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Abstract. Complex luminaries and lamp geometries can greatly increase the
realism of synthetic images.
Unfortunately, the correct rendering of illumination from complex lamps requires
costly global illumination algorithms to simulate the indirect illumination re-
flected or refracted by parts of the lamp. Currently, this simulation has to be
repeated for every scene in which a lamp is to be used, and even for multiple
instances of a lamp within a single scene.
In this paper, we separate the global illumination simulation of the interior lamp
geometry from the actual scene rendering. The lightfield produced by a given
lamp is computed using any of the known global illumination algorithms. Af-
terwards, a discretized version of this lightfield is stored away for later use as a
lightsource. We describe how this data can be efficiently utilized to illuminate a
given scene using a number of different rendering algorithms, such as ray-tracing
and hardware-based rendering.

1 Introduction

Complex lightsources can greatly contribute to the realism of computer generated im-
ages, and are thus interesting for a variety of applications. However, in order to correctly
simulate the indirect light bouncing off internal parts of a lamp, it is necessary to apply
expensive global illumination algorithms.

As a consequence, it was so far not possible to use realistic light sources in interac-
tive applications. Also, for offline techniques such as ray-tracing, complex light source
geometry unnecessarily slows down the rendering, since reflections and refractions be-
tween internal parts of the lightsource have to be recomputed for every instance of a
lightsource geometry in every frame.

In this paper we propose a new method for using realistic lightsources for image
synthesis. For a given lamp geometry and luminary, the outgoing lightfield is computed
using standard global illumination methods, and stored away in a Lumigraph [6, 9] data
structure. Later the lightfield can be used to illuminate a given scene while abstracting
from the original lamp geometry. We call a light source stored and used in this fashion
a “Canned Lightsource”.

Instead of simulating the lightfield with global illumination methods, Canned Light-
sources could also be measured [2], or even provided by lamp manufacturers in much
the same way far field information is provided today. Thus, a database of luminaries
and lamps stored as Canned Lightsources becomes possible.

Our method also speeds up the rendering process by factoring out the computation
of the internal reflections and refractions of the lightsource into a separate preprocessing
step. As a consequence, realistic lightsources can be efficiently used for interactive
rendering, and for other applications where a complete global illumination solution



would be too expensive. The cost of computing the global illumination within the lamp
can be amortized over a large number of lamp instances and frames.

The remainder of this paper is organized as follows: in Section 2, we review the
relevant previous work in this area. Section 3 contains a brief discussion of the acquisi-
tion of lightfields using global illumination algorithms. Section 4, the main contribution
of this paper, describes ways to use Canned Lightsources in combination with several
rendering algorithms, including ray-tracing and hardware-based methods. We conclude
with some results and a discussion in Sections 5 and 6.

2 Previous Work

Several researchers have used precomputed global illumination solutions to efficiently
generate realistic walkthroughs. A common technique is to use Gouraud shading and
texture mapping to render radiosity solutions of diffuse environments from any per-
spective [12, 3]. Other approaches for diffuse scenes include Instant Radiosity [8] and
Irradiance Volumes [7]. Interactive radiosity methods such as [4] incrementally update
the illumination in scenes with small numbers of moving objects. Recently, algorithms
for walkthroughs of scenes containing specular surfaces have been developed [14, 15].

All of the above methods require a full global illumination solution for the complete
scene. Thus, they cannot deal with large numbers of changing objects or moving light-
sources. Furthermore, the methods are not capable of storing away partial solutions for
future use in different environments.

Methods more closely related to our approach include virtual walls [1] for speed-
ing up radiosity computations, and the Lucifer algorithm [5, 10], which computes the
radiance distribution on a virtual surface in the environment. Radiance [16] allows the
user to replace geometry seen through small openings such as windows by dense ra-
diance samples. None of these methods reuses illumination information in different
environments.

In this paper, we encapsulate the lightfield emitted by a lightsource and store it away
for future use. To this end, the method presented here relies on a dense sampling of the
radiance emitted by a lightsource. The Lumigraph data structure1 used to store this
information has been developed by Levoy and Hanrahan [9], and Gortler et al. [6].

