
LAI ET AL.: VIDEO STITCHING FOR LINEAR CAMERA ARRAYS 1

Video Stitching for Linear Camera Arrays

Wei-Sheng Lai1,2

wlai24@ucmerced.edu

Orazio Gallo2

ogallo@nvidia.com

Jinwei Gu2

gujinwei@gmail.com

Deqing Sun2

deqing.sun@gmail.com

Ming-Hsuan Yang1

mhyang@ucmerced.edu

Jan Kautz2

jkautz@nvidia.com

1 University of California, Merced
2 NVIDIA

Abstract

Despite the long history of image and video stitching research, existing academic
and commercial solutions still produce strong artifacts. In this work, we propose a wide-
baseline video stitching algorithm for linear camera arrays that is temporally stable and
tolerant to strong parallax. Our key insight is that stitching can be cast as a problem
of learning a smooth spatial interpolation between the input videos. To solve this prob-
lem, inspired by pushbroom cameras, we introduce a fast pushbroom interpolation layer
and propose a novel pushbroom stitching network, which learns a dense flow field to
smoothly align the multiple input videos for spatial interpolation. Our approach out-
performs the state-of-the-art by a significant margin, as we show with a user study, and
has immediate applications in many areas such as virtual reality, immersive telepresence,
autonomous driving, and video surveillance.

c© 2019. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

(a) Our stitching result (b) [19] (c) [3] (d) [12] (e) Ours

Figure 1: Examples of video stitching. Inspired by pushbroom cameras, we propose a deep
pushbroom stitching network to stitch multiple wide-baseline videos of dynamic scenes into
a single panoramic video. The proposed learning-based algorithm outperforms prior work
with minimal mis-alignment artifacts (e.g., ghosting and broken objects). More video results
are presented in the supplementary material.

2 LAI ET AL.: VIDEO STITCHING FOR LINEAR CAMERA ARRAYS

1 Introduction
Due to sensor resolution and optics limitations, the field of view (FOV) of most cameras is
too narrow for applications such as autonomous driving and virtual reality. A common solu-
tion is to stitch the outputs of multiple cameras into a panoramic video, effectively extending
the FOV. When the optical centers of these cameras are nearly co-located, stitching can
be solved with a simple homography transformation. However, in many applications, such
as autonomous driving, remote video conference, and video surveillance, multiple cameras
have to be placed with wide baselines, either to increase view coverage or due to some physi-
cal constraints. In these cases, even state-of-the-art methods [12, 21] and current commercial
solutions (e.g., VideoStitch Studio [27], AutoPano Video [3], and NVIDIA VRWorks [19])
struggle to produce artifact-free videos, as shown in Figure 1.

One main challenge for video stitching with wide baselines is parallax, i.e. the appar-
ent displacement of an object in multiple input videos due to camera translation. Paral-
lax varies with object depth, which makes it impossible to properly align objects without
knowing dense 3D information. In addition, occlusions, dis-occlusions, and limited overlap
between the FOVs also cause a significant amount of stitching artifacts. To obtain better
alignment, existing image stitching algorithms perform content-aware local warping [6, 30]
or find optimal seams around objects to mitigate artifacts at the transition from one view to
the other [9, 31]. Applying these strategies to process a video frame-by-frame inevitably pro-
duces noticeable jittering or wobbling artifacts. On the other hand, algorithms that explicitly
enforce temporal consistency, such as spatio-temporal mesh warping with a large-scale opti-
mization [12], are computationally expensive. In fact, commercial video stitching software
often adopts simple seam cutting and multi-band blending [5]. These methods, however,
often cause severe artifacts, such as ghosting or misalignment, as shown in Figure 1. More-
over, seams can cause objects to be cut off or completely disappear from stitched images—a
particularly dangerous outcome for use cases such as autonomous driving.

