maps, depends on the type of supported light sources
and the minimum size of geometric details, which we explain
in Section 4 and 4.4. Fig. 2 shows an example of such a
discretization. This set of depth maps can be used for visibility
queries, as illustrated in Fig. 6. Aliasing can be reduced using
a generalized percentage-closer filter or Russian Roulette
(Sec. 4.5).

Figure 2: Discretization example: An orthographic depth
map is created for N viewing directions (left). All depth maps
are stored in a sequence (right).

3.1. Compression

In the following, we consider a set of N depth maps, each
with a resolution of M×M pixels. To obtain a high compres-
sion rate, a sequence of coherent depth maps is required. Two
successive depth maps are coherent, if most pixels contain
similar depth values. Therefore, the first step of our algo-
rithm creates a highly coherent permutation of the original
depth maps. This can be visualized as moving a depth camera
through a scene, trying to keep the depth images as similar
as possible. Different ways to create such a sequence are de-
scribed in Section 4.4; for now we assume that the sequence
i = 1 . . .N of depth maps is sorted in a coherent order.

In the following, we consider a pixel at a fixed location
(x,y) in an arbitrary depth map i. For clarity, we drop the posi-
tion index and denote the depth values as z(i) instead of zxy(i).
For our compression method, the depth values z1(i) and z2(i)
of the first and second intersection point of a ray through x,y
are required. As noted by Weiskopf and Ertl [WE03], the
depth comparison works, as long as the depth map contains a
value z ∈ [z1,z2] as shown in Fig. 3. This degree of freedom

z1z2z3z4 zavg

Figure 3: Dual depth values: A standard depth map stores
z1, the smallest depth value. An arbitrary value zavg between
z1 and z2 can be used: The depth comparsion of z1...4 to zavg
still gives the correct result.

is exploited by using an arbitrary depth function z(i) between

c© The Eurographics Association 2007.

T. Ritschel, T. Grosch, J. Kautz and S. Müller / Interactive Illumination with Coherent Shadow Maps

z1(i) and z2(i) that is well suited for compression. A simple
choice are piecewise constant functions (segments). To gen-
erate the depth value zavg(0) of the first segment, the largest
index iend is determined, such that

max{z1(1),z1(2), . . . ,z1(iend)} <

min{z2(1),z2(2), . . . ,z2(iend)} . (1)

Intuitively, we are searching for the index iend such that the
z1(iend)-value is as large as the minimal z2-value in that range,
see Figure 4. Then zavg(0) is set to the average of the min and
max-value, as can be seen in Fig. 4. This process is repeated
for the following depth values, resulting in n segments. For
each segment j, the depth value zavg(j) and the end index
iend(j) are stored sequentially in a segment list. In this way,
we separate the two curves with a small number of horizontal
lines. This process is repeated for all pixels of the depth map,
resulting in M×M segment lists.

z2(i) zavg(0)

z1(i)

iend(0)

z(i)

i

zavg(1)

zavg(2)

iend(1) iend(2)=N

Figure 4: Depth compression: The lower (green) curve
shows a depth pixel z1(i) at a fixed position, depending on
the depth map index i. The upper (red) curve is the depth of
the second intersection point z2(i). The minimum and max-
imum values are denoted with arrows. For a visibility test,
the depth values of this pixel can be represented by a list of
only three segments: (zavg(0), iend(0)),(zavg(1), iend(1)) and
(zavg(2), iend(2) = N).

Details on Depth Values There are different ways to
choose zavg. We usually use the depth values of the first and
second intersection point, as shown in Figure 4. Assuming a
closed two-manifold surface, no correct shadow on the back
of an object is required, because the BRDF is zero anyway
and the depth values of the first z1 and third z3 intersection
point can be used instead. If there is no third intersection,
there are two possibilities. One can simply use a large value
for z3, which allows for better compression as z1 and z3 are
far apart and zavg can be chosen more freely leading to longer
segments. However, large z3-values are likely to lead to large
zavg depth values, which are problematic for dynamic scenes
with multiple objects (see Section 4.6). In this case other ob-
jects might be incorrectly lit. In that case, it is better to use a
spherical far plane that clips depth values z3 to the bounding
sphere. However, freedom of choosing zavg is reduced here,
and compression rates are lower. We use linear depth values
in all cases [BAS02a].

3.2. Depth Comparison Using CSMs

Using the compressed depth map for visibility testing from
location p in a depth map i works like classic shadow map-
ping. First, the point p is projected into the coordinate space
of the i-th depth map by transforming it with the depth map
matrix Di of depth map i: q = Dip. After perspective division,
the local pixel position qxy and the depth value qz of the point
p for depth map i are known. To determine the depth value
zxy stored at position qxy, the segment j that contains i has to
be found:

iend(j−1) < i≤ iend(j).