3 Simulating and Sampling the Lightfield of a Lightsource

As mentioned above, we store the lightfield in a Lumigraph data structure. From this
data structure the radiance values can be extracted efficiently. Moreover, Lumigraphs
can be generated easily using existing rendering systems or real world images, and since
they are merely a two dimensional array of projective images, they lend themselves to
efficient algorithms using computer graphics hardware (see Section 4.3).

On the down side, the light slabs of a Lumigraph do not uniformly sample the
lightfield, and multiple light slabs are required to cover all light directions. Despite
these disadvantages, we think that the Lumigraph is well suited for our purposes.

The top of Figure 1 shows the geometry of a single light slab. Every grid point
corresponds to a sample location. As in [6] the (u, v) plane is the plane close to the
object (lamp), while the (s, t) plane is further away, potentially at infinity.

1In this paper, we use the term “lightfield” for the continuous 5D function that describes the radiance at
every point in space in every direction. The “Lumigraph”, which is composed of one or more “light slabs”,
refers to the 4D data structure used to store a finite number of samples from the lightfield in empty space.
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Fig. 1. Geometry of a single light
slab within a Lumigraph.

Placing the (s, t) plane at infinity offers the advan-
tage of a clear separation between spatial sampling on
the (u, v) plane, and directional sampling on the (s, t)
plane. In this situation, all rays through a single sam-
ple on the (u, v) plane, that is, the projective image
through that point, represent the far field of the light-
source. The higher the resolution of the (u, v) plane,
the more nearfield information is added to the Lumi-
graph. For most applications, the spatial resolution is
much smaller than the directional resolution.

If, the (s, t) plane is not placed at infinity, it is
not possible to clearly separate between spatial and
directional resolution. Nonetheless, we can still view
the light slab as an array of projective images with
centers of projection on the (u, v) plane.

Because of this, a light slab representing a Canned
Lightsource can be created by first generating a global
illumination solution for the lamp geometry, and then
rendering it from multiple points of view on the (u, v)
plane. For the global illumination step, we can use any
kind of algorithm, such as radiosity, Monte-Carlo ray-
tracing, Photon Maps, or composite methods [13]. Al-
ternatively, Canned Lightsources could be generated
by resampling measured data [2] much in the same way described in [6]. Finally, it is
also possible to generate non-physical lightsources for special effects.

One issue is the storage of Canned Lightsources. Due to the large dynamic range
required to faithfully represent the lightfield of a lightsource, one of the commonly used
24 bit true color file formats is not sufficient. On the other hand, Lumigraphs can be
quite large, and so a memory-efficient representation is mandatory. A good compromise
is Larson’s LogLuv extension to the TIFF file format [17], which uses 32 bit/sample to
store high dynamic range images.

4 Reconstruction of Illumination from Lightfields

Given one or more Canned Lightsources, we can use them to illuminate a scene by
reconstructing the radiance emitted by the lightsource at every point and in every direc-
tion. Like in [6] and [9], we use quadrilinear interpolation between the samples stored
in the light slabs. For a ray-tracer, we could simply obtain a large number of radiance
samples from the Lumigraph. However, the challenge is to obtain a good reconstruction
with the smallest number of samples possible. It is important not to miss any narrow
radiance peaks, because this would lead to artifacts in the reconstructed illumination.

In the following, we discuss three different approaches for reconstructing the illu-
mination at every point in the scene. Section 4.1 describes a high-quality technique
which can be used as a reference solution for the other methods. Section 4.2 deals with
a generalization of this method for efficient ray-tracing. Finally, in Section 4.3, we
describe a way to use the graphics library OpenGL for the reconstruction.

