
Visio-lization: Generating Novel Facial Images

Umar Mohammed Simon J.D. Prince Jan Kautz

University College London

(B)(A) (C) (E)

(D) (F)

Figure 1: We aim to learn a model of facial images (including hair, eyes, beards etc.) and use this to generate new samples (A and B). The
results do not resemble any of the training faces, but are realistic and incorporate variation in sex, age, pose, illumination, hairstyle and
other factors. We also describe methods to edit real faces (C and D) by inpainting large regions (E) or changing expression (F).

Abstract
Our goal is to generate novel realistic images of faces using a model
trained from real examples. This model consists of two compo-
nents: First we consider face images as samples from a texture
with spatially varying statistics and describe this texture with a lo-
cal non-parametric model. Second, we learn a parametric global
model of all of the pixel values. To generate realistic faces, we
combine the strengths of both approaches and condition the local
non-parametric model on the global parametric model. We demon-
strate that with appropriate choice of local and global models it
is possible to reliably generate new realistic face images that do
not correspond to any individual in the training data. We extend
the model to cope with considerable intra-class variation (pose and
illumination). Finally, we apply our model to editing real facial im-
ages: we demonstrate image in-painting, interactive techniques for
improving synthesized images and modifying facial expressions.
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1 Introduction
It has recently become possible to render almost any image at near
photo-realistic quality. However, creating and editing realistic con-

tent remains time-consuming and requires considerable expertise.
In particular, human faces pose a formidable challenge as they ex-
hibit considerable variation due to identity, pose, lighting, hairstyle,
expression, and other factors. Moreover, humans have extensive vi-
sual experience of faces and may be particularly sensitive to errors.

Nevertheless, synthesis of novel faces has many applications in-
cluding creating criminal photofits or anonymizing faces in existing
footage such as Google Street View. Such a technique would also
be a step towards automatically creating realistic humanoid actors
and avatars: considerable effort is currently expended in creating
human characters for games and movies. Additional editing tech-
niques would allow a degree of human control: e.g. we might re-
quire existing characters to change hairstyle or grow a mustache.
Similarly editing real photos is useful for visualizing the likely re-
sults of plastic surgery, or improving portrait photos by changing
expression, replacing blinking eyes or removing glasses.

In this paper we present an algorithm for synthesizing novel
human faces including hair, eyes and beards (see Figure 1). Our
method is statistical in that it learns a probabilistic model from a
set of training faces. It generates new images that are both realistic
(they obey the structural constraints of the face and have plausible
texture) and novel (the identity is not the same as any of the training
images). We demonstrate that our model can generate completely
novel faces, add or remove facial features such as mustaches, fill
in large obscured parts of a face, turn unrealistic renderings of face
parts into realistic faces, and even change expression.

1.1 Related Work

There is a large body of work concerning modeling human faces.
Linear models describing the pixel intensity across face images of
multiple different individuals were first developed for face recogni-
tion [Turk and Pentland 1991] but have found application in graph-
ics. Blanz and Vetter [1999] extended the linear approach to model
both face texture and 3D shape and combined it with an explicit
lighting scheme. They fitted this model to 2D face images and used
it to relight, repose and morph the original image. The same model
was also modified to allow users to edit face models to match in-



ternal mental images [Blanz et al. 2006]. A related multi-linear
approach [Vlasic et al. 2005] was used to transfer video perfor-
mances of one individual to animations of another. The above
methods work well for fitting to real world images and modify-
ing subsets of characteristics. However, they are limited in their
ability to describe fine textures such as hair, eyebrows, and beards:
the synthesized images are weighted sums of training images and
these details tend to get averaged out. Moreover, linear models are
not well suited to synthesizing completely new faces as they assign
significant probability to implausible face configurations.

Liu et al. [2007] addressed some of these deficiencies by hallu-
cinating high-frequency details that agreed with the prediction of
the linear model. The results are superior to the linear model alone
but are still not fully realistic (see Section 5). There have also been
numerous linear and non-linear models for editing faces, but most
are targeted at specific applications such as beard removal [Nguyen
et al. 2008], removing blemishes [Brand and Pletscher 2008] or
super-resolution [Dedeoglu et al. 2004; Liu et al. 2005].