Because the sequence of iend values is monotonically increas-
ing, a binary search to locate segment j in O(logn) is possible.
Finally, zxy = zavg(j) is used for a depth comparison with qz.

3.3. Depth Cube Maps

A different form of depth maps are depth cube maps
[BAS02b], which allow to store depth information from a
point in all directions by storing six perspective depth maps
into six sides of a cube map. To compress a set of N depth

Figure 5: Concatenation of depth functions for depth cube
maps.

cube maps, the depth functions z(i) for each pixel with length
N of the six individual cube sides are concatenated to a list
of length 6N (cf. Fig. 5). To decompress a depth value in
direction d for depth cube map i, first the cube side index
k = 0 . . .5 is determined from d and then the depth value
z(kN + i) is used.

4. Light Source Visibility Tests Using CSMs

For a visibility test, we differentiate between two different
types of the CSM data structure:

• CSM based on orthographic depth maps
• CSM based on perspective depth cube maps

The CSM type to use depends on the types of light sources
that we support: Infinite distant lights, local lights and so-
called semi-local lights. Although each type of light has a
slightly different technique for visibility calculations, their
common ground is the use of precomputed depth maps.

c© The Eurographics Association 2007.

T. Ritschel, T. Grosch, J. Kautz and S. Müller / Interactive Illumination with Coherent Shadow Maps

Mapping Function As a general description, each type of
light implements a continuous function D(x) which maps a
d-dimensional parameter vector [0 . . .1]d to the location of
a depth map in R4. The number of required dimensions d
depends on the type of light, as described in the following
subsections. To distinguish between positions and directions,
we describe the location of a depth map as (x,y,z,w) ∈R4. If
w = 0, the depth map of an orthographic camera, looking in
direction (x,y,z) is used. If w = 1, the center of the camera
is placed at (x,y,z) and a perspective depth cube map is
generated. A visibility test can now be computed between
D(x) and arbitrary points p ∈ R3. In most cases, D(x) is a
point on the surface of a light and p is a point on the surface
of an object. For compression, a discretization D(xi) is used
to generate the N depth maps. All visibility queries select
one of the precomputed depth maps — no depth maps are
generated during rendering.

4.1. Infinite Distant Lights

The typical application for infinite distant lights is the render-
ing with natural light, captured in an environment map, as
shown in Fig. 9. Here d = 2 and D is the standard lat-long
mapping from spherical coordinates to cartesian directions
(w = 0). Visually speaking, an orthographic camera is placed
at different locations on the bounding sphere of the object,
looking at the center. The extends of the orthographic pro-
jection are adjusted to the extend of the bounding sphere.
A visibility test between a point p in a direction d can be
performed based on the CSM, as described in Fig. 6. The
artifacts introduced by snapping to a direction D(xi) of the
discretization are discussed in Section 4.5.

p

Depth Map i -1

Depth Map i

Depth Map i +1

zxy

qz

q

Figure 6: Visibility test for infinite distant light: To test if a
ray, starting from point p in direction d, intersects any object,
we first select a precomputed (orthographic) depth map i
with a viewing direction most similar to d. Now we compute
the depth map matrix D and project p as q =Dp. The ray is
blocked, if qz (the depth of p in view i) is larger than zxy (the
depth value stored in the precomputed depth map).

4.2. Local Lights

Local lights can be placed at arbitrary positions, even close to
the surface of an object. Therefore, depth cube maps are used
to view each part of the object from the light position. The
mapping D computes points on the surface (or inside) the
light source (w = 1). The dimension d depends on the shape
of the light source: Linear lights (d = 1), area lights (d = 2)
or volumetric lights (d = 3) are possible choices. Local lights
can have an arbitrary shape and radiance distribution but
their position has to be fixed. However, variation in intensity
distribution can be used to simulate dynamic lights. Similar
to distant lights, a visibility test is performed by comparing
the depth value of a point with the depth value stored in a
depth cube map, as can be seen in Fig. 7. Fig. 1 shows an
example of illumination from a linear local light.

Semi-local
Light 1

p

Local Light

p

Semi-local
Light 2

Figure 7: Left: Fixed local light sources. For a set of sam-
pling points on the surface of the light, a depth cube map is
created. Right: Semi-local light sources. To test whether a
point is visible, the orthographic depth map perpendicular to
the light direction is selected.

4.3. Semi-Local Lights

To remove the restriction of a fixed light position, we intro-
duce the concept of semi-local light sources. The basic idea
for this type of light is to re-use the information stored in the
orthographic depth maps: To test if there is any occluder be-
tween a point p and a point l on the light source, we compute
the direction vector d = l−p and perform the same visibility
test as described for infinite distant lights (cf. Fig. 7). There-
fore, D and d are identical to infinite distant light sources,
but an additional description of the actual shape of the light
is required, as described in Section 5. Semi-local lights can
be placed at arbitrary positions outside the convex hull of the
object, because the CSM contains only the depth information
when viewing the object from outside. A light source in the
convex hull would require a depth map generated at the posi-
tion of the light source to obtain the depth information inside
the object. Beside this limitation, semi-local lights contain all
the abilities of local lights.