We propose a video stitching solution for linear cameras arrays that produces a panoramic
video. We identify three desirable properties in the output video: (1) Artifacts, such as ghost-
ing, should not appear. (2) Objects may be distorted, but should not be cut off or disappear in
any frame. (3) The stitched video needs to be temporally stable. With these three desiderata
in mind, we formulate video stitching as a spatial view interpolation problem. Specifically,
we take inspiration from the pushbroom camera, which concatenates vertical image slices
that are captured while the camera translates [10]. We propose a pushbroom stitching net-
work based on deep convolutional neural networks (CNNs). Specifically, we first project the
input views onto a common cylindrical surface. We then estimate bi-directional optical flow,
with which we simulate a pushbroom camera by interpolating all the intermediate views
between the input views. Instead of generating all the intermediate views (which requires
multiple bilinear warping steps on the entire image), we develop a pushbroom interpolation
layer to generate the interpolated view in a single feed-forward pass. Figure 2 shows an
overview of the conventional video stitching pipeline and our proposed method. Our method
yields results that are visually superior to existing solutions, both academic and commercial,
as we show with an extensive user study.

2 Related Work
Image stitching. Existing image stitching methods often build on the conventional pipeline

LAI ET AL.: VIDEO STITCHING FOR LINEAR CAMERA ARRAYS 3

Feature detection Warping and alignment Seam-cutting and blending Output frameInput views

(a) Conventional video stitching pipeline [12]

Flow Estimation
Network

Output frame

Cylindrical projection

Flow Scaling &
Bilinear WarpingLeft view

Middle view

Right view

Flow Scaling &
Bilinear Warping

Pushbroom interpolation layer

(b) Proposed pushbroom stitching network

Figure 2: Algorithm overview. (a) Conventional video stitching algorithms [12] use spatio-
temporal local mesh warping and 3D graph cut to align the entire video, which are often
sensitive to scene content and computationally expensive. (b) The proposed pushbroom
stitching network adopts a pushbroom interpolation layer to gradually align the input views,
and outperforms prior work and commercial software.

of Brown and Lowe [4], which first estimates a 2D transformation (e.g., homography) for
alignment and then stitches the images by defining seams [9] and using multi-band blend-
ing [5]. However, ghosting artifacts and mis-alignment still exist, especially when input
images have large parallax. To account for parallax, several methods adopt spatially varying
local warping based on the affine [18] or projective [30] transformations. Zhang et al. [31] in-
tegrate the content-preserving warping and seam-cutting algorithms to handle parallax while
avoiding local distortions. More recent methods combine the homography and similarity
transforms [6, 16] to reduce the projective distortion (i.e., stretched shapes) or adopt a global
similarity prior [7] to preserve the global shape of the resulting stitched images.

While these methods perform well on still images, applying them to videos frame-by-
frame results in strong temporal instability. In contrast, our algorithm, also single-frame,
generates videos that are spatio-temporally coherent, because our pushbroom layer only op-
erates on the overlapping regions, while the rest is directly taken from the inputs.

Video stitching. Due to computational efficiency, it is not straightforward to enforce spatio-
temporal consistency in existing image stitching algorithms. Commercial software, e.g.,
VideoStitch Studio [27] or AutoPano Video [3], often finds a fixed transformation (with cam-
era calibration) to align all the frames, but cannot align local content well. Recent methods
integrate local warping and optical flow [21] or find a spatio-temporal content-preserving
warping [12] to stitch videos, which are computationally expensive. Lin et al. [17] stitch
videos captured from hand-held cameras based on 3D scene reconstruction, which is also
time-consuming. On the other hand, several approaches, e.g., Rich360 [15] and Google
Jump [2], create 360◦ videos from multiple videos captured on a structured rig. Recently,
NVIDIA released VRWorks [19], a toolkit to efficiently stitch videos based on depth and
motion estimation. Still, as shown in Figure 1(b), several artifacts, e.g., broken objects and
ghosting, are visible in the stitched video.

In contrast to existing video stitching methods, our algorithm learns local warping flow
fields based on a deep CNN to effectively and efficiently align the input views. The flow is
learned to optimize the quality of the stitched video in an end-to-end fashion.