Other work has modelled the faces of particular individuals.
Such models have been used to create new videos of the same per-
son mouthing words that they did not originally speak [Bregler et al.
1997; Ezzat et al. 2002]. These models produce very realistic re-
sults but do not describe the between-individual variation and hence
cannot be used for our purpose. Similarly Weyrich et al. [2006]
built near-photorealistic face models by measuring the geometry,
reflectance and subsurface scattering of each individual face. They
show how facial detail (e.g. freckles) can be learnt and transferred
between individuals, but cannot model larger structures in this way.
In conclusion, no existing face model is suited to our goal.

However, two recent strands of work in image synthesis provide
inspiration. The first is non-parametric texture synthesis [Efros and
Leung 1999; Wei and Levoy 2000; Efros and Freeman 2001; Kwa-
tra et al. 2003]. Given a small sample of texture the goal is to gener-
ate a larger output texture. These methods synthesize novel textures
by pasting pixels, patches or regions from the original sample into
the new image such that they are in local agreement. Unfortunately,
these methods were designed for stochastic textures with stationary
statistics and only have knowledge of the local Markov structure.
They can have no notion, for example, that a facial image must
contain a plausible configuration of eyes, nose and mouth. Sec-
ondly, and at the opposite end of the spectrum are photo synthesis
methods. These insert entire visual objects into the image at once
for the purpose of inpainting [Hays and Efros 2007; Diakopoulos
et al. 2004] or augmenting existing images [Lalonde et al. 2007].
Such methods are suited to replacing an entire face in an image
[Bitouk et al. 2008], but are unsuited to generating novel faces.

In this paper we propose a system for generating face images
which we term “visio-lization” after the Latin visio for face. It lies
between the extremes of texture- and image-synthesis. In common
with both, we create new images by copying parts of existing im-
ages. As in texture synthesis, we build new images by considering
only small regions at any one time, which allows us to induce ran-
domness. However, we do so using a model that is non-stationary,
and has a notion of the global form of the face. In Section 2 we
describe a non-stationary, non-parametric method for generating
faces with local consistency. In Section 3 we describe a method for
generating faces that have the correct global structure but poor local
texture. In Section 4 we combine the local and global models and
synthesize realistic faces. The rest of the paper explores extensions
and applications of this technique.

2 Local Non-Parametric Model

2.1 Image Quilting

We first review the ‘image quilting’ method of Efros and Freeman
[2001]. Image quilting synthesizes a new texture given an input
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Figure 2: (A) The image quilting algorithm applied to a texture.
A library of overlapping ‘blocks’ is built from the input texture. A
new texture is synthesized from top-left to bottom-right by copying
patches from the input texture such that they match in the overlap-
ping regions. (B) Image Quilting applied to face images. The input
texture is a set of face images. The output does not resemble a face.

texture sample. The first step is to extract all possible patches of
a given size from the input texture to form a ‘patch library’. The
synthesized image will consist of a regular grid of these library
patches such that each overlaps its neighbors by a few pixels. A
new texture is synthesized starting in the top-left of this grid and
proceeding to the bottom-right. At each position, a library patch is
chosen such that it is visually consistent with the patches that have
previously been placed above and to the left. The new patches can
then be blended together using a variety of techniques.

An example of an input texture and the synthesized result using
‘image quilting’ is shown in Figure 2A. What happens if we directly
apply this method to face images? In Figure 2B we show the results
of building a patch library from a set of weakly registered frontal
face images from the XM2VTS database [Messer et al. 1999] and
synthesizing a new image. The result contains some facial parts but
fails to capture the overall structure of the face. This is unsurpris-
ing since the image quilting technique is designed for stationary
textures. However, the statistics of frontal faces are clearly not
stationary. The joint distribution of nearby pixel values depends
on the position in the image: the top of the image always contains
hair, the center contains the nose and so on.

