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ABSTRACT

Energy-based models (EBMs) have recently been successful in representing com-
plex distributions of small images. However, sampling from them requires ex-
pensive Markov chain Monte Carlo (MCMC) iterations that mix slowly in high
dimensional pixel space. Unlike EBMs, variational autoencoders (VAEs) gener-
ate samples quickly and are equipped with a latent space that enables fast traversal
of the data manifold. However, VAEs tend to assign high probability density to re-
gions in data space outside the actual data distribution and often fail at generating
sharp images. In this paper, we propose VAEBM, a symbiotic composition of a
VAE and an EBM that offers the best of both worlds. VAEBM captures the overall
mode structure of the data distribution using a state-of-the-art VAE and it relies
on its EBM component to explicitly exclude non-data-like regions from the model
and refine the image samples. Moreover, the VAE component in VAEBM al-
lows us to speed up MCMC updates by reparameterizing them in the VAE’s latent
space. Our experimental results show that VAEBM outperforms state-of-the-art
VAEs and EBMs in generative quality on several benchmark image datasets by a
large margin. It can generate high-quality images as large as 256×256 pixels with
short MCMC chains. We also demonstrate that VAEBM provides complete mode
coverage and performs well in out-of-distribution detection.

1 INTRODUCTION

Deep generative learning is a central problem in machine learning. It has found diverse applications,
ranging from image (Brock et al., 2018; Karras et al., 2019; Razavi et al., 2019), music (Dhariwal
et al., 2020) and speech (Ping et al., 2020; Oord et al., 2016a) generation, distribution alignment
across domains (Zhu et al., 2017; Liu et al., 2017; Tzeng et al., 2017) and semi-supervised learn-
ing (Kingma et al., 2014; Izmailov et al., 2020) to 3D point cloud generation (Yang et al., 2019),
light-transport simulation (Müller et al., 2019), molecular modeling (Sanchez-Lengeling & Aspuru-
Guzik, 2018; Noé et al., 2019) and equivariant sampling in theoretical physics (Kanwar et al., 2020).

Among competing frameworks, likelihood-based models include variational autoencoders (VAEs)
(Kingma & Welling, 2014; Rezende et al., 2014), normalizing flows (Rezende & Mohamed, 2015;
Dinh et al., 2016), autoregressive models (Oord et al., 2016b), and energy-based models (EBMs)
(Lecun et al., 2006; Salakhutdinov et al., 2007). These models are trained by maximizing the data
likelihood under the model, and unlike generative adversarial networks (GANs) (Goodfellow et al.,
2014), their training is usually stable and they cover modes in data more faithfully by construction.

Among likelihood-based models, EBMs model the unnormalized data density by assigning low en-
ergy to high-probability regions in the data space (Xie et al., 2016; Du & Mordatch, 2019). EBMs
are appealing because they require almost no restrictions on network architectures (unlike normal-
izing flows) and are therefore potentially very expressive. They also exhibit better robustness and
out-of-distribution generalization (Du & Mordatch, 2019) because, during training, areas with high
probability under the model but low probability under the data distribution are penalized explicitly.
However, training and sampling EBMs usually requires MCMC, which can suffer from slow mode
mixing and is computationally expensive when neural networks represent the energy function.

∗Work done during an internship at NVIDIA
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On the other hand, VAEs are computationally more efficient for sampling than EBMs, as they do
not require running expensive MCMC steps. VAEs also do not suffer from expressivity limitations
that normalizing flows face (Dupont et al., 2019; Kong & Chaudhuri, 2020), and in fact, they have
recently shown state-of-the-art generative results among non-autoregressive likelihood-based mod-
els (Vahdat & Kautz, 2020). Moreover, VAEs naturally come with a latent embedding of data that
allows fast traverse of the data manifold by moving in the latent space and mapping the movements
to the data space. However, VAEs tend to assign high probability to regions with low density under
the data distribution. This often results in blurry or corrupted samples generated by VAEs. This also
explains why VAEs often fail at out-of-distribution detection (Nalisnick et al., 2019).

In this paper, we propose a novel generative model as a symbiotic composition of a VAE and an EBM
(VAEBM) that combines the best of both. VAEBM defines the generative distribution as the product
of a VAE generator and an EBM component defined in pixel space. Intuitively, the VAE captures the
majority of the mode structure in the data distribution. However, it may still generate samples from
low-probability regions in the data space. Thus, the energy function focuses on refining the details
and reducing the likelihood of non-data-like regions, which leads to significantly improved samples.

Moreover, we show that training VAEBM by maximizing the data likelihood easily decomposes into
training the VAE and the EBM component separately. The VAE is trained using the reparameteriza-
tion trick, while the EBM component requires sampling from the joint energy-based model during
training. We show that we can sidestep the difficulties of sampling from VAEBM, by reparametriz-
ing the MCMC updates using VAE’s latent variables. This allows MCMC chains to quickly traverse
the model distribution and it speeds up mixing. As a result, we only need to run short chains to
obtain approximate samples from the model, accelerating both training and sampling at test time.

Experimental results show that our model outperforms previous EBMs and state-of-the-art VAEs on
image generation benchmarks including CIFAR-10, CelebA 64, LSUN Church 64, and CelebA HQ
256 by a large margin, reducing the gap with GANs. We also show that our model covers the modes
in the data distribution faithfully, while having less spurious modes for out-of-distribution data. To
the best of knowledge, VAEBM is the first successful EBM applied to large images.

In summary, this paper makes the following contributions: i) We propose a new generative model us-
ing the product of a VAE generator and an EBM defined in the data space. ii) We show how training
this model can be decomposed into training the VAE first, and then training the EBM component. iii)
We show how MCMC sampling from VAEBM can be pushed to the VAE’s latent space, accelerating
sampling. iv) We demonstrate state-of-the-art image synthesis quality among likelihood-based mod-
els, confirm complete mode coverage, and show strong out-of-distribution detection performance.