4.4. Enumeration and Discretization

A discretization divides the continuous d-dimensional do-
main of D into N = ∏

d
k=1 Nk depth map locations. Here, a

c© The Eurographics Association 2007.

T. Ritschel, T. Grosch, J. Kautz and S. Müller / Interactive Illumination with Coherent Shadow Maps

uniform or an adaptive discretization can be chosen. We use
a uniform discretization in all our examples. An enumeration
is a bijective mapping from this discretization to {1, . . . ,N}.
The simplest enumeration is scan-line enumeration: First all
depth maps in one dimension are concatenated. Afterwards,
the next dimension is added, and so on. To obtain a high
coherence, we use a zig-zag or hilbert space filling curve
(cf. Fig. 8). We refer to Section 6 for different compression
rates with different strategies.

Figure 8: The distant Hilbert (left) and zig-zag area (right)
curve

4.5. Filtering

Like most sampling-based approaches, shadow mapping suf-
fers from aliasing. In our case this results in jagged shadow
boundaries when using a low depth map resolution M and
banding artifacts (cf. Fig. 9) when using a small number of
depth maps N. We propose two different filtering techniques
to reduce the aliasing artifacts that arise from the spatial and
angular discretization: Generalized PCF (Percentage Closer
Filtering) and Russian Roulette. Generalized PCF selects the
nearest 2d depth maps (angularly) and performs four spatial
occlusion tests with each, giving 2d+2 depth comparisons.
A weighted sum of of each depth comparison’s binary re-
sult is computed and returned as the shadow value [RSC87];
the weights are based on the fractional error from nearest
neighbor sampling. To avoid this time-consuming process,
Russian Roulette can be used to randomly select one out of
2d+2 possible spatial and angular combinations. The weights
computed for generalized PCF interpolation serve as proba-
bilities for this selection. Russian Roulette filtering converges
to the same result as the d-linear filtering from generalized
PCF, but a visually pleasing result is obtained faster. Fig. 9
shows a comparison between the different techniques.

4.6. Extension to Multiple Objects

Although we assume static geometry, multiple moving objects
are possible. To this end, we build one CSM for each object.
Objects illuminated by distant or semi-local lights can then be
moved, rotated and scaled freely (Fig. 1). To decide whether a
point p is visible from a semi-local or distant light source, we
first test if the point is occluded by the object itself. In case of
no occlusion, we inspect the depth maps of the other objects.
Fig. 10 shows an example with three objects. To determine

p

A

B

C

Light

qz

zxy

Figure 10: Moving objects: To test if there is any occlusion
between point p (on object A) and the light source, we first
compare the depth values of object A. Because there is no self-
occlusion, we inspect the depth values of the other objects.
For each object, we select the depth map perpendicular to the
light direction and compare the two depth values. Object B
does not occlude p because the pixel is outside its depth map.
In the depth map of object C, we compute two different depth
values: Object C occludes p.

the correct depth values, the original depth map matrix D of
the moving object has to be modified: If the moving object
is transformed by a matrix T, the depth map matrix must be
replaced by D = DT−1.

Receiver-Only Objects If an object is only receiving a
shadow (like a ground plane, which is not generating a
shadow on other objects), no CSM is required for this object
at all. The reason is, that for each pixel of this object, we only
have to decide whether it is shadow or not. Therefore, we
compare the depth values of all CSMs with the depth value
of the current pixel (like for moving objects). If the object is
planar (or at least convex), we can ignore self-shadowing of
the receiving object and omit the CSM. This even allows for
shadow-tests for points in a volume.

5. Illumination using CSMs

This section describes the GPU implementation of a Monte
Carlo renderer using coherent shadow maps which solves the
direct lighting equation:

L(x,ωo) =

Ω
fr(x,ωo,ω)Lin(x,ω)V (x,ω)cos(θ)dω

where fr is the BRDF and Lin is the incoming radiance from
direction ω . The binary visibility term V can be efficiently
evaluated based on the CSM. Rasterization is done in a con-
ventional way, but a Monte Carlo simulation is run for each
pixel in a fragment program. As no interpolation between

c The Eurographics Association 2007.