2.2 Non-Stationary Image Quilting

We adapt the image quilting method to take account of the non-
stationary statistics of faces. We divide the training images into the
same regular grid of overlapping patches as the output image. We
now extract a separate library of patches at each location (see Figure
3A). Once more we synthesize a new image from top-left to bottom
right choosing at every position a patch that ensures visual con-
sistency with existing neighbors (Figure 3B). However, now each
patch is taken from the appropriate library for that position, giving
the resulting images the desired non-stationary statistics.

We implement this model by hand-marking 12-68 points on each
of 2000 library faces and affine warp to a standard template shape.
Each face image is divided into a regular grid of 9× 9 overlapping
RGB patches where the overlapping region is one quarter of the
patch size. At each image location we build a library of 24000
patches by choosing patches from the appropriate region of the li-
brary images under a variety of small 2D rotations and translations.

In synthesis, we choose the first patch (in the top-left of the im-
age) randomly. For subsequent patches, we find the N patches that
are most visually consistent in the overlap region. Visual consis-
tency was quantified using the sum of the square differences in the
overlap region across the three color channels. We randomly select
one of these N patches. This randomness prevents the algorithm
from exactly recreating one of the images in the library. For all
experiments in this paper N was of the order of 100 patches. Having
chosen all the patches we blend them together seamlessly using a
gradient domain method which will be discussed in Section 4.
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Figure 3: Local non parametric model for face generation. (A) Learning the model involves building a separate patch library for each
position in the image. (B) Synthesis proceeds from top-left to bottom-right. At each step, we search the library associated with the current
position for a patch that is visually consistent with the previously synthesized patches above and to the left. (C) Results from this model are
locally consistent: viewed through any small window, the image looks correct. However, they lack global consistency.

Images synthesized from this model are shown in Figure 3C. Al-
though they are an improvement over image quilting, they remain
unrealistic. Within any small window, the image looks correct.
However, the model only considers the local Markov structure of
the image and contains nothing to enforce global constraints on the
face. This deficit leads to “Frankenstein” images where the charac-
teristics of the face (e.g. race, gender, hair color) change gradually
across the image. To solve this problem we must ensure that the
later patches are consistent with the previously pasted ones even
when they are not adjacent.

3 Global Parametric Model
To resolve the remaining problems with our non-stationary image
quilting technique, we consider a second parametric model that has
complementary properties. Simple linear subspace models of faces
(e.g. [Turk and Pentland 1991]) explicitly model the covariance of
all of the pixels and hence have a good understanding of the global
structure of the image. However, they are poor at modeling local
textures. In this section we describe a linear subspace model which
we refer to as a global parametric model. In Section 4 we show how
to combine this with our non-parametric image quilting method.

The global parametric model describes face data using a factor
analyzer [Bishop 2006]. This model is similar to principal compo-
nent analysis, but is fully probabilistic. The vectorized pixel data xi
from the i’th training image is modeled as:

xi = µ + Fhi + εi. (1)

Each face xi is assumed to consist of an additive mixture of (i) a
mean µ, (ii) a per pixel noise component εi with mean zero and
diagonal covariance Σ, and (iii) a weighted linear combination of
basis faces or factors. These weights are held in the factor loading
vector h. The factors themselves occupy the columns of the factor
matrix F. The factor analyzer can alternately be written as:

Pr(xi|hi) = Gxi [µ + Fh, Σ] (2)

Pr(h) = Gh [0, I] (3)

where G [a, B] denotes a Gaussian distribution with mean a and co-
variance B. Note that the zero mean, identity covariance prior over
the factor loadings h resolves the ambiguity over the scale of F. We
learn the parameters of the model θ = {F, Σ, µ} using 40 iterations
of the expectation-maximization (EM) algorithm [Dempster et al.
1977]. We trained the factor analysis model with 1500 70 × 70
face images using 8 factors. To generate a new face we:

• randomly sample factor loadings h from the prior,

• weight the factor images by these loadings and sum,
• add the mean face component, µ.
• Note that we do not add the stochastic noise component εi.