2 BACKGROUND

Energy-based Models: An EBM assumes pψ(x) to be a Gibbs distribution of the form
pψ(x) = exp (−Eψ(x)) /Zψ , where Eψ(x) is the energy function with parameters ψ and Zψ =∫
x
exp (−Eψ(x)) dx is the normalization constant. There is no restriction on the particular form

of Eψ(x). Given a set of samples drawn from the data distribution pd(x), the goal of maximum
likelihood learning is to maximize the log-likelihood L(ψ) = Ex∼pd(x) [log pψ(x)], which has the
derivative (Woodford, 2006):

∂ψL(ψ) = Ex∼pd(x) [−∂ψEψ (x)] + Ex∼pψ(x) [∂ψEψ (x)] (1)

For the first expectation, the positive phase, samples are drawn from the data distribution pd(x),
and for the second expectation, the negative phase, samples are drawn from the model pψ(x) itself.
However, sampling from pψ(x) in the negative phase is itself intractable and approximate sam-
ples are usually drawn using MCMC. A commonly used MCMC algorithm is Langevin dynamics
(LD) (Neal, 1993). Given an initial sample x0, Langevin dynamics iteratively updates it as:

xt+1 = xt −
η

2
∇xEψ(xt) +

√
ηωt, ωt ∼ N (0, I), (2)

where η is the step-size.1 In practice, Eq. 2 is run for finite iterations, which yields a Markov chain
with an invariant distribution approximately close to the original target distribution.

1In principle one would require an accept/reject step to make it a rigorous MCMC algorithm, but for suffi-
ciently small stepsizes this is not necessary in practice (Neal, 1993).
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VAE Decoder Energy FunctionVAE Prior

Figure 1: Our VAEBM is composed of a VAE generator (including the prior and decoder) and an
energy function that operates on samples x generated by the VAE. The VAE component is trained
first, using the standard VAE objective; then, the energy function is trained while the generator is
fixed. Using the VAE generator, we can express the data variable x as a deterministic function of
white noise samples εεεz and εεεx. This allows us to reparameterize sampling from our VAEBM by
sampling in the joint space of εεεz and εεεx. We use this in the negative training phase (see Sec. 3.1).

Variational Autoencoders: VAEs define a generative model of the form pθ(x, z) = pθ(z)pθ(x|z),
where z is the latent variable with prior pθ(z), and pθ(x|z) is a conditional distribution that models
the likelihood of data x given z. The goal of training is to maximize the marginal log-likelihood
log pθ(x) given a set of training examples. However since the marginalization is intractable, instead,
the variational lower bound on log pθ(x) is maximized with qφ(z|x) as the approximate posterior:

log pθ(x) ≥ Ez∼qφ(z|x) [log pθ(x|z)]−DKL [qφ(z|x)‖pθ(z)] := Lvae(x, θ, φ). (3)

The state-of-the-art VAE, NVAE (Vahdat & Kautz, 2020), increases the expressivity of both prior
and approximate posterior using hierarchical latent variables (Kingma et al., 2016) where z is de-
composed into a set of disjoint groups, z = {z1, z1, . . . , zL}, and the prior pθ(z) =

∏
l pθ(zl|z<l)

and the approximate posterior qφ(z|x) =
∏
l qφ(zl|z<l,x) are defined using autoregressive distri-

butions over the groups. We refer readers to Vahdat & Kautz (2020) for more details.

3 ENERGY-BASED VARIATIONAL AUTOENCODERS

One of the main problems of VAEs is that they tend to assign high probability to regions in data space
that have low probability under the data distribution. To tackle this issue, we propose VAEBM, a
generative model constructed by the product of a VAE generator and an EBM component defined
in the data space. This formulation allows our model to capture the main mode structure of the
data distribution using the VAE. But when training the joint VAEBM, in the negative training phase
we sample from the model itself and can discover non-data-like samples, whose likelihood is then
reduced by the energy function explicitly. The energy function defined in the pixel space also shares
similarities with discriminator in GANs, which can generate crisp and detailed images.

Formally, we define the generative model in VAEBM as hψ,θ(x, z) = 1
Zψ,θ

pθ(x, z)e
−Eψ(x) where

pθ(x, z) = pθ(z)pθ(x|z) is a VAE generator and Eψ(x) is a neural network-based energy func-
tion, operating only in the x space, and Zψ,θ =

∫
pθ(x)e

−Eψ(x)dx is the normalization constant.
VAEBM is visualized in Fig. 1. Marginalizing out the latent variable z gives

hψ,θ(x) =
1

Zψ,θ

∫
pθ(x, z)e

−Eψ(x)dz =
1

Zψ,θ
pθ(x)e

−Eψ(x). (4)

Given a training dataset, the parameters of VAEBM, ψ, θ, are trained by maximizing the marginal
log-likelihood on the training data:

log hψ,θ(x) = log pθ(x)− Eψ(x)− logZψ,θ (5)
≥ Ez∼qφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)||p(z))︸ ︷︷ ︸

Lvae(x,θ,φ)

−Eψ(x)− logZψ,θ︸ ︷︷ ︸
LEBM(x,ψ,θ)

, (6)

where we replace log pθ(x) with the variational lower bound from Eq. 3. Eq. 6 forms the objective
function for training VAEBM. The first term corresponds to the VAE objective and the second term
corresponds to training the EBM component. Next, we discuss how we can optimize this objective.