Pushbroom panorama. Linear pushbroom cameras [10] are common for satellite imagery:

4 LAI ET AL.: VIDEO STITCHING FOR LINEAR CAMERA ARRAYS

while a satellite moves along its orbit, they capture multiple 1D images, which can be con-
catenated into a full image. A similar approach has also been used to capture street view
images [24]. However, when the scene is not planar, or cannot be approximated as such, they
introduce artifacts, such as stretched or compressed objects. Several methods handle this is-
sue by estimating scene depth [22], finding a cutting-seam on the space-time volume [29], or
optimizing the viewpoint for each pixel [1]. The proposed method is a software simulation
of a pushbroom camera which creates panoramas by concatenating vertical slices that are
spatially interpolated between the input views. We note that the method of Jin et al. [13] ad-
dresses a similar problem of view morphing, which aims at synthesizing intermediate views
along a circular path. However, they focus on synthesizing a single object, e.g. a person or a
car, and do not consider the background. Instead, our method synthesizes intermediate views
for the entire scene.

3 Stitching as Spatial Interpolation
Our method produces a temporally stable stitched video from wide-baseline inputs of dy-
namic scenes. While the proposed approach is suitable for a generic linear camera array
configuration, here we describe it with reference to the automotive use case. Unlike other
applications of structured camera arrays, in the automotive case, objects can come arbitrarily
close to the cameras, thus requiring the stitching algorithm to tolerate large parallax.

For the purpose of describing the method, we define the camera setup as shown in Fig-
ure 3(a), which consists of three fisheye cameras whose baseline spans the entire car’s width.
Figures 4(a)-(c) show typical images captured under this configuration, and underscore some
of the challenges we face: strong parallax, large exposure differences, as well as geometric
distortion. To minimize the appearance change between the three views and to represent the
wide FOV of the stitched frames, we first adopt a camera pose transformation to warp Ci

L and
Ci

R to the position of Co
L and Co

R, respectively. Therefore, the new origin is set at the center
camera CM . Then, we apply a cylindrical projection (by approximating the scene to be at
infinity) to warp all the views onto a common viewing cylinder, as shown in Figure 3(a).
However, even after camera calibration, exposure compensation, fisheye distortion correc-
tion, and cylindrical projection, parallax still causes significant misalignment, which results
in severe ghosting artifacts, as shown in Figure 4(d).

3.1 Formulation
In this work, we cast video stitching as a problem of spatial interpolation between the side
views and the center view. We denote the output view by O, and the input views (projected
onto the output cylinder) by IL, IM , and IR, respectively. Note that IL, IM , and IR are in the
same coordinate system and have the same resolution. We define a transition region as part
of the overlapping region between a pair of inputs (see the yellow regions in Figure 3(b)).
Within the transition region, we progressively warp K vertical slices from both images to
create a smooth transition from one camera to another. Outside the transition region, we
directly take the pixel values from the input images without modifying them.

For presentation clarity, here we focus only on IL and IM . Our goal is to generate K
intermediate frames, Î(k)L , which smoothly transition between IL and IM . We first com-
pute the bidirectional optical flows, FL→M and FM→L, and then generate warped frames
Î(k)L =W(IL,αk · FL→M) and Î(k)M =W(IM,(1−αk) · FM→L), where W(I,F) is a function

LAI ET AL.: VIDEO STITCHING FOR LINEAR CAMERA ARRAYS 5

Input Output

(a) Camera setup

0
𝑏#

𝑊/2
𝑏# +𝐾𝑠

Transition region

𝑊
𝑏*𝑏* −𝐾𝑠

Transition region
𝐼# 𝐼- 𝐼*

(b) Images on the viewing cylinder

Figure 3: Camera setup and input images. (a) The input videos are captured from three
fisheye cameras, Ci

L, CM , and Ci
R, separated by a large baseline. The output is a viewing

cylinder centered at CM . (b) The input images are first projected on the output cylinder as-
suming a constant depth. Within the transition regions, our pushbroom interpolation method
progressively warps and blends K vertical slices from the input views to create a smooth
transition. Outside the transition regions, we do not modify the content from the inputs.