Example generated images are shown in Figure 4. They are glob-
ally coherent (look like a single individual), but are blurry and fail
to reproduce realistic local texture. With more factors the blurriness
is reduced, but at the cost of introducing high frequency artifacts.
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Figure 4: Example results from the global model. They resemble
faces, but are blurry and contain significant artifacts. However,
unlike the model presented in Section 2 they are globally consistent.
The identity of the face does not vary with position.

4 Combining Local and Global Models

In Sections 2 and 3 we presented two models for faces with com-
plementary properties. In this section we exploit the best points of
both to generate more realistic images. We first generate an image
from the global parametric model. This creates a blurry image of
the type found in Figure 4. We then synthesize an image using the
local non-parametric model that is consistent with this target. In
probabilistic terms, we condition the local model on the result of the
global parametric model. This is similar to the texture transfer ap-
proach of Efros and Freeman [2001] and the method of Ashikhmin
[2001], who both conditioned texture synthesis on an underlying
image. However, here texture synthesis is non-stationary and the
conditioning image was stochastically generated.

In practice this conditioning is implemented as follows. As be-
fore, patches are chosen such that they are visually consistent (in
terms of squared difference) with the patches above and to the left.
However, we also require visual consistency with the results of the
global synthesis. Patch choice is now determined using a weighted
sum of these two constraints. As before, we randomly choose from
the N best matching patches. For frontal faces, we enforce sym-
metry by constraining the choice of patches horizontally opposite
each other to come from the same individual. This prevents small
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Figure 5: Combining local and global models. (A) As previously
we synthesize images from top-left to bottom right by choosing
patches that are visually consistent with those above and to the left.
We now also ensure that the patches are consistent with the target
global image (visualized here as being underneath the synthesized
image). (B) This ensures that we get a globally consistent result.
(C) After blending together patches in the gradient domain.

but noticeable asymmetries, particularly in the color and size of the
eyes. Figure 5A-B illustrates this process.

We post-process the results in two ways: first we use Poisson
image editing [Perez et al. 2003] to remove artifacts due to slight
differences in skin tone between patches. As we synthesize the
image, we store the indices of the patches used. We then create
x- and y-gradient domain images by assembling together the gra-
dients of the chosen patches. In overlap regions, we average the
gradient images. We solve a Poisson equation to find an image that
has gradients as close to the synthesized gradients as possible and
that exactly obey the boundary conditions at the edge of the image
(determined by the output of the global parametric model). The
results are shown in Figure 5C. Finally, we un-warp the image using
the inverse of a randomly chosen transformation from the training
data. In principle more complex transformation families could be
considered and this geometric warp could be jointly modeled with
the global intensity model, but in practice we find this unnecessary.

The methods described above are sufficient to synthesize frontal
images. If we train the global and local models with libraries of
profile faces, we can similarly generate novel faces in profile. How-
ever, this method cannot synthesize both frontal and profile faces
simultaneously (see Figure 6B-E). The global target face often con-
tains a linear combination of frontal and non-frontal images and the
synthesized face is correspondingly unrealistic.

Multimodal datasets of this sort fail because the global factor
analysis model assumes that the data is unimodal: consequently, if
both frontal and profile faces are assigned high probability it is in-
evitable that mixtures of the two will also be likely (see Figure 6A).
To resolve this problem, we use a multi-modal global model: we
learn a mixture of factor analyzers (MoFA) model using the EM al-
gorithm (see Ghahramani and Hinton [1997]). This model performs
an unsupervised clustering of the data into K linear subspace mod-
els with cluster weights πk and parameters {µ1...K , F1...K , Σ1...K}.
Generation from the MoFA model proceeds as follows:
• choose 1 of K factor analyzers from discrete distribution
{π1 . . . πK},

• choose factor loadings h from a normal distribution with zero
mean and identity covariance,

• weight the k’th factor images Fk by these loadings and sum,
• add a k’th mean face component µk.