3



Published as a conference paper at ICLR 2021

3.1 TRAINING

The LEBM(x, ψ, θ) term in Eq. 6 is similar to the EBM training objective except that the log partition
function depends on both ψ and θ. We show in Appendix A that logZψ,θ has the gradients
∂ψ logZψ,θ = Ex∼hψ,θ(x,z) [−∂ψEψ (x)] and ∂θ logZψ,θ = Ex∼hψ,θ(x,z) [∂θ log pθ(x)] .

The first gradient can be estimated easily by evaluating the gradient of the energy function at samples
drawn from the VAEBM model hψ,θ(x, z) using MCMC. However, the second term involves com-
puting the intractable ∂

∂θ log pθ(x). In Appendix A, we show that estimating ∂
∂θ log pθ(x) requires

sampling from the VAE’s posterior distribution, given model samples x ∼ hψ,θ(x, z). To avoid
the computational complexity of estimating this term, for example with a second round of MCMC,
we propose a two-stage algorithm for training VAEBM. In the first stage, we train the VAE model
in our VAEBM by maximizing the Lvae(x, θ, φ) term in Eq. 6. This term is identical to the VAE’s
objective, thus, the parameters θ and φ are trained using the reparameterized trick as in Sec. 2. In
the second stage, we keep the VAE model fixed and only train the EBM component. Since θ is now
fixed, we only require optimizing LEBM(x, ψ, θ) w.r.t. ψ, the parameters of the energy function. The
gradient of L(ψ) = Ex∼pd [LEBM(x, ψ, θ)] w.r.t. ψ is:

∂ψL(ψ) = Ex∼pd(x) [−∂ψEψ (x)] + Ex∼hψ,θ(x,z) [∂ψEψ (x)] , (7)
which decomposes into a positive and a negative phase, as discussed in Sec. 2.

Reparametrized sampling in the negative phase: For gradient estimation in the negative phase,
we can draw samples from the model using MCMC. Naively, we can perform ancestral sampling,
first sampling from the prior pθ(z), then running MCMC for pθ(x|z)e−Eψ(x) in x-space. This is
problematic, since pθ(x|z) is often sharp and MCMC cannot mix when the conditioning z is fixed.

In this work, we instead run the MCMC iterations in the joint space of z and x. Furthermore,
we accelerate the sampling procedure using reparametrization for both x and the latent variables
z. Recall that when sampling from the VAE, we first sample z ∼ p(z) and then x ∼ pθ(x|z).
This sampling scheme can be reparametrized by sampling from a fixed noise distribution (e.g.,
(εεεz, εεεx) ∼ pεεε = N (0, I)) and deterministic transformations Tθ such that

z = T z
θ (εεεz), x = Tx

θ (z(εεεz), εεεx) = Tx
θ (T

z
θ (εεεz), εεεx). (8)

Here, T z
θ denotes the transformation defined by the prior that transforms noise εεεz into prior samples

z and Tx
θ represents the decoder that transforms noise εεεx into samples x, given prior samples z.

We can apply the same reparameterization when sampling from hψ,θ(x, z). This corresponds to
sampling (εεεx, εεεz) from the “base distribution”:

hψ,θ (εεεx, εεεz) ∝ e−Eψ(T
x
θ (T z

θ (εεεz),εεεx))pεεε (εεεx, εεεz) , (9)
and then transforming them to x and z via Eq. 8 (see Appendix B for derivation). Note that εεεz and
εεεx have the same scale, as pεεε (εεεx, εεεz) is a standard Normal distribution, while the scales of x and z
can be very different. Thus, running MCMC sampling with this reparameterization in the (εεεx, εεεz)-
space has the benefit that we do not need to tune the sampling scheme (e.g., step size in LD) for each
variable. This is particularly helpful when z itself has multiple groups, as in our case.

The advantages of two-stage training: Besides avoiding the difficulties of estimating the full
gradient of logZψ,θ, two-stage training has additional advantages. As we discussed above, updating
ψ is computationally expensive, as each update requires an iterative MCMC procedure to draw sam-
ples from the model. The first stage of our training minimizes the distance between the VAE model
and the data distribution, and in the second stage, the EBM further reduce the mismatch between
the model and the data distribution. As the pre-trained VAE pθ(x) provides a good approximation
to pd(x) already, we expect that a relatively small number of expensive updates for training ψ is
needed. Moreover, the pre-trained VAE provides a latent space with an effectively lower dimension-
ality and a smoother distribution than the data distribution, which facilitates more efficient MCMC.

Alternative extensions: During the training of the energy function, we fix the VAE’s parameters.
In Appendix C, we discuss a possible extension to our training objective that also updates the VAE.

4 RELATED WORK

Early variants of EBMs include models whose energy is defined over both data and auxiliary latent
variables (Salakhutdinov & Hinton, 2009; Hinton, 2012), and models using only data variables (Hin-
ton, 2002; Mnih & Hinton, 2005). Their energy functions are simple and they do not scale to high
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dimensional data. Recently, it was shown that EBMs with deep neural networks as energy function
can successfully model complex data such as natural images (Du & Mordatch, 2019; Nijkamp et al.,
2019b;a). They are trained with maximum likelihood and only model the data variable. Joint EBMs
(Grathwohl et al., 2020a; Liu & Abbeel, 2020) model the joint distribution of data and labels. In
contrast, our VAEBM models the joint distribution of data and general latent variables.