(a) IL (b) IM (c) IR

(d) Images blended on the cylinder (e) Pushbroom interpolation

Figure 4: Example of input and stitched views. Simply projecting the input views IL, IM ,
and IR onto the output cylinder causes artifacts due to the parallax and scene depth variation
(d). Our pushbroom interpolation method effectively stitches the views and does not produce
ghosting artifacts (e).

𝐼"

Interpolated
view

Stitched
frame

Initial
flow 𝐹"→%

Bilinear
Warping

Bilinear
Warping

Flow
Refinement

Bilinear
Warping

Bilinear
Warping

Visibility map 𝑉

Refined
flow 𝐹"→%

Refined
flow 𝐹%→"

Initial
flow 𝐹%→"

𝐼%

Scaled
flow 𝐹"→%

Initial
warped 𝐼%

Initial
warped 𝐼"

Flow
Estimation

Refined
warped 𝐼%

Refined
warped 𝐼"

Column-
wise scaling

Column-
wise scaling

Scaled
flow 𝐹%→" Linear

Blending

×	(1 − 𝑉)

×	𝑉

Figure 5: Pushbroom interpolation layer. A straightforward implementation of the pushb-
room interpolation layer requires to generate all the intermediate flows and the intermediate
views, which is time-consuming when the number of interpolated views K is large. There-
fore, we develop a fast pushbroom interpolation layer by a column-wise scaling on optical
flows, which only requires to generate one interpolated image for any given K.

6 LAI ET AL.: VIDEO STITCHING FOR LINEAR CAMERA ARRAYS

that warps image I based on flow F , and αk = {k/K}k=1,...,K scales the flow to create the
smooth transition. We define the left stitching boundary bL as the column of the leftmost
valid pixel for IM on the output cylinder. Given the interpolation step size s, the left half of
the output view, OL, is constructed by

OL(x)=

IL(x), if 0≤ x < bL

Î(k)LM(x), if bL+(k−1)·s≤x<bL+k·s
IM(x), if bL+K·s≤x< W

2 ,

(1)

where W is the width of the output frame, and Î(k)LM is obtained by appropriately fusing Î(k)L

and Î(k)M , k=1,...,K (see Section 3.2). By construction, the output image is aligned with IL at
bL, and aligned with IM at bL +K · s. Within the transition region, the output view gradually
changes from IL to IM by taking the corresponding columns from the intermediate views.
The right half part of the output, OR, is defined similarly to OL. Figure 4(e) shows a result
of this interpolation.

We note that the finer the interpolation steps, the higher the quality of the stitched results.
We empirically set K = 100 and s = 2, i.e., 100 pushbroom columns each 2-pixel wide.

3.2 Fast Pushbroom Interpolation Layer
Synthesizing the transition regions exactly as described in the previous section is computa-
tionally expensive. For each side, it requires scaling the forward and backward optical flow
fields K times, and using them to warp the full-resolution images just as many times. For
H×W images, this results in 2×H×W ×K pixels to warp for each side. However, we only
need a slice of s = 2 pixels from each of them.

Instead of scaling each flow field in its entirety, we propose to generate a single flow field
in which entries corresponding to different slices are scaled differently. For instance, from
the flow field from IL to IM , we generate a new field

F̂L→M(x)=

0, if 0≤ x < bL

αkFL→M(x), if b(k)≤x<b(k+1)

FL→M(x), if bL+K·s≤x< W
2 ,

(2)

where b(k) = bL +(k−1) · s are the boundaries of each slice. We can then warp both images
as ÎL =W(IL, F̂L→M) and ÎM =W(IM, F̂M→L), where F̂M→L is computed with Equation 2
with (1−αk) in place of αk. Note that this approach only warps each pixel in the input
images once.