To demonstrate this idea we learnt a mixture of two factor ana-
lyzers each containing 8 factors using a database consisting of both
frontal and profile faces. Results from this global model are shown
in Figure 6G-H. To synthesize realistic images, we constrain the
pasted patches to come from training images that were primarily
associated with the simulated cluster. We now have a single model
that synthesizes both profile and frontal faces (Figure 6I-J). This
clustering approach also improves results when frontal faces alone
are used and was used to generate the results in Figures 1 and 7.
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Figure 6: Synthesis of both frontal and profile faces. The orig-
inal global model describes both clusters with a single Gaussian
(A). Draws from this distribution (B-C) often lie between the two
clusters and result in poor synthesis results (D-E). Using a more
suitable clustered model (F) results in sensible global models (G-
H) and synthesized images (I-J).

4.1 Efficient Implementation

Our implementation depends on pre-computation and storage of
the sum of squared difference between all possible combinations
of patches in each overlapping region. For every possible patch
at position (x,y) we store a file containing the indices of the 5000
patches at (x+1,y) that agree most closely and the associated over-
lap errors. When we synthesize a new patch at position (x+1,y) we
simply read the file associated with the particular patch to the left.
By preparing a second set of files describing the vertical relations
between patches we can also load in a file associated with the syn-
thesized patch above at position (x+1,y-1) We intersect these two
lists to find possible candidate patches for the current position.

We compare these candidate patches to the global model. This
comparison can be made efficient by (i) pre-computing the distance
d1 from the patch to the subspace defined by the global model
and (ii) pre-computing the position of each patch within this low-
dimensional subspace. At run-time we calculate the squared dis-
tance d2 between the global image and the candidate patches within
this subspace. We calculate the total error between the global model
and the subspace using Pythagoras’ theorem.

This pre-computation takes several weeks (single CPU), but the
result is that we can synthesize new images in 1-2 seconds. When
we only replace part of an image (see Section 6), it is even faster.

5 Results
In Figure 7 we show several faces generated using our method. The
system can create a wide variety of different looking faces which
vary in age, gender, hairstyle and other factors. We can also gen-
erate images under different lighting conditions or with different
poses by training with the appropriate library. We also demonstrate
common failure modes: occasionally small errors occur where the
chosen patch does not closely agree with its predecessor. For ex-
ample, the right ear in the top row of Figure 7F is flawed, as is the
chin on the middle panel. It is possible to remove such problems
by inpainting as shown in Section 6. We also occasionally generate
unrealistic and blurry hairstyles as in the lower panel.

These problems aside, it is usually possible to synthesize real-
istic face images with this method. Informal experiments with a 2
second presentation suggest that human observers find it hard to dis-
criminate our best synthesized examples from real faces. However,
realism alone is not a sufficient evaluation criterion: the synthesized
faces also need to be novel. Figure 8A-C shows three examples of
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Figure 7: Results. (A) Synthesized men (B) Women. (C) Men are sometimes generated with facial hair and sideburns. (D) Profile images (E)
Side-lit images (F) Failure modes: Patch errors on right ear (top) and chin (middle). Unrealistic and blurry hair (bottom).

synthesized images. Further insight is provided by Figure 8D-F.
Patches are colored by the identity of the training individual they
were sampled from. All three synthesized faces are genuine hy-
brids comprising parts of many different people. Note that even
the individual facial features (mouth, eyes etc.) are not necessarily
copied in their entirety from a single individual, but are synthesized
piecemeal from several different people. We have also investigated
the closest training face (in the least squares sense) to the generated
faces. These do not resemble the generated face (Figure 8G-I). We
conclude that we are successfully generating novel images.

In Figure 9 we show that our results compare favorably to pre-
vious attempts to generate random faces. The results of Liu et al.
[2007] are relatively blurry and do not produce realistic hair tex-
tures. Their method also induces randomness using a parametric
global model. It differs from ours in that they hallucinate high-
frequency detail having learnt the relation between low- and high-
frequency image patches in a training set. The final result is a
weighted combination of the low resolution global model and the
confabulated high-frequency information. We note however that
this model was intended primarily for super-resolution, where we
would not expect our model to perform well. We also show ran-
domly generated results from FaceGen (www.facegen.com). Al-
though their results are not fully realistic, it should be noted that
these are 2D projections of 3D models so they are more flexible. We
have not shown a comparison with Blanz and Vetter [1999] as their
model does not have an explicit method for randomly generating
examples, although our results would also compare favorably.