Besides fundamental maximum likelihood training, other techniques to train EBMs exist, such as
minimizing F-divergence (Yu et al., 2020a) or Stein discrepancy (Grathwohl et al., 2020b), con-
trastive estimation (Gutmann & Hyvärinen, 2010; Gao et al., 2020) and denoising score matching
(Li et al., 2019). Recently, noise contrastive score networks and diffusion models have demonstrated
high quality image synthesis (Song & Ermon, 2019; 2020; Ho et al., 2020). These models are also
based on denoising score matching (DSM) (Vincent, 2011), but do not parameterize any explicit
energy function and instead directly model the vector-valued score function. We view score-based
models as alternatives to EBMs trained with maximum likelihood. Although they do not require
iterative MCMC during training, they need very long sampling chains to anneal the noise when
sampling from the model (& 1000 steps). Therefore, sample generation is extremely slow.

VAEBM is an EBM with a VAE component, and it shares similarities with work that builds con-
nections between EBMs and other generative models. Zhao et al. (2017); Che et al. (2020); Song
et al. (2020); Arbel et al. (2020) formulate EBMs with GANs, and use the discriminator to assign an
energy. Xiao et al. (2020); Nijkamp et al. (2020) use normalizing flows that transport complex data
to latent variables to facilitate MCMC sampling (Hoffman et al., 2019), and thus, their methods can
be viewed as EBMs with flow component. However, due to their topology-preserving nature, nor-
malizing flows cannot easily transport complex multimodal data, and their sample quality on images
is limited. A few previous works combine VAEs and EBMs in different ways from ours. Pang et al.
(2020) and Vahdat et al. (2018b;a; 2020) use EBMs for the prior distribution, and (Han et al., 2020;
2019) jointly learn a VAE and an EBM with independent sets of parameters by an adversarial game.

Finally, as we propose two-stage training, our work is related to post training of VAEs. Previous
work in this direction learns the latent structure of pre-trained VAEs (Dai & Wipf, 2019; Xiao et al.,
2019; Ghosh et al., 2020), and sampling from learned latent distributions improves sample quality.
These methods cannot easily be extended to VAEs with hierarchical latent variables, as it is difficult
to fit the joint distribution of multiple groups of variables. Our purpose for two-stage training is
fundamentally different: we post-train an energy function to refine the distribution in data space.

5 EXPERIMENTS

In this section, we evaluate our proposed VAEBM through comprehensive experiments. Specifically,
we benchmark sample quality in Sec. 5.1, provide detailed ablation studies on training techniques
in Sec. 5.2, and study mode coverage of our model and test for spurious modes in Sec. 5.3. We
choose NVAE (Vahdat & Kautz, 2020) as our VAE, which we pre-train, and use a simple ResNet
as energy function Eψ , similar to Du & Mordatch (2019). We draw approximate samples both for
training and testing by running short Langevin dynamics chains on the distribution in Eq. 9. Note
that in NVAE, the prior distribution is a group-wise auto-regressive Gaussian, and the conditional
pixel-wise distributions in x are also Gaussian. Therefore, the reparameterization corresponds to
shift and scale transformations. For implementation details, please refer to Appendix E.

5.1 IMAGE GENERATION

In Table 1, we quantitatively compare the sample quality of VAEBM with different generative mod-
els on (unconditional) CIFAR-10. We adopt Inception Score (IS) (Salimans et al., 2016) and FID
(Heusel et al., 2017) as quantitative metrics. Note that FID reflects the sample quality more faith-
fully, as potential problems have been reported for IS on CIFAR-10 (Barratt & Sharma, 2018).

We observe that our VAEBM outperforms previous EBMs and other explicit likelihood-based mod-
els by a large margin. Note that introducing persistent chains during training only leads to slight
improvement, while Du & Mordatch (2019) rely on persistent chains with a sample replay buffer.
This is likely due to the efficiency of sampling in latent space. Our model also produces significantly
better samples than NVAE, the VAE component of our VAEBM, implying a significant impact of
our proposed energy-based refinement. We also compare our model with state-of-the-art GANs and
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Table 1: IS and FID scores for unconditional generation on CIFAR-10.

Model IS↑ FID↓

Ours VAEBM w/o persistent chain 8.21 12.26
VAEBM w/ persistent chain 8.43 12.19

EBMs

IGEBM (Du & Mordatch, 2019) 6.02 40.58
EBM with short-run MCMC (Nijkamp et al., 2019b) 6.21 -
F-div EBM (Yu et al., 2020a) 8.61 30.86
FlowCE (Gao et al., 2020) - 37.3
FlowEBM (Nijkamp et al., 2020) - 78.12
GEBM (Arbel et al., 2020) - 23.02
Divergence Triangle (Han et al., 2020) - 30.1

Other
Likelihood
Models

Glow (Kingma & Dhariwal, 2018) 3.92 48.9
PixelCNN (Oord et al., 2016b) 4.60 65.93
NVAE (Vahdat & Kautz, 2020) 5.51 51.67
VAE with EBM prior (Pang et al., 2020) - 70.15

Score-based
Models

NCSN (Song & Ermon, 2019) 8.87 25.32
NCSN v2 (Song & Ermon, 2020) - 31.75
Multi-scale DSM (Li et al., 2019) 8.31 31.7
Denoising Diffusion (Ho et al., 2020) 9.46 3.17

GAN-based
Models

SNGAN (Miyato et al., 2018) 8.22 21.7
SNGAN+DDLS (Che et al., 2020) 9.09 15.42
SNGAN+DCD (Song et al., 2020) 9.11 16.24
BigGAN (Brock et al., 2018) 9.22 14.73
StyleGAN2 w/o ADA (Karras et al., 2020a) 8.99 9.9

Others PixelIQN (Ostrovski et al., 2018) 5.29 49.46
MoLM (Ravuri et al., 2018) 7.90 18.9

recently proposed score-based models, and we obtain comparable or better results. Thus, we largely
close the gap to GANs and score-models, while maintaining the desirable properties of models
trained with maximum likelihood, such as fast sampling and better mode coverage.