To deal with the unavoidable artifacts of optical flow estimation, we use a flow refine-
ment network to refine the scaled flows and predict a visibility map for blending. As shown
in Figure 5, the flow refinement network takes the scaled optical flows and the initial esti-
mates of the warped images, from which it generates refined flows and a visibility map V .
The visibility map can be considered as a quality measure of the flow, which prevents any
potential ghosting artifacts due to occlusions. With the refined flows, we warp the input im-
ages again to obtain ĨL and ĨM . The final interpolated image is then generated by blending
based on visibility: ĨLM =V · ĨL +(1−V) · ĨM .

Finally, the output view, OL, is constructed by replacing all the Î(k)LM in Equation 1 with
ĨLM . We generate ĨRM and constructOR by mirroring the process above. Our fast pushbroom

LAI ET AL.: VIDEO STITCHING FOR LINEAR CAMERA ARRAYS 7

interpolation layer generates the results with similar quality but is about 40× faster than the
direct implementation for an output image with a resolution of 1000×600 pixels.

3.3 Training Pushbroom Stitching Network

Training dataset. Capturing data to train our system is challenging, as one would need to use
hundreds of synchronized linear cameras. Instead, we render realistic synthetic data using the
urban driving simulator CARLA [8], which allows us to specify the location and rotation of
cameras. For the input cameras, we follow the setup of Figure 3(a). To synthesize the output
pushbroom camera, we use 100 cameras uniformly spaced between Ci

L and CM , and between
Ci

R and CM . We then use Equation 1 and replace I(k)LM with these views to render ground-truth
stitched video. We synthesize 152 such videos with different routes and weather conditions
(e.g., sunny, rainy, cloudy, etc.) for training. We provide the detailed network architectures
of the flow estimation and flow refinement networks in the supplementary material.

Training loss. To train our pushbroom interpolation network, we optimize the following
loss functions: (1) content loss, (2) perceptual loss, and (3) temporal warping loss.

The content loss is computed by LC = ∑x,y Mx,y · ‖Ox,y−Sx,y‖1, where O is the output
image, S is the ground-truth, and Mx,y is a mask indicating whether pixel x,y is valid on the
viewing cylinder. The perceptual loss is computed by LP = ∑x,y M̃x,y · ‖φx,y(O)−φx,y(S)‖1,
where φ(·) denotes the feature activation at the relu4-3 layer of the pre-trained VGG-19
network [25] and M̃ is the valid mask downscaled to the size of the corresponding features.
To improve the temporal stability, we also optimize the temporal warping loss [14] LT =

∑t ′∈Ωt ∑x,y Mx,y ·Ct⇒t ′
x,y · ‖O

(t)
x,y−Ô(t ′)

x,y ‖1, where Ωt is the set of neighboring frames at time t,
C is a confidence map, and Ô(t ′) =W(O(t ′),F t⇒t ′) is the frame warped with optical flow
F t⇒t ′ . We use PWC-Net [26] to compute the optical flow between subsequent frames. Note
that the optical flow F t⇒t ′ is only used to compute the training loss, and is not needed at
testing time. The confidence map Ct⇒t ′ = exp(−α‖S(t)− Ŝ(t ′)‖2

2) is computed from the
ground-truth frame S(t) and S(t ′), where C ∈ [0,1]. A smaller value of C indicates that the
pixel is more likely to be occluded.

The overall loss function is defined as L= λCLC +λPLP +λTLT , where λC, λP, and λT
are balancing weights set empirically. We empirically set λC = 1, λP = 0.001, and λT = 10.
For the spatial optical flow in the transition regions, we use SuperSloMo [11] initialized with
the weights provided by the authors and then fine-tuned to our use-case in our end-to-end
training. We provide more implementation details in the supplementary material.

4 Experimental Results

The output of our algorithm, while visually pleasing, does not match a physical optical sys-
tem, since the effective projection matrix changes horizontally. To numerically evaluate our
results we can use rendered data (Section 4.1). However, a pixel-level numerical compari-
son with other methods is not possible as each method effectively uses a different projection
matrix. For a fair comparison, then, we carried out an extensive user study (Section 4.2).
The video results are available in the supplementary material and our project website at
http://vllab.ucmerced.edu/wlai24/video_stitching/.

http://vllab.ucmerced.edu/wlai24/video_stitching/

8 LAI ET AL.: VIDEO STITCHING FOR LINEAR CAMERA ARRAYS

(a) Stitched frame (Lc+Lp+Lt) (b) GT (c) Baseline (d) Lc (e) Lc+Lp (f) Lc+Lp+Lt

Figure 6: Stitching on a synthetic video. After training the proposed model on the synthetic
data, our model aligns the content well and reduces ghosting artifacts.