T. Ritschel, T. Grosch, J. Kautz and S. Müller / Interactive Illumination with Coherent Shadow Maps

Figure 9: Comparing different filters to reduce aliasing: PCF (3.3 minutes) gives the same quality as Russian Roulette
(15.4 seconds) that requires nearly the same time as nearest filtering (11.5 seconds). It shows, that PCF is between 10 and 15
times slower, because it always decodes 16 depth values. To exaggerate the effect of aliasing the discretization is set artficially
low and the number of samples is artficially high in this figure.

Figure 11: Progressive rendering (1024× 768) with a decreasing number of samples per pixel (11.2 s, 1.2 s, 207 ms and 30 ms).

vertices is used, the shading parameters can be adjusted per
pixel by a texture and change over time, just as in any other
Monte Carlo renderer. We have successfully used diffuse,
specular and normal maps as demonstrated in Fig. 1.

Visibility Queries As described in Section 3, depth values
are stored in compressed form as segment lists. For each visi-
bility test, the segment containing the index i of the selected
depth map has to be found. The concatenation of all segment
lists is stored sequentially in a texture. To locate the correct
entry point for the segment list describing the depth values of
pixel qxy, we use a M×M lookup texture that maps the pixel
position qxy to the starting point of the corresponding seg-
ment list. The segment containing i is then found with binary
search, requiring log(n) texture reads, and some conditional
adds.

To locate the segment containing i in a depth cube map
at direction d requires two steps. First, a cube map of size
1×1 is used to map d to an index k = 0 . . .5. Secondly, the
segment containing kN + i is found in the same way as for
orthographic depth maps.

Lights In addition toD, each light is defined by two func-
tions: A : [0 . . .1]d

 → R4 describes the surface of the light
source. For distant and local lights, A is identical to D and
d = d. For semi-local light sources, A is an arbitrary shape

(with arbitrary dimension d) andD is the standard lat-long
mapping. To describe a spatially-varying radiance distribu-
tion, a function L : [0 . . .1]d

 → R3 is used which maps the
parameter vector to an RGB-value (Lin). Here, a (video-) en-
vironment map with natural lighting, a synthetic sky, or any
other pattern can be used. Both functions may freely vary
over time. Additionally, we allow non-uniform emitters, such
as Lambertian or directional emitters. Currently, different
versions of A, D and L are stored in textures with linear
filtering (See Fig. 12).

5.1. Sampling

Importance Sampling We use importance sampling to
solve the direct lighting equation with a set of S incoming
directions ωk, generated from a probability density function
p:

L(x,ωo)≈
1
S

S

∑
k=1

fr(x,ωo,ωk)Lin(x,ωk)V (x,ωk)cos(θk)
p(ωk)

Therefore, the inverse cumulative density function (CDF) of
the incoming radiance P−1

L and the BRDF P−1
f are precom-

puted and stored in textures. To generate samples proportional
to a density p, we read the corresponding inverse CDF texture
at a uniform random location. For interactive manipulations

c The Eurographics Association 2007.

T. Ritschel, T. Grosch, J. Kautz and S. Müller / Interactive Illumination with Coherent Shadow Maps

Figure 12: Our implementation uses linear filtering for A,
D and L that results in a continuous highlight (Left). A dis-
cretization into point lights would result in multiple isolated
highlights (Right).

of materials, different versions of P−1
f for Phong BRDFs

with increasing glossiness are stored. For a Lafortune BRDF,
we preintegrate the single lobes and select one of the lobes
with Russian Roulette. Then, the same sampling strategy as
described for Phong BRDFs is used. Integrating more sophis-
ticated BRDFs would also be possible.

Random Numbers We use a stratified random pattern for
sampling. In contrast to more sophisticated patterns [PH04],
a stratified pattern benefits from coherent memory access,
which is crucial for GPUs and increases performance by a
substantial factor of 1.2 to 1.5. For each pixel, one out of 256
different pre-generated two-dimensional patterns of length S
is used. The patterns are stored into a texture of size 256×S.
The sampling pattern to use for each pixel depends on the
pixel position. To switch the pattern for each frame, it is also
chosen based on another quasi random index, stored in a
texture with the same resolution as the framebuffer.

Sampling Distant Illumination For distant illumination,
samples can be drawn proportional to fr or to the radiance
distribution Lin stored in the environment map. To reduce the
amount of noise, different strategies are applied for diffuse
and specular surfaces [PH04]: For diffuse surfaces P−1

L is
used while specular surfaces always use P−1

f . If a surface
is both diffuse and specular, the decision for a diffuse or
specular sample is implemented by Russian Roulette based
on the material roughness kd .

Sampling Local Illumination For local and semi-local
light sources, samples are always drawn proportional to their
radiance distribution L, because samples selected from the
BRDF do not hit the light source in most cases.