Qualitative samples generated by our model are shown in Fig. 2a and intermediate samples along
MCMC chains in Fig. 2b. We find that VAEBM generates good samples by running only a few
MCMC steps. Initializing MCMC chains from the pre-trained VAE also helps quick equilibration.

(a) (b)

Figure 2: (a) CIFAR-10 samples generated by VAEBM. (b) Visualizing MCMC sampling chains.
Samples are generated by running 16 LD steps. Chains are initialized with pre-trained VAE. We
show intermediate samples at every 2 steps. See Appendix H for additional qualitative results.

We also train VAEBM on larger images, including CelebA 64, CelebA HQ 256 (Liu et al., 2015) and
LSUN Church 64 (Yu et al., 2015). We report the FID scores for CelebA 64 and CelebA HQ 256 in
Tables 2 and 3. On CelebA 64, our model obtains results comparable with the best GANs. Although
our model obtains worse results than some advanced GANs on CelebA HQ 256, we significantly
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(a) CelebA 64 (b) LSUN Church 64

(c) CelebA HQ 256

Figure 3: Qualitative results on CelebA 64, LSUN Church 64 and CelebA HQ 256. For CelebA HQ
256, we initialize the MCMC chains with low temperature NVAE samples (t = 0.7) for better visual
quality. On this dataset samples are selected for diversity. See Appendix H for additional qualitative
results and uncurated CelebA HQ 256 samples obtained from higher temperature initializations.
Note that the FID in Table 3 is computed with full temperature samples.

Table 2: Generative performance on CelebA 64

Model FID↓
VAEBM (ours) 5.31
NVAE (Vahdat & Kautz) 14.74
Flow CE (Gao et al.) 12.21
Divergence Triangle (Han et al.) 24.7
NCSNv2 (Song & Ermon) 26.86
COCO-GAN (Lin et al.) 4.0
QA-GAN (Parimala & Channappayya) 6.42

Table 3: Generative performance on CelebA HQ
256

Model FID↓
VAEBM (ours) 20.38
NVAE (Vahdat & Kautz) 45.11
GLOW (Kingma & Dhariwal) 68.93
Advers. LAE (Pidhorskyi et al.) 19.21
PGGAN (Karras et al.) 8.03

reduce the gap between likelihood based models and GANs on this dataset. On LSUN Church 64, we
obtain FID 13.51, which significantly improves the NVAE baseline FID 41.3. We show qualitative
samples in Fig. 3. Appendix H contains additional samples and MCMC visualizations.

Our model can produce impressive samples by running very short MCMC chains, however, we find
that when we run longer MCMC chains than training chains, most chains stay around the local mode
without traversing between modes. We believe that the non-mixing is due to the long mixing time
of Langevin Dynamics Neal et al. (2011), as Nijkamp et al. (2019b;a) also observe that models
trained with short-run MCMC have non-mixing long-run chains. We conjecture that mixing can be
improved by training and sampling with more advanced MCMC techniques that are known to mix
faster, such as HMC Neal et al. (2011), and this will be left for future work.

Table 4: Comparison for IS and FID on CIFAR-
10 between several related training methods.

Model IS↑ FID↓
NVAE (Vahdat & Kautz) 5.19 55.97
EBM on x (Du & Mordatch) 5.85 48.89
EBM on x, MCMC init w/ NVAE 7.28 29.32
WGAN w/ NVAE decoder 7.41 20.39
VAEBM (ours) 8.15 12.96

Table 5: Mode coverage on StackedMNIST.

Model Modes↑ KL↓
VEEGAN (Srivastava et al.) 761.8 2.173
PacGAN (Lin et al.) 992.0 0.277
PresGAN (Dieng et al.) 999.6 0.115
InclusiveGAN (Yu et al.) 997 0.200
StyleGAN2 (Karras et al.) 940 0.424
VAEBM (ours) 1000 0.087
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5.2 ABLATION STUDIES

In Table 4, we compare VAEBM to several closely related baselines. All the experiments here are
performed on CIFAR-10, and for simplicity, we use smaller models than those used in Table 1.
Appendix F summarizes the experimental settings and Appendix G provides qualitative samples.

Data space vs. augmented space: One key difference between VAEBM and previous work such as
Du & Mordatch (2019) is that our model is defined on the augmented space (x, z), while their EBM
only involves x. Since we pre-train the VAE, one natural question is whether our strong results are
due to good initial samples x from the VAE, which are used to launch the MCMC chains. To address
this, we train an EBM purely on x as done in Du & Mordatch (2019). We also train another EBM
only on x, but we initialize the MCMC chains with samples from the pre-trained NVAE instead of
noise. As shown in line 3 of Table 4, this initialization helps the EBM which is defined only on x.
However, VAEBM in the augmented space outperforms the EBMs on x only by a large margin.

Adversarial training vs. sampling: The gradient for ψ in Eq. 7 is similar to the gradient updates
of WGAN’s discriminator (Arjovsky et al., 2017). The key difference is that we draw (approximate)
samples from hψ(x) by MCMC, while WGAN draws negative samples from a generator (Che et al.,
2020). WGAN updates the generator by playing an adversarial game, while we only update the
energy function Eψ . We compare these two methods by training ψ and θ with the WGAN objective
and initializing θ with the NVAE decoder. As shown in line 4 of Table 4, we significantly outperform
the WGAN version of our model, implying the advantage of our method over adversarial training.