6 Editing Real Images
Until now this paper has been concerned with generating novel
faces. The rest of the paper concerns the application of the same
model to editing existing faces. These might be real photos or facial
images synthesized using the described method.
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Figure 8: Analysis of synthesized faces. (A-C) Three examples (D-
F) Colors indicate origin of synthesized patch. Generated faces are
hybrids of many individuals. (G-I) Closest training face.

6.1 Image Inpainting

In this section we describe an approach to inpainting of faces. Here
part of the face is missing and we wish to complete the image in
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Figure 9: Comparison with other methods. (A) Our results. (B) Re-
sults of Liu et al. [2007]. (C) 2D projections of random 3D models
generated by FaceGen.

such a way that it looks natural. Our approach (Figure 10A-D) is as
follows: first we generate a ‘global target image’ from the paramet-
ric factor analysis model that is compatible with the observed part
of the face. Then we synthesize texture over the missing region that
agrees with this observed image and matches at the boundaries.

We denote the observed part of the image vector x by xo and the
missing part by xm. To generate the global target image we:

• estimate factor loadings h∗ that best describe the observed part
of the image xo,

• weight the factor images F by these loadings and sum,
• add the mean face component, µ,
• extract missing dimensions xm from the resulting global image.

In order to find the factor loadings h∗ that best describe an image
we apply Bayes’ rule:

Pr(h|x) =
Pr(x|h)Pr(h)∫
Pr(x|h)Pr(h)dh

(4)

where the terms in the numerator of the right hand side were de-
fined in Equations 2 and 3. The posterior probability Pr(h|x) can
be calculated in closed form and is Gaussian with moments:

E[h] = (FT
Σ
−1F)−1FT

Σ
−1(x− µ) (5)

Cov[h] = (FT
Σ
−1F)−1 (6)

See Bishop [2006] for details of this calculation. When part of the
image is missing we substitute only the observed dimensions of F,
Σ, µ and x into this calculation. The most likely factor loadings h∗
are at the mean of the posterior (Equation 5).

Four more examples of the inpainting procedure are shown in
Figures 10(E-H). We can also generate multiple hypotheses, by
drawing several possible values of the factor loadings h∗ from the

posterior distribution defined by Equations 5 and 6. This produces
several possible target global models, each of which induces a dif-
ferent final result. An example of this can be seen in Figure 10I.
This could be applied to helping create photofits of criminals.

This technique is related to that of Agarwala et al. [2004], who
created hybrid faces by specifying both source and destination re-
gions for pixel copying. Our method requires only that we specify
an area to be replaced. It is also related to the face swapping tech-
nique of Bitouk et al. [2008]. However, our system synthesizes
novel content rather than verbatim copying from a library face.

6.2 Interactivity

We can exploit the speed of our system to allow interactive tech-
niques. One possible use of this is to use the inpainting method
described above to repair patch errors in synthesized faces such as
those found in Figure 7F. For example, the synthesized face in Fig-
ure 11A has a flaw on the cheek. We can select this region, and
generate several new versions of the region by inpainting. We then
choose one that is visually pleasing (Figure 11B). Note that none of
the other images in this paper have been manipulated in this way:
they were all generated without user interaction.

We have also investigated making manual edits of images and
using the result as a target for our non-parametric model as shown
in Figure 11(C-E). We add a mustache to a real face using a stan-
dard paint program. We then use the modified region to guide a
non-parametric texture synthesis. The result is a realistic mustache.

6.3 Changing Facial Characteristics

Finally, we investigate editing larger scale characteristics of faces
such as expression. This requires a global model that separates
the content of the face (the identity) from the style (smiling or not
smiling). We employ an asymmetric bilinear model [Tenenbaum
and Freeman 2000] which describes the generative process as:

xi j = µ j + F jhi + εi j, (7)

where xi j represents the i’th face in the j’th style. The factor load-
ings hi are constant for an individual. The basis functions F, mean
µ and noise Σ vary depending on whether the style is normal (j=1)
or smiling (j=2). We train this model from images of 700 individ-
uals, each of which is seen in both style conditions. The parame-
ters of this model θ = {µ1, µ2, F1, F2, Σ1, Σ2} were learnt using the
method described in Prince et al. [2008].