Training loss PSNR ↑ SSIM ↑ Ewarp ↓

N.A. (baseline) 27.69 0.908 13.89 ×10−4

LC 30.72 0.925 11.72 ×10−4

LC + LP 31.04 0.926 11.63 ×10−4

LC + LP + LT 31.27 0.928 10.67 ×10−4

Table 1: Ablation study. After training the
model with the content loss LC, perceptual
loss LP, and the temporal loss LT , the im-
age quality and temporal stability are signif-
icantly improved.

Ours vs. Preference Broken Less Similar
objects ghosting results

AutoPano [3] 90.74% 85.71% 20.41% 10.20%
VRWorks [19] 97.22% 80.00% 49.52% 1.90%
STCPW [12] 98.15% 87.74% 38.68% 0%

Overall 95.37% 84.74% 36.57% 3.88%

Table 2: User study. We conduct pairwise
comparisons on 20 real videos. Our method
is preferred by 95% of users on average.

4.1 Model Analysis

To quantitatively evaluate the performance of the stitching quality, we use the CARLA sim-
ulator to render a test set using a different town map from the training data. We render 10
test videos, where each video has 300 frames.

We measure the PSNR and SSIM [28] between the stitched frames and the ground-truth
images for evaluating the image quality. In addition, we measure the temporal stability by
computing the temporal warping error Ewarp = ∑

T−1
t=1

1
|M̃(t)| ∑x,y∈M̃(t) ‖O(t)

x,y− Ô(t+1)
x,y ‖2

2, where

Ô(t+1) is the flow-warped frame O(t+1), M̃(t) is a mask indicating the non-occluded pixels,
and |M̃(t)| is the number of valid pixels in the mask. We use the occlusion detection method
by Ruder et al. [23] to estimate the mask M̃(t).

We first evaluate the baseline model, where the pushbroom interpolation layer is initial-
ized with the pre-trained SuperSloMo [11]. The baseline model provides a visually plausible
stitching result but causes object distortion and temporal flickering due to inaccurate flow
estimation. After fine-tuning the whole model, both the visual quality and temporal stability
are significantly improved. As shown in Table 1, all the loss functions, LC, LP, and LT ,
improve the PSNR and SSIM and also reduce the temporal warping error. In Figure 6, we
show an example where our full model aligns the speed sign well and avoids the ghosting
artifacts.

Figure 7(a) shows a stitched frame from the baseline model, where the pole on the right
is distorted and almost disappears. After training, the pole remains intact, Figure 7(b). We
also visualize the optical flows before and after training the model. After end-to-end training,
the flows are smoother and warp the pole as a whole, avoiding distortion.

LAI ET AL.: VIDEO STITCHING FOR LINEAR CAMERA ARRAYS 9

(a) (b) (c)

Figure 7: Visualization of the stitched frames and flows. We show the stitched frames (a),
forward flows (b), and backward flows (c) from the pushbroom interpolation layer before
(top) and after (bottom) fine-tuning the proposed model. The fine-tuned model generates
smooth flow fields to warp the input views and preserve the content (e.g., the pole on the
right) well.

(a) STCPW [12]

(b) AutoPano Video [3]

(c) NVIDIA VRWorks [19]

(d) Ours

Figure 8: Comparison with existing video stitching methods. The proposed method
achieves better alignment quality while better preserving the shape of objects and avoiding
ghosting artifacts.