5.3 TEST FOR SPURIOUS OR MISSING MODES

We evaluate mode coverage on StackedMNIST. This dataset contains images generated by randomly
choosing 3 MNIST images and stacking them along the RGB channels. Hence, the data distribution
has 1000 modes. Following Lin et al. (2018), we report the number of covered modes and the KL
divergence from the categorical distribution over 1000 categories from generated samples to true
data (Table 5). VAEBM covers all modes and achieves the lowest KL divergence even compared to
GANs that are specifically designed for this task. Hence, our model covers the modes more equally.
We also plot the histogram of likelihoods for CIFAR-10 train/test images (Fig. 6, Appendix D) and
present nearest neighbors of generated samples (Appendix I). We conclude that we do not overfit.

We evaluate spurious modes in our model by assessing its performance on out-of-distribution
(OOD) detection. Specifically, we use VAEBM trained on CIFAR-10, and estimate unnormalized
log hψ,θ(x) on in-distribution samples (from CIFAR-10 test set) and OOD samples from several
datasets. Following Nalisnick et al. (2019), we use area under the ROC curve (AUROC) as quan-
titative metric, where high AUROC indicates that the model correctly assigns low density to OOD
samples. In Table 6, we see that VAEBM has significantly higher AUROC than NVAE, justifying
our argument that the energy function reduces the likelihood of non-data-like regions. VAEBM also
performs better than IGEBM and JEM, while worse than HDGE. However, we note that JEM and
HDGE are classifier-based models, known to be better for OOD detection (Liang et al., 2018).

Table 6: Table for AUROC↑ of log p(x) computed on several OOD datasets. In-distribution dataset
is CIFAR-10. Interp. corresponds to linear interpolation between CIFAR-10 images.

SVHN Interp. CIFAR100 CelebA

Unsupervised
Training

NVAE (Vahdat & Kautz, 2020) 0.42 0.64 0.56 0.68
Glow (Kingma & Dhariwal, 2018) 0.05 0.51 0.55 0.57
IGEBM (Du & Mordatch, 2019) 0.63 0.7 0.5 0.7
Divergence Traingle (Han et al., 2020) 0.68 - - 0.56
VAEBM (ours) 0.83 0.7 0.62 0.77

Supervised
Training

JEM (Grathwohl et al., 2020a) 0.67 0.65 0.67 0.75
HDGE (Liu & Abbeel, 2020) 0.96 0.82 0.91 0.8

5.4 EXACT LIKELIHOOD ESTIMATE ON 2D TOY DATA

VAEBM is an explicit likelihood model with a parameterized density function. However, like other
energy-based models, the estimation of the exact likelihood is difficult due to the intractable partition
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function logZ. One possible way to estimate the partition function is to use Annealed Importance
Sampling (AIS) (Neal, 2001). However, using AIS to estimate logZ in high-dimensional spaces is
difficult. In fact, Du & Mordatch (2019) report that the estimation does not converge in 2 days on
CIFAR-10. Furthermore, AIS gives a stochastic lower bound on logZ, and therefore the likelihood
computed with this estimated logZ would be an upper bound for the true likelihood. This makes the
estimated likelihood hard to compare with the VAE’s likelihood estimate, which is usually a lower
bound on the true likelihood (Burda et al., 2015).

As a result, to illustrate that our model corrects the distribution learned by the VAE and improves the
test likelihood, we conduct additional experiments on a 2-D toy dataset. We use the 25-Gaussians
dataset, which is generated by a mixture of 25 two-dimensional isotropic Gaussian distributions
arranged in a grid. This dataset is also studied in Che et al. (2020). The encoder and decoder of the
VAE have 4 fully connected layers with 256 hidden units, and the dimension of the latent variables
is 20. Our energy function has 4 fully connected layers with 256 hidden units.

In the 2-D domain, the partition function logZ can be accurately estimated by a numerical inte-
gration scheme. For the VAE, we use the IWAE bound (Burda et al., 2015) with 10,000 posterior
samples to estimate its likelihood. We use 100,000 test samples from the true distribution to evaluate
the likelihood. Our VAEBM obtains the average log likelihood of -1.50 nats on test samples, which
significantly improves the VAE, whose average test likelihood is -2.97 nats. As a reference, we also
analytically compute the log likelihood of test samples under the true distribution, and the result is
-1.10 nats.

We show samples from the true distribution, VAE and VAEBM in Figure 4. We observe that the
VAEBM successfully corrects the distribution learned by the VAE and has better sample quality.

(a) Samples from the true distribution (b) Samples from VAE (c) Samples from VAEBM

Figure 4: Qualitative results on the 25-Gaussians dataset

5.5 SAMPLING EFFICIENCY

Despite their impressive sample quality, denoising score matching models (Song & Ermon, 2019; Ho
et al., 2020) are slow at sampling, often requiring & 1000 MCMC steps. Since VAEBM uses short
MCMC chains, it takes only 8.79 seconds to generate 50 CIFAR-10 samples, whereas NCSN (Song
& Ermon, 2019) takes 107.9 seconds, which is about 12× slower (see Appendix J for details).

6 CONCLUSIONS

We propose VAEBM, an energy-based generative model in which the data distribution is defined
jointly by a VAE and an energy network, the EBM component of the model. In this joint model,
the EBM and the VAE form a symbiotic relationship: the EBM component refines the initial VAE-
defined distribution, while the VAE’s latent embedding space is used to accelerate sampling from the
joint model and therefore enables efficient training of the energy function. We show that our model
can be trained effectively in two stages with a maximum likelihood objective and we can efficiently
sample it by running short Langevin dynamics chains. Experimental results demonstrate strong
generative performance on several image datasets. Future work includes further scaling up the model
to larger images, applying it to other domains, and using more advanced sampling algorithms.
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A DERIVING THE GRADIENT OF logZψ,θ

Recall that Zψ,θ =
∫
pθ(x)e

−Eψ(x)dx. For the derivative of logZψ,θ w.r.t. θ, we have:

∂

∂θ
logZψ,θ =

∂

∂θ
log

(∫
pθ(x)e

−Eψ(x)dx

)
=

1

Zψ,θ

∫
∂pθ(x)

∂θ
e−Eψ(x)dx

=
1

Zψ,θ

∫
pθ(x)e

−Eψ(x) ∂ log pθ(x)

∂θ
dx =

∫
hψ,θ(x)

∂ log pθ(x)

∂θ
dx

= Ex∼hψ,θ(x,z)

[
∂ log pθ(x)

∂θ

]
(10)

Similarly, it is easy to show that ∂
∂ψ logZψ,θ = Ex∼hψ,θ(x,z)

[
−∂Eψ(x)∂ψ

]
. Intuitively, both gradients

encourage reducing the likelihood of the samples generated by the VAEBM model. Since, hψ,θ is
an EBM, the expectation can be approximated using MCMC samples.