To generate a global image in style 2, given a style 1 face x1, we:

• estimate factor loadings h∗ that best describe the image x1,
• weight the factor images F2 by these loadings and sum,
• add the mean face component, µ2.

We then use this to guide the non-parametric model which now
pastes down only patches from images seen in style 2. As in Section
6, the factor loadings can be calculated via Bayes’ rule. The most
likely loadings are the mean of the posterior distribution:

h∗ = (FT
1 Σ
−1
1 F1)−1FT

1 Σ
−1
1 (x1 − µ1) (8)

Figure 12A shows a section of an original face in style 1. This is
used to calculate factor loadings h∗. Figure 12B and C show the
predictions of these factor loadings in style 1 and 2 respectively.
Figure 12D shows the effect of applying non-parametric texture
synthesis. Further results are given in panels E-H.

7 Discussion and Conclusions
We have presented methods for synthesizing random realistic face
images. Our method generates an approximate target image which
is globally coherent and then synthesizes texture over the top with a
non-stationary image quilting model. We have shown that the same
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Figure 10: Inpainting faces. We take an original face (A) and remove the top part (B). We fill the missing part with the most likely pixel
values based on conditioning the factor model on the remaining observed image (C). We then synthesize new texture over the top to replace
the missing region (D). (E-H) More examples. (I) Generating multiple hypotheses.

model can be used to edit and inpaint existing faces. Our method is
simple and works well: the synthesized faces look very realistic.

In this paper, we have generated frontal and profile faces. How-
ever, our method can also synthesize faces at intermediate poses. It
is still necessary to preserve facial symmetry, but there is no longer
a one-to-one mapping between patches in the left- and right-hand
sides of the face. Fortunately, it is sufficient to define a subset of
patches from the left and right sides that are linked. The parts of the
face that they describe should overlap but need not correspond ex-
actly: symmetry is effectively propagated to the intervening patches
as they are forced to agree with their constrained neighbours.

Our results are not entirely without flaws. Possible improve-
ments include (i) using larger databases of faces (ii) creating more
patches with small affine transformations of the RGB colors so that
we are more likely to find appropriate matches (iii) employing more
sophisticated texture synthesis methods such as the graph cut tex-
tures method of Kwatra et al. [2003]. This would however, result in
a drastic decrease of speed.

The method as it stands has some limitations: we cannot synthe-
size Asian/African faces or faces with glasses as there are too few
examples in our database. We are also limited to poses and lighting
conditions found in our training databases. However, our methods
could be extended by (i) using a much larger set of faces and (ii)
adapting the methods of [Bitouk et al. 2008] for filtering candidate
patches and recoloring and relighting.

Our technique is closely related to work in super-resolution of
faces. For example [Dedeoglu et al. 2004] and [Liu et al. 2005] also
used patch-based representations to hallucinate realistic faces from
low resolution images. However, these methods were not designed
for synthesizing novel faces or editing real high-resolution images.
Consequently they do not have mechanisms to induce randomness,
encourage global coherence, or predict missing regions of the face.

This work opens several new avenues of research. One possibil-
ity is to synthesize multiple images that are perceived to have the
same identity. Solving this problem is related to face recognition
and would allow us to synthesize videos of faces. We might also
aim to synthesize more complex object classes. Faces are rela-
tively easy in that the constituent parts (eyes, nose etc.) are always
present. This is not the case for houses or chairs for instance.

(A) (B)

(C) (D) (E)

Figure 11: The synthesized face in (A) has a flaw on the cheek. We
can manually select this region and inpaint to generate a flawless
example (B). We edit the real face (C) in a paint program by draw-
ing on a mustache (D). We use the edit as the global target image
to give a more realistic result (E).
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Figure 12: Changing expression. (A) original region (B) approx-
imation of original with bilinear model (C) prediction of smiling
face from bilinear model (D) after synthesis. (E-H) Two real faces
adapted in which the expression has been changed.
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