10 LAI ET AL.: VIDEO STITCHING FOR LINEAR CAMERA ARRAYS

4.2 Comparisons with Existing Methods

We compare the proposed method with commercial software, AutoPanoVideo [3], and ex-
isting video stitching algorithms, STCPW [12] and NVIDIA VRWorks [19]. We show two
stitched frames from real videos in Figure 8, where the proposed approach generally achieves
better alignment quality with fewer broken objects and ghosting artifacts. More video results
are provided in the supplementary material.

As different methods use different projection models, a fair quantitative evaluation of the
different video stitching algorithms is impossible. Therefore, we conduct a human subject
study through pairwise comparisons. Specifically, we ask the participants to indicate which
stitched video presents fewer artifacts from a pair of videos. We evaluate a total of 20 real
videos and ask each participant to compare 12 pairs of videos. In each comparison, partici-
pants can watch both videos for multiple times before making a selection. In total, we collect
the results from 54 participants.

Table 2 shows that our results are preferred by about 95% of users, which demonstrates
the effectiveness of the proposed method on generating high-quality stitching results. In
addition, we ask participants to provide the reasons why they prefer the selected video from
the following options: (1) the video has fewer broken lines or objects, (2) the video has less
ghosting artifacts, and (3) the two videos are similar. Overall, our results are preferred due
to better alignment and fewer broken objects. Moreover, only 4% of users feel that our result
is comparable to the others, which indicates that users generally have a clear judgment when
comparing our method with other approaches.

4.3 Discussion and Limitations

Our method requires the cameras to be calibrated for the cylindrical projection of the inputs.
While common to many stitching methods, e.g., NVIDIA’s VRWorks [19], this requirement
can be limiting, if strict. However, our experiments reveal that moving the side cameras
inwards by up to 62.5% of the original baseline, reduces the PSNR by less than 1dB. An
outward shift is more problematic because it reduces the overlap between the views. Still,
an outward shift that is 30% of the original baseline causes less than 2dB drop in PSNR.
Fine-tuning the network by perturbing the original configuration of cameras can reduce the
error. We present detailed analysis in the supplementary material.

Our method inherits some limitations of the optical flow. For instance, thin structures
can cause a small amount of ghosting effects. We show failure cases in the supplementary
material. In practice, the proposed method performs robustly even in such cases.

5 Conclusion

In this work, we present an efficient algorithm to stitch videos with deep CNNs. We propose
to cast video stitching as a problem of spatial interpolation and we design a pushbroom
interpolation layer for this purpose. Our model effectively aligns and stitches different views
while preserving the shape of objects and avoiding ghosting artifacts. To the best of our
knowledge, ours is the first learning-based video stitching algorithm. A human subject study
demonstrates that it outperforms existing algorithms and commercial software.

LAI ET AL.: VIDEO STITCHING FOR LINEAR CAMERA ARRAYS 11

References
[1] Aseem Agarwala, Maneesh Agrawala, Michael Cohen, David Salesin, and Richard

Szeliski. Photographing long scenes with multi-viewpoint panoramas. ACM TOG,
2006. 4

[2] Robert Anderson, David Gallup, Jonathan T Barron, Janne Kontkanen, Noah Snavely,
Carlos Hernández, Sameer Agarwal, and Steven M Seitz. Jump: virtual reality video.
ACM TOG, 2016. 3

[3] AutoPano Video. http://www.kolor.com/. 1, 2, 3, 8, 9, 10

[4] Matthew Brown and David G Lowe. Automatic panoramic image stitching using in-
variant features. IJCV, 2007. 3

[5] Peter J Burt and Edward H Adelson. A multiresolution spline with application to image
mosaics. ACM TOG, 1983. 2, 3

[6] Che-Han Chang, Yoichi Sato, and Yung-Yu Chuang. Shape-preserving half-projective
warps for image stitching. In CVPR, 2014. 2, 3

[7] Yu-Sheng Chen and Yung-Yu Chuang. Natural image stitching with the global similar-
ity prior. In ECCV, 2016. 3

[8] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. In Conference on Robot Learning,
2017. 7

[9] Ashley Eden, Matthew Uyttendaele, and Richard Szeliski. Seamless image stitching of
scenes with large motions and exposure differences. In CVPR, 2006. 2, 3