4.1 High Quality Reference Solutions

In order to describe the illumination in a scene caused by a Canned Lightsource, we
view a light slab as a collection of Nu×Nv×Ns×Nt independent little area lightsources



(“micro lights”), each corresponding to one of the light slab’s 4D grid cells. Here, Nu,
Nv, Ns, and Nt are the resolutions of the slab in each parametric direction. Each of the
micro lights causes a radiance of
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(Q, ωo) =

∫
f(Q, ωi → ωo)L

i
nu,nv,ns,nt

(Q, ωi) cos θdωi (1)

to be reflected of any given surface point Q. The total reflected radiance caused by
the Canned Lightsource is then the sum of the contributions of every micro light.
f(Q, ωi → ωo) is the BRDF of the surface, θ is the angle between the surface normal
and the direction ωi, and Li

nu,nv,ns,nt
(Q, ωi) is the radiance emitted from the micro

light towards Q along direction ωi.
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Fig. 2. Clipping a Lumigraph grid
cell. u{0,1}, v{0,1}, s{0,1}, and
t{0,1} describe the portion of the
cell that is visible from point Q.

Since Li
nu,nv,ns,nt

(Q, ωi) is obtained by quadri-
linear interpolation of 16 radiance values, Equation 1
can be rewritten in a more suitable form. Consider the
geometry of a light slab as shown on the right side of
Figure 1. Every point P on the (u, v) plane can be
written as P = O + (nu + u)~u + (nv + v)~v, where
the vectors ~u and ~v determine the dimensions of a 2D
grid cell, and u, v ∈ [0, 1] describe the coordinates of
P within the cell. In analogy we can describe a point
P′ on the (s, t) plane, where we assume that the vec-
tors ~s and ~t are parallel to ~u and ~v, respectively.

For micro light (nu, nv, ns, nt) and point Q, we
can now determine the region on the (u, v) plane that
is visible from point Q. This is achieved by projecting
the 2D cell (ns, nt) onto the (u, v) plane, using Q as
the center of projection (see Figure 2). The resulting
rectangle is clipped against the 2D cell (nu, nv).

This yields boundaries u{0,1}, v{0,1}, s{0,1}, and t{0,1} relative to the 4D cell
boundaries of the micro light. In this area, every ray r(u, v, s, t) passing through Q
is characterized by u = (1− x)u0 + xu1, v = (1− y)v0 + yv1, s = (1− x)s0 + xs1,
and t = (1 − y)t0 + yt1 for some x, y ∈ [0, 1]. The values x and y can be used for
the quadrilinear interpolation of the radiance emitted towards point Q by inserting the
formulas for u, v, s, and t into the following equation:

Li
nu,nv ,ns,nt

(x, y) =(1− u) · (1− v) · (1− s) · (1− t) · L0000 +

(1− u) · (1− v) · (1− s) · t · L0001 + (2)

+ · · ·+ u · v · s · t · L1111.

L0000, L0001, . . . , L1111 are the 16 radiance values at the corners of the 4D grid cell.
These are contained in the Lumigraph. With this result, we can now rewrite Equation 1
as follows:
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where A = (u1 − u0)||~u|| · (v1 − v0)||~v|| is the size of the visible region on the (u, v)
plane, and R = ||P−Q|| is the distance of the two points P and Q. Note that the vectors



~s and ~t do not occur in this equation. That is, the exact position and parameterization
of the (s, t) plane is only required for clipping. The use of an (s, t) plane at infinity is
transparent in Equation 3.
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Fig. 3. A simple test scene il-
luminated by a Canned Light-
source with full resolution of
64×64 (top) and half resolution
in every direction (bottom). In
the center you see a difference
image between the two.

While an analytical solution of the integral exists if
there is no occlusion, it is too complicated for practi-
cal use. However, the integrand in Equation 3 is quite
smooth, so that Monte Carlo integration performs well,
and only a few samples are required to obtain good re-
sults.

In order to compute the complete illumination in Q,
we have to sum up the contribution of all micro lights.
Although there are Nu×Nv×Ns×Nt micro lights, only
O(max(Nu, Ns) · max(Nv , Nt)) have a non-zero visi-
ble area from any point Q. These visible areas are easily
determined since 2D grids on the two Lumigraph planes
are aligned. Thus, u{0,1} and s{0,1} only depend on the
grid column (nu, ns), while v{0,1} and t{0,1} only de-
pend on the grid row (nv, nt).