5.2. Progressive Rendering

Reducing the noise introduced by Monte Carlo rendering is
straightforward: All parameters are kept fixed and the average
of a few successive frames is computed (cf. Fig. 11). There-
fore, a number of m frames is rendered and blended together

weighting each frame’s contribution by 1
m . This is a clear

advantage over other methods that prevent noise by band-
limiting the signals. A user can navigate through the scene or
manipulate it at high interactive rates. After the manipulation,
the image converges to an exact solution over time.

6. Results

We demonstrate our approach for different scenes and types of
lightsources, as can be seen in the accompanying video. The
system used is an Intel Core 2 Duo 6300 with 2 GB RAM and
an NVIDIA Geforce 8800. Compression and timing results
are summarized in Table 1 and Table 2.

Compression Rates As can be seen in Table 1, the compres-
sion rate increases with N: It grows roughly with the square
root of the number of depth maps N. This is, because CSMs
’extract’ the relevant depth information from a large num-
ber of depth maps. Note, that the visibility information from
more than a million depth maps of the Buddha model (that
require several minutes to render) can be squeezed into a sin-
gle GPU texture. The average number of segments required
to compress a depth function z(i) depends on the geometric
complexity of the object. Objects similar to a sphere (only
one segment) are well suited, while objects with a strong vari-
ation in depth values and thin surfaces (z1 ≈ z2) have smaller
compression ratios. As expected, a higher compression is
achieved when using the Hilbert enumeration (row three and
four).

Quality When using shadow maps, the most interesting
question is how the spatial and angular discretization affects
the image quality (see Fig. 13 and Fig. 14). A finite number
of shadow maps creates banding while a finite resolution
for each shadow map prevents fine geometric details to cast
shadows. However, the resulting jagged shadow boundaries
and banding artifacts are less visible for realistic natural il-
lumination and area light sources than for synthetic point
lights, especially in combination with filtering. Besides fil-
tering, the display quality can be improved by using more
depth maps. Due to the good compression behaviour (Table
1), large values for N are possible; this only increases the pre-
computation time, which grows linear with N. Because our
compression is based on [WE03], self-shadowing artifacts
are mostly removed. However, a depth bias is still required
for pixels which start a new segment (z1 = z2).

Several techniques (e.g., [MSW04]) have parameterized
the visibility function over the surface as a discrete binary
function of direction for each vertex. We do not consider
this option, as there is no obvious way to recombine such
representations when multiple occluders are used. Further-
more, they require a fine tessellation of all receivers while
our technique does not.

Speed A higher compression ratio also decreases the time
for a visibility query, because fewer operations are required to

c The Eurographics Association 2007.

T. Ritschel, T. Grosch, J. Kautz and S. Müller / Interactive Illumination with Coherent Shadow Maps

N = 64 × 64N = 128 × 128N = 512 × 512
M

 =
 1

28
 ×

 1
28

M
 =

 6
4

×
64

M
 =

 3
2

×
32

Number of depth maps More banding →← Less banding
M

or
e

fe
at

ur
es

 →
Re

so
lu
ti o

n
of

 d
ep

th
 m

ap
s

←
 L

es
s

fe
at

ur
es

Figure 13: Discretization error for converged images. CSMs introduce two forms of discretization: A finite number of shadow
maps creates banding (right, top image) while a finite resolution for each shadow map prevents fine geometric details to cast
shadows (left, bottom image).

find the location of a segment. However, from our experience
this has only a small impact on the rendering speed due
to the logarithmic time complexity of the segment search.
As can be seen in Table 2, the total rendering time for an
1024×768 image with 625 samples is 4.86 s, which means
at least 101.1 M monte carlo samples and (non-coherent)
shadow tests per second. This is an order of magnitude faster
than the number of coherent intersection tests of current ray
tracing systems for comparable scene complexity [BWSF06].
However, our approach is only an approximation due to the
discretization.

7. Conclusions

We have developed a method for fast visibility queries based
on compressed shadow maps. We have proposed to sample
visibility around an object by precomputing a large number

of depth maps in an offline process. The large amount of
memory that is required for capturing all the visibility details
is reduced by a new shadow map compression method. At
run-time, visibility queries are performed by indexing into
the precomputed and compressed depth maps.

This new visibility test is used to perform interactive illumi-
nation on the GPU. We have demonstrated that Monte Carlo
rendering using this visibility test is well-suited for graphics
hardware, enabling interactive display of complex local illu-
mination effects that were previously impossible. Our illumi-
nation method is not band-limited, it converges to the correct
solution when given enough time, and the frame rate does
not depend on scene complexity. While our method assumes
rigid objects with dynamic placement, all light sources and
shift-variant BRDFs can be changed on-the-fly with no over-
head. Furthermore, we have developed filtering techniques

c© The Eurographics Association 2007.