Note that Eq. 10 is further expanded to:

∂

∂θ
logZψ,θ = Ex∼hψ,θ(x,z)

[
Ez′∼pθ(z′|x)

[
∂ log pθ(x, z

′)

∂θ

]]
,

which can be approximated by first sampling from VAEBM using MCMC (i.e., x ∼ hψ,θ(x, z)) and
then sampling from the true posterior of the VAE (i.e., z′ ∼ pθ(z

′|x)). The gradient term can be
easily computed given the samples. Two approaches can be used to draw approximate samples from
pθ(z

′|x). i) We can replace pθ(z′|x) with the approximate posterior qφ(z′|x). However, the quality
of this estimation depends on how well qφ(z′|x) matches the true posterior on samples generated
by hψ,θ(x, z), which can be very different from the real data samples. To bring qφ(z′|x) closer
to pθ(z′|x), we can maximize the variational bound (Eq. 3) on samples generated from hψ,θ(x, z)
with respect to φ, the encoder parameters2. However, this will add additional complexity to training.
ii) Alternatively, we can use MCMC sampling to sample z′ ∼ pθ(z

′|x). To speed up MCMC, we
can initialize the z′ samples in MCMC with the original z samples that were drawn in the outer
expectation (i.e., x, z ∼ hψ,θ(x, z)). However, with this approach, the computational complexity of
the gradient estimation for the negative phase is doubled, as we now require running MCMC twice,
once for x, z ∼ hψ,θ(x, z) and again for z′ ∼ pθ(z′|x).
We can entirely avoid the additional computational complexity and the complications of estimat-
ing ∂

∂θ logZψ,θ, if we assume that the VAE is held fixed when training the EBM component of
our VAEBM. This way, we require running MCMC only to sample x ∼ hψ,θ(x, z) to compute
∂
∂ψ logZψ,θ.

B REPARAMETRIZATION FOR EBM

Suppose we draw the re-parametrization variables (εεεx, εεεz) ∼ pεεε(εεεx, εεεz). For convenience, we denote

Tθ(εεεx, εεεz) = (Tx
θ (T

z
θ (εεεz), εεεx), T

z
θ (εεεz)) = (x, z). (11)

Since Tθ is a deterministic and invertible transformation that maps (εεεx, εεεz) to (x, z), by the change
of variables formula, we can write

pθ(x, z) = pεεε(T
−1
θ (x, z))

∣∣∣det(JT−1
θ

(x, z)
)∣∣∣ , (12)

where JT−1
θ

is the Jacobian of T−1θ . Consider a Gaussian distribution as a simple example: if
z ∼ N (µz, σz) and x|z ∼ N (µx(z), σx(z)), then

z = T z
θ (εεεz) = µz + σz · εεεz, x = Tx

θ (εεεx, εεεz) = µx(z) + σx(z) · εεεx,
and

JT−1
θ

(x, z) = [σx(z)
−1, σ−1z ].

2Maximizing ELBO with respect to φ corresponds to minimizing DKL(qφ(z|x)||pθ(z|x)) while θ is fixed.
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Recall that the generative model of our EBM is

hψ,θ(x, z) =
e−Eψ(x)pθ(x, z)

Zψ,θ
. (13)

We can apply the change of variable to hψ,θ(x, z) in similar manner:

hψ,θ(εεεx, εεεz) = hψ,θ(Tθ(εεεx, εεεz)) |det (JTθ (εεεx, εεεz))| , (14)

where JTθ is the Jacobian of Tθ.

Since we have the relation

Jf−1 ◦ f = J−1f (15)

for invertible function f , we have that

hψ,θ(εεεx, εεεz) = hψ,θ(Tθ(εεεx, εεεz)) |det (JTθ (εεεz, εεεx))| (16)

=
1

Zψ,θ
e−Eψ(Tθ(εεεx,εεεz))pθ(Tθ(εεεx, εεεz)) |det (JTθ (εεεx, εεεz))| (17)

=
1

Zψ,θ
e−Eψ(Tθ(εεεx,εεεz))pεεε(T

−1
θ (x, z))

∣∣∣det(JT−1
θ

(x, z)
)∣∣∣ ∣∣∣ det (JTθ (εεεx, εεεz)) ∣∣∣ (18)

=
1

Zψ,θ
e−Eψ(Tθ(εεεx,εεεz))pεεε(T

−1
θ (x, z)) (19)

=
1

Zψ,θ
e−Eψ(Tθ(εεεx,εεεz))pεεε(εεεx, εεεz), (20)

which is the distribution in Eq. 9.

After we obtained samples (εεεx, εεεz) from the distribution in Eq. 20, we obtain (x, z) by applying the
transformation Tθ in Eq. 11.