[10] Rajiv Gupta and Richard I Hartley. Linear pushbroom cameras. TPAMI, 1997. 2, 3

[11] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik Learned-Miller,
and Jan Kautz. Super SloMo: High quality estimation of multiple intermediate frames
for video interpolation. In CVPR, 2018. 7, 8

[12] Wei Jiang and Jinwei Gu. Video stitching with spatial-temporal content-preserving
warping. In CVPR Workshops, 2015. 1, 2, 3, 8, 9, 10

[13] Shi Jin, Ruiynag Liu, Yu Ji, Jinwei Ye, and Jingyi Yu. Learning to dodge a bullet:
Concyclic view morphing via deep learning. In ECCV, 2018. 4

[14] Wei-Sheng Lai, Jia-Bin Huang, Oliver Wang, Eli Shechtman, Ersin Yumer, and Ming-
Hsuan Yang. Learning blind video temporal consistency. In ECCV, 2018. 7

[15] Jungjin Lee, Bumki Kim, Kyehyun Kim, Younghui Kim, and Junyong Noh. Rich360:
Optimized spherical representation from structured panoramic camera arrays. ACM
TOG, 2016. 3

[16] Chung-Ching Lin, Sharathchandra U Pankanti, Karthikeyan Natesan Ramamurthy, and
Aleksandr Y Aravkin. Adaptive as-natural-as-possible image stitching. In CVPR, 2015.
3

http://www.kolor.com/

12 LAI ET AL.: VIDEO STITCHING FOR LINEAR CAMERA ARRAYS

[17] Kaimo Lin, Shuaicheng Liu, Loong-Fah Cheong, and Bing Zeng. Seamless video
stitching from hand-held camera inputs. In EG, 2016. 3

[18] Wen-Yan Lin, Siying Liu, Yasuyuki Matsushita, Tian-Tsong Ng, and Loong-Fah
Cheong. Smoothly varying affine stitching. In CVPR, 2011. 3

[19] Nvidia VRWorks. https://developer.nvidia.com/vrworks/
vrworks-360video. 1, 2, 3, 8, 9, 10

[20] Shmuel Peleg and Joshua Herman. Panoramic mosaics with videobrush. In CVPR,
1997.

[21] Federico Perazzi, Alexander Sorkine-Hornung, Henning Zimmer, Peter Kaufmann,
Oliver Wang, S Watson, and M Gross. Panoramic video from unstructured camera
arrays. In Computer Graphics Forum, 2015. 2, 3

[22] Alex Rav-Acha, Yael Shor, and Shmuel Peleg. Mosaicing with parallax using time
warping. In CVPR Workshops, 2004. 4

[23] Manuel Ruder, Alexey Dosovitskiy, and Thomas Brox. Artistic style transfer for
videos. In German Conference on Pattern Recognition, 2016. 8

[24] Steven M Seitz and Jiwon Kim. Multiperspective imaging. IEEE Computer Graphics
and Applications, 2003. 4

[25] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In ICLR, 2015. 7

[26] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. PWC-Net: CNNs for
optical flow using pyramid, warping, and cost volume. In CVPR, 2018. 7

[27] VideoStitch Studio. https://www.orah.co/news/videostitch-studio.
2, 3

[28] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simoncelli, et al. Image quality
assessment: from error visibility to structural similarity. TIP, 2004. 8

[29] Yonatan Wexler and Denis Simakov. Space-time scene manifolds. In ICCV, 2005. 4

[30] Julio Zaragoza, Tat-Jun Chin, Michael S Brown, and David Suter. As-projective-as-
possible image stitching with moving dlt. In CVPR, 2013. 2, 3

[31] Fan Zhang and Feng Liu. Parallax-tolerant image stitching. In CVPR, 2014. 2, 3

https://developer.nvidia.com/vrworks/vrworks-360video
https://developer.nvidia.com/vrworks/vrworks-360video
https://www.orah.co/news/videostitch-studio