T. Ritschel, T. Grosch, J. Kautz and S. Müller / Interactive Illumination with Coherent Shadow Maps

Scene Depth Maps (N / total) Uncompressed Compressed Time Ratio

Distant Lat-long
Buddha

32×32 1024 32.0 MB 3.0 MB 3 s 10.7 : 1
128×128 16384 512.0 MB 18.7 MB 46 s 27.4 : 1
512×512 262144 8.1 GB 96.8 MB 744 s 85.3 : 1

1024×1024 1048576 32.7 GB 202.1 MB 2253 s 162.1 : 1

Distant Lat-long
XYZ Dragon

32×32 1024 32.0 MB 5.4 MB 5 s 5.0 : 1
128×128 16384 512.0 MB 44.2 MB 281 s 11.5 : 1
512×512 262144 8.0 GB 242.8 MB 1094 s 33.9 : 1

Distant Lat-long
Bunny

32×32 1024 32.0 MB 3.9 MB 4 s 8.2 : 1
128×128 16384 512.0 MB 19.9 MB 50 s 25.4 : 1
512×512 262144 8.0 GB 242.8 MB 844 s 86.2 : 1

Distant Lat-long
Dragon

32×32 1024 32.0 MB 8.3 MB 3 s 3.9 : 1
128×128 16384 512.0 MB 50.0 MB 46 s 10.2 : 1
512×512 262144 8.0 GB 249.8 MB 1817 s 32.9 : 1

Local Scanline
Dragon

8×8 384 12.0 MB 2.3 MB 3 s 5.2 : 1
32×32 6144 192.0 MB 13.1 MB 16 s 14.7 : 1

128×128 98304 3.0 GB 63.8 MB 256 s 48.2 : 1
256×256 393216 12.2 GB 137.1 MB 1355 s 89.6 : 1

Local Hilbert
Dragon

8×8 384 12.0 MB 1.9 MB 3 s 6.3 : 1
32×32 6144 192.0 MB 10.0 MB 15 s 19.2 : 1

128×128 98304 3.0 GB 43.0 MB 261 s 71.4 : 1
256×256 393216 12.2 GB 90.1 MB 1344 s 136.4 : 1

Local Hilbert
Plant

32×32 6144 192 MB 4.5 MB 13 s 42 : 1
64×64 24576 768 MB 8.0 MB 62 s 96 : 1

128×128 98304 3.0 GB 15.6 MB 255 s 170 : 1
256×256 393216 12.2 GB 29.4 MB 988 s 418 : 1

Table 1: Compression rates for different objects with shadow map resolution M = 128. For local lights, the total number of
depth maps is 6N (depth cube maps).

to remove discretization artifacts introduced by the shadow
maps.

There are several directions for future research. Depth map
compression could be performed on the GPU, possibly even
at near-interactive rates for simple scenes. We would like
to consider global illumination by distributing point-lights
over an object’s surface, which requires to arrange them in
a coherent order that is suited for compression. Alternative
search methods for segment location, e. g., hash tables, are an
interesting avenue of research. Finally, we want to investigate
adaptive methods for CSM creation that minimize the number
of required depth maps for a given scene.

Acknowledgments We would like to thank M. Geimer, M. Bie-
dermann, R. Trappe and A. Langs for proofreading the paper and S.
Pohl for the chair model. The 3D models are courtesy of Stanford
University. The light probe images are courtesy of P. Debevec.

References

[AAM03] ASSARSSON U., AKENINE-MÖLLER T.: A Geometry-
Based Soft Shadow Volume Algorithm Using Graphics Hardware.

ACM Trans. Graph. 22, 3 (July 2003), 511–520.

[AH05] ARVO J., HIRVIKORPI M.: Compressed Shadow Maps.
Vis. Comput. 21, 3 (2005), 125–138.

[AKDS04] ANNEN T., KAUTZ J., DURAND F., SEIDEL H.-P.:
Spherical Harmonic Gradients for Mid-Range Illumination. In
15th Eurographics Symposium on Rendering (2004), pp. 331–336.

[ARBJ03] AGARWAL S., RAMAMOORTHI R., BELONGIE S.,
JENSEN H. W.: Structured Importance Sampling of Environ-
ment Maps. ACM Trans. Graph 22, 3 (2003), 605–612.

[BAS02a] BRABEC S., ANNEN T., SEIDEL H.-P.: Practical
shadow mapping. Journal of Graphics Tools 7, 4 (2002), 9–18.

[BAS02b] BRABEC S., ANNEN T., SEIDEL H.-P.: Shadow Map-
ping for Hemispherical and Omnidirectional Light Sources. In
Advances in Modelling, Animation and Rendering (Proceedings
Computer Graphics International 2002) (Bradford, UK, 2002),
Vince J., Earnshaw R., (Eds.), Springer, pp. 397–408.