The result of this method is that we know how many
samples are at least required for faithfully computing
the illumination in a given point Q: at least one sam-
ple is necessary for each visible micro light. The left
side of Figure 3 shows a simple scene illuminated with
a Canned Lightsource at full resolution (64× 64 on the
(u, v) plane). The underlying geometry of the light-
source is described in Section 5.

4.2 Efficient Ray-tracing

While the above method is capable of producing high-
quality reference solutions, the number of visible grid
cells is prohibitive for real world applications. Inde-
pendent of the distance from the lightsource, we have
to take at least one sample per visible grid cell, or risk
missing important features such as thin radiance peaks.
Ideally, the number of samples should depend on the
solid angle covered by the lightsource.

To achieve this kind of adaptive sampling, we have
developed a method based on a hierarchy of Lumi-
graphs at different resolutions, similar to the use of
mipmaps. Let us first consider the case where the (s, t) plane is at infinity.

If we ignore occluding geometry, we can say that each point Q in front of the
(u, v) plane sees all sample points there. The distances towards these samples will
vary strongly for points Q close to the (u, v) plane. Thus, the number of visible micro
lights is mostly dominated by the directional resolution, which is larger than the spatial
resolution for our purposes (see Section 3). Therefore, O(Ns · Nt) micro lights are
visible from Q. This number cannot be reduced without compromising quality, since
the lightsource covers a large solid angle as seen from Q.

As the distance of Q from the (u, v) plane increases, the directions of the sample
rays become almost parallel. In the end, all rays will pass through a single 2D cell



on the (s, t) plane. In this situation, there are exactly Nu · Nv visible micro lights.
Although this number is smaller than the number of visible cells for close points Q, we
would like to further reduce it for points at very large distances. The number of samples
should be reduced linearly with the solid angle covered by the lightsource.

This means that for far away points, a Lumigraph with a lower resolution on the
(u, v) plane is sufficient. Similarly to mipmaping, we use a hierarchy of Lumigraphs,
where the resolution in the u and v direction is reduced by a factor of two from one level
to the next. Since we want to avoid storing the Lumigraph at multiple resolutions, we
would like to do the downsampling on the fly during the rendering phase. We use simple
averaging of the higher resolution samples. When switching from one level to the
next, only the clipping has to be performed at a different resolution, and in Equation 2
averaged values are used for L0000, L0001 and so on.

If the (s, t) plane is not located at infinity, a clear separation between spatial and
directional resolution is not possible. Reducing the resolution of only one plane is
therefore not adequate. Nonetheless, it makes sense to reduce the number of samples
quadratically with the distance from the (u, v) plane, in order to maintain a certain
number of samples per solid angle. This can be achieved by simultaneously reducing
the resolution of both planes from level to level. Due to the lower directional resolution,
the results will in general not be quite as good as for (s, t) planes at infinity.

The right side of Figure 3 shows the result of the same image as on the left side,
but illuminated with a downsampled Canned Lightsource (1/2 the resolution in each
direction). The performance improvement for this scene was roughly a factor of 7.4.
Although a minor degradation of quality is noticeable in the difference image, the qual-
ity is still very good.

4.3 OpenGL Reconstruction

In addition to ray-tracing, it is also possible to use computer graphics hardware for
reconstructing the illumination from a Canned Lightsource. As a hardware abstraction
layer, we use the graphics library OpenGL, which is available on a variety of different
platforms. Our method can be combined with one of the algorithms for generating
shadows in OpenGL, such as shadow maps, or shadow volumes.

For hardware-based rendering, we assume that the BRDF f(Q, (P−Q) → ωo) used
in Equation 3 corresponds to the Phong model, which is the OpenGL lighting model.
We numerically integrate Equation 3 by evaluating the integrand at the grid points on
the (u, v) plane. For these points, the quadrilinear interpolation reduces to a bilinear
interpolation on the (s, t) plane, which can be done in hardware.