[BGH05] BURKE D., GHOSH A., HEIDRICH W.: Bidirectional
Importance Sampling for Direct Illumination. In 16th Eurograph-
ics Symposium on Rendering (2005), pp. 147–156.

[BWSF06] BENTHIN C., WALD I., SCHERBAUM M., FRIEDRICH

c The Eurographics Association 2007.

T. Ritschel, T. Grosch, J. Kautz and S. Müller / Interactive Illumination with Coherent Shadow Maps

Figure 14: Comparsion (right) between raytracing (left) and CSMs (middle). The depth map discretization can only approximate
a continuous location of sharp features (eg. the cube’s corner) with a discrete location, which results in slightly displaced
shadows (red square). The top row uses a distant CSM and the plant a local CSM.

H.: Ray Tracing on the CELL Processor. In IEEE Symposium on
Interactive Ray Tracing (2006), pp. 25–23.

[CETC06] CLINE D., EGBERT P. K., TALBOT J. F., CARDON

D. L.: Two Stage Importance Sampling for Direct Lighting. In
17th Eurographics Symposium on Rendering (2006), pp. 103–114.

[CJAMJ05] CLARBERG P., JAROSZ W., AKENINE-MÖLLER T.,
JENSEN H. W.: Wavelet Importance Sampling: Efficiently Evalu-
ating Products of Complex Functions. ACM Trans. Graph. 24, 3
(Aug. 2005), 1166–1175.

[Cro77] CROW F.: Shadow Algorithms for Computer Graphics.
In Proceedings of ACM SIGGRAPH (July 1977), pp. 242–248.

[Deb05] DEBEVEC P.: A Median Cut Algorithm for Light Probe
Sampling. Poster at SIGGRAPH 2005, 2005.

[GBP06] GUENNEBAUD G., BARTHE L., PAULIN M.: Real-time
Soft Shadow Mapping by Backprojection. In 17th Eurographics
Symposium on Rendering (2006), pp. 227–234.

[GGHS03] GOESELE M., GRANIER X., HEIDRICH W., SEIDEL

H.-P.: Accurate Light Source Acquisition and Rendering. ACM
Trans. Graph. 22, 3 (July 2003), 621–630.

[GKMD06] GREEN P., KAUTZ J., MATUSIK W., DURAND F.:
View-dependent precomputed light transport using nonlinear gaus-
sian function approximations. In Proceedings of ACM Symposium
in Interactive 3D Graphics and Games (Mar. 2006), pp. 7–14.

[HLHS03] HASENFRATZ J.-M., LAPIERRE M., HOLZSCHUCH

N., SILLION F.: A survey of Real-Time Soft Shadows Algorithms.
Computer Graphics Forum 22, 4 (Dec. 2003), 753–774.

[HPB06] HASAN M., PELLACINI F., BALA K.: Direct-to-Indirect
Transfer for Cinematic Relighting. ACM Trans. Graph. 25, 3
(2006), 1089–1097.

[HSK∗05] HAVRAN V., SMYK M., KRAWCZYK G.,
MYSZKOWSKI K., SEIDEL H.-P.: Importance Sampling
for Video Environment Maps. In 16th Eurographics Symposium
on Rendering (Konstanz, Germany, 2005), Bala K., Dutré P.,
(Eds.), ACM SIGGRAPH, pp. 31–42.

[KAMJ05] KRISTENSEN A. W., AKENINE-MÖLLER T., JENSEN

H. W.: Precomputed Local Radiance Transfer for Real-Time
Lighting Design. ACM Trans. Graph. 24, 3 (2005), 1208–1215.

[KK03] KOLLIG T., KELLER A.: Efficient Illumination by High
Dynamic Range Images. In 14th Eurographics Workshop on
Rendering (Aire-la-Ville, Switzerland, 2003), Eurographics Asso-
ciation, pp. 45–50.

[KLA04] KAUTZ J., LEHTINEN J., AILA T.: Hemispherical Ras-
terization for Self-Shadowing of Dynamic Objects. In 15th Euro-
graphics Symposium on Rendering (June 2004), pp. 179–184.

[KTHS06] KONTKANEN J., TURQUIN E., HOLZSCHUCH N.,
SILLION F. X.: Wavelet Radiance Transport for Interactive In-

c The Eurographics Association 2007.

T. Ritschel, T. Grosch, J. Kautz and S. Müller / Interactive Illumination with Coherent Shadow Maps

Scene Faces Resolution S Time MS / s

Local Linear
XYZ Dragon

280k

320×240 16 45.0 ms 27.3
1024×768 16 170.0 ms 74.2
1024×768 64 600.0 ms 83.8
1024×768 625 4860.0 ms 101.1

Distant Lat-long
Buddha

80k

1024×768 16 190.0 ms 66.2
1024×768 64 720.4 ms 69.9
1024×768 625 6000.0 ms 81.9

Random Visibility
Buddha

80k

1024×768 16 148.0 ms 85.0
1024×768 625 3707.3 ms 132.5

Coherent Visibility
Buddha

80k

1024×768 16 77.0 ms 163.5
1024×768 625 261.3 ms 190.4

Table 2: Timings for different scenes. Here N = 1282,M = 128 and a two-lobe Lafortune BRDF with kd = 0.8 is used as in
Fig. 9. The number of visibility samples per pixel is denoted with S. For random visibility, shadow tests are performed in a
uniform random direction. For coherent visibility, shadow tests are performed in the same direction for every pixel. The last
column lists million Monte Carlo samples per second.

direct Lighting. In 17th Eurographics Symposium on Rendering
(June 2006), pp. 161–172.

[LSSS04] LIU X., SLOAN P.-P., SHUM H.-Y., SNYDER J.: All-
Frequency Precomputed Radiance Transfer for Glossy Objects. In
15th Eurographics Symposium on Rendering (June 2004), pp. 337–
344.

[MSW04] MEI C., SHI J., WU F.: Rendering with Spherical
Radiance Transport Maps. Comp. Graph. Forum 23, 3 (2004),
281–290.

[NRH03] NG R., RAMAMOORTHI R., HANRAHAN P.: All-
Frequency Shadows Using Non-linear Wavelet Lighting Approxi-
mation. ACM Trans. Graph. 22, 3 (July 2003), 376–381.

[NRH04] NG R., RAMAMOORTHI R., HANRAHAN P.: Triple
Product Wavelet Integrals for All-Frequency Relighting. ACM
Trans. Graph. 23, 3 (Aug. 2004), 477–487.

[ODJ04] OSTROMOUKHOV V., DONOHUE C., JODOIN P.-M.:
Fast Hierarchical Importance Sampling with Blue Noise Proper-
ties. ACM Trans. Graph 23, 3 (2004), 488–495.

[PH04] PHARR M., HUMPHREYS G.: Physically Based Render-
ing : From Theory to Implementation. Morgan Kaufmann, August
2004.

[RHCB05] REN Z., HUA W., CHEN L., BAO H.: Intersection
Fields for Interactive Global Illumination. The Visual Computer
21, 8-10 (2005), 569–578.

[RSC87] REEVES W. T., SALESIN D., COOK R. L.: Render-
ing Antialiased Shadows with Depth Maps. Computer Graphics
(Proceedings of ACM SIGGRAPH ’87) (1987), 283–291.

[RWS∗06] REN Z., WANG R., SNYDER J., ZHOU K., LIU X.,
SUN B., SLOAN P.-P., BAO H., PENG Q., GUO B.: Real-Time
Soft Shadows in Dynamic Scenes using Spherical Harmonic Ex-
ponentiation. ACM Trans. Graph. 25, 3 (2006), 977–986.

[SKS02] SLOAN P.-P., KAUTZ J., SNYDER J.: Precomputed
Radiance Transfer for Real-Time Rendering in Dynamic, Low-
Frequency Lighting Environments. In Proceedings of ACM SIG-
GRAPH (July 2002), pp. 527–536.

[Slo06] SLOAN P.-P.: Normal Mapping for Precomputed Radiance
Transfer. In Symposium on Interactive 3D Graphics and Games
(2006), pp. 23–26.

[SM06] SUN W., MUKHERJEE A.: Generalized Wavelet Product
Integral for Rendering Dynamic Glossy Objects. ACM Trans.
Graph. 25, 3 (July 2006), 955–966.

[TCE05] TALBOT J., CLINE D., EGBERT P.: Importance Resam-
pling for Global Illumination. In 16th Eurographics Symposium
on Rendering (2005), pp. 139–146.

[VG95] VEACH E., GUIBAS L. J.: Optimally Combining Sam-
pling Techniques for Monte Carlo Rendering. In Proceedings of
ACM SIGGRAPH 95 (Aug. 1995), pp. 419–428.

[WE03] WEISKOPF D., ERTL T.: Shadow Mapping Based on
Dual Depth Layers. In Eurographics 2003 Short Papers (2003),
pp. 53–60.

[Wil78] WILLIAMS L.: Casting Curved Shadows on Curved Sur-
faces. In Proceedings of ACM SIGGRAPH (August 1978), pp. 270–
274.

[WTL06] WANG R., TRAN J., LUEBKE D.: All-Frequency Re-
lighting of Glossy Objects. ACM Trans. Graph. 25, 2 (2006),
293–318.

[ZHL∗05] ZHOU K., HU Y., LIN S., GUO B., SHUM H.-Y.: Pre-
computed Shadow Fields for Dynamic Scenes. ACM Trans. Graph.
24, 3 (2005), 1196–1201.

c The Eurographics Association 2007.