[11] describes how projective textures can be used to simulate lightsources such
as high-quality spotlights and slide projectors. Our method is an extension of this ap-
proach, which also accounts for the quadratic falloff and the cosine terms in Equation 3.
To see how this works, we rewrite the integrand from this equation in the following
form:

f(Q, (P−Q) → ωo) cos θ · A
cos θ′

R2
· Li

nu,nv ,ns,nt
(x, y) (4)

The first factor of this formula is given by the Phong material and the surface normal
N (see Figure 1). The second factor is the illumination from a spot light with intensity
A, located at P and pointing towards N ′ with a cutoff angle of 90◦, a spot exponent of
1, and quadratic falloff. Finally, the third factor is the texture value looked up from the
slice of the light slab corresponding to point P on the (u, v) plane.

In other words, the integrand of Equation 4 can be evaluated by combining pro-
jective textures as in [11] with the illumination from a spotlight using the standard



OpenGL lighting model. The results from texturing and lighting are combined using
the “modulate” texture environment of OpenGL.

The integral from Equation 3 is approximated by the sum of the contributions from
all grid points on the (u, v) plane. We compute this sum by adding multiple images,
each rendered with a different spotlight position and projective texture. To this end we
use either alpha blending or an accumulation buffer.

5 Results
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Fig. 4. Lamp geometry used for
the images in this paper. A diffuse
parabolic reflector with a small
spherical luminary is covered with
a grid of blockers.

For the images in Figure 3, we have used a Canned
Lightsource that was created by ray-tracing a simple
lamp geometry depicted in Figure 4. The lamp itself
consists of a diffuse parabolic reflector and a grid of
3 × 3 long blocker polygons. The shadows cast by
these blockers are quite visible in the nearfield of the
lightsource, and can thus be used to evaluate the qual-
ity of the rendering. A small spherical luminary in the
center of the paraboloid was used.

In Figure 6 in the color section, you can see an
office scene illuminated by variations of the same
Canned Lightsource. The image was generated using
ray-tracing. The Canned Lightsource had a resolution of 32 × 32 × 16 × 16, which
occupied about 2MB of space in the LogLuv coding. On the right side the paraboloid
is narrower, resulting in a more focussed emission of light. In both images the shadows
created by the blockers are noticeable. The blurring of these shadows is a prominent
feature of the nearfield of this lightsource.

Finally, we have used a hand-crafted Canned Lightsource that resembles a slide
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Fig. 5. Plane illuminated by a
hand-crafted Canned Lightsource
resembling a slide projector.

angle onto a plane. This results in a focussed area in
the center, where the “slide” is in focus, and in blurred
outer regions, where the focus of the projector is ei-
ther in front of or behind the plane. Also note the
darkening towards the corners of the projection due
to illumination from off-normal directions. Depend-
ing on the resolution of the (u, v) plane, the scene can
be rendered interactively on current graphics systems.
For example, we achieve around 10 frames per sec-
ond on a Reality Engine 2 with a spatial resolution of
8 × 8, and roughly the same performance on an O2
with a resolution of 4× 4. Figure 6 was rendered at a
resolution of 8× 8.

6 Conclusions

In this paper we have introduced the notion of a Canned Lightsource, which is a pre-
computed, discretely sampled version of the lightfield emitted by a complex lightsource
or lamp. This information is stored away in a Lumigraph data structure. Later, the pre-
computed information can be used to illuminate a scene while abstracting from the lamp
geometry. Thus, Canned Lightsources act as a blackbox for complex lightsources.

Canned Lightsources can be used to create databases of lightsources based on sim-
ulation or measurement. Ideally, this information could be directly distributed by the



lamp manufacturers in much the same way far field information is provided today.
The precomputed information can be used to speed up the lighting process in stan-

dard rendering algorithms such as ray-tracing and hardware-based rendering. Thus,
Canned Lightsources are a valuable data structure for efficient image synthesis. Par-
ticularly interesting is the possibility to precompute or measure the global illumination
of some parts of a scene (the lightsource), and reuse it at a different location or in a
completely different scene.
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Fig. 6. Office scene rendered with two different Canned Lightsources based on different lamp
sizes. The blurring due to nearfield effects is very prominent in both images.