B.1 COMPARISON OF SAMPLING IN (εεεx, εεεz)-SPACE AND IN (x, z)-SPACE

Above we show that sampling from hψ,θ(x, z) is equivalent to sampling from hψ,θ(εεεx, εεεz) and
applying the appropriate variable transformation. Here, we further analyze the connections between
sampling from these two distributions with Langevin dynamics. Since each component of x and
z can be re-parametrzied with scaling and translation of standard Gaussian noise, without loss of
generality, we assume a variable c (c can be a single latent variable in z or a single pixel in x) and
write

c = µ+ σεεε.

Suppose we sample in the εεε space with energy function f on c and step size η. The update for εεε is

εεεt+1 = εεεt −
η

2
∇εεεf +

√
ηωt, ωt ∼ N (0, I).

Now we plug εεεt+1 into the expression of c while noting that∇εεεf = σ∇cf . We obtain

ct+1 = µ+ σεεεt+1 = µ+ σ
(
εεεt −

η

2
∇εεεf +

√
ηωt

)
= µ+ σεεεt −

σ2η

2
∇cf +

√
ησ2ωt

= ct −
σ2η

2
∇cf +

√
ησ2ωt.

Therefore, we see that running Langevin dynamics in (εεεx, εεεz)-space is equivalent to running
Langevin dynamics in (x, z)-space with step size for each component of z and x adjusted by its
variance. However, considering the high dimensionality of x and z, the step size adjustment is
difficult to implement.

The analysis above only considers a variable individually. More importantly, our latent variable
z in the prior follows block-wise auto-regressive Gaussian distributions, so the variance of each
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component in zi depends on the value of z<i. We foresee that because of this dependency, using
a fixed step size per component of z will not be effective, even when it is set differently for each
component. In contrast, all the components in (εεεx, εεεz)-space have a unit variance. Hence, a universal
step size for all the variables in this space can be used.

To further provide empirical evidence that adjusting the step size for each variable is necessary, we
try sampling directly in (x, z)-space without adjusting the step size (i.e., use a universal step size for
all variables). Qualitative results are presented in Figure 5. We examine several choices for the step
size and we cannot obtain high-quality samples.

(a) Step size 8e-4 (b) Step size 8e-5

(c) Step size 8e-6

Figure 5: Qualitative samples obtained from sampling in (x, z)-space with different step sizes.

In conclusion, the re-parameterization provides an easy implementation to adjust step size for each
variable, and the adjustment is shown to be crucial to obtain good samples.

C EXTENSION TO TRAINING OBJECTIVE

In the first stage of training VAEBM, the VAE model is trained by maximizing the training data
log-likelihood which corresponds to minimizing an upper bound on DKL(pd(x)||pθ(x)) w.r.t. θ.
In the second stage, when we are training the EBM component, we use the VAE model to sample
from the joint VAEBM by running the MCMC updates in the joint space of εεεz and εεεx. Ideally, we
may want to bring pθ(x) closer to hψ,θ(x) in the second stage, because when pθ(x) = hψ,θ(x),
we will not need the expensive updates for ψ. We can bring pθ(x) closer to hψ,θ(x) by minimizing
DKL(pθ(x)||hψ,θ(x)) with respect to θ which was recently discussed in the context of an EBM-
interpretation of GANs by Che et al. (2020). To do so, we assume the target distribution hψ,θ(x) is
fixed and create a copy of θ, named θ′, and we update θ′ by the gradient:

∇θ′DKL(pθ′(x)||hψ,θ(x)) = ∇θ′Ex∼pθ′ (x) [Eψ(x)] (21)

In other words, one update step for θ′ that minimizes DKL(p
′
θ(x)||hψ,θ(x)) w.r.t. θ′ can be easily

done by drawing samples from p′θ(x) and minimizing the energy-function w.r.t. θ′. Note that this
approach is similar to the generator update in training Wasserstein GANs (Arjovsky et al., 2017).
The above KL objective will encourage pθ(x) to model dominants modes in hψ,θ(x). However, it
may cause pθ(x) to drop modes.
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C.1 DERIVATION

Our derivation largely follows Appendix A.2 of Che et al. (2020). Note that every time we update
θ, we are actually taking the gradient w.r.t θ′, which can be viewed as a copy of θ and is initialized
as θ. In particular, we should note that the θ in hψ,θ(x) is fixed. Therefore, we have

∇θ′DKL(pθ′(x)||hψ,θ(x)) = ∇θ′
∫
pθ′(x) [log pθ′(x)− log hψ,θ(x)] dx

=

∫
[∇θ′pθ′(x)] [log pθ′(x)− log hψ,θ(x)] dx

+

∫
pθ′(x) [∇θ′ log pθ′(x)−∇θ′ log hψ,θ(x)] dx︸ ︷︷ ︸

=0

(22)

=

∫
[∇θ′pθ′(x)] [log pθ′(x)− log hψ,θ(x)] dx, (23)

where the second term in Eq. 22 is 0 because the log hψ,θ(x) does not depend on θ′ and the expec-
tation of the score function is 0:∫

pθ′(x)∇θ′ log pθ′(x)dx = Ex∼pθ′ (x) [∇θ′ log pθ′(x)] = 0.

Recall that θ′ has the same value as θ before the update, so

log pθ′(x)− log hψ,θ(x) = log

[
pθ′(x)

pθ(x)e−Eψ(x)

]
+ logZψ,θ

= Eψ(x) + logZψ,θ. (24)

Plug Eq. 24 into Eq. 23, we have

∇θ′DKL(pθ′(x)||hψ,θ(x)) =
∫
∇θ′pθ′(x) [Eψ(x) + logZψ,θ] dx

= ∇θ′Ex∼pθ′ (x) [Eψ(x)] , (25)

since ∫
∇θ′pθ′(x) logZψ,θdx = ∇θ′ logZψ,θ

∫
pθ′(x)dx = ∇θ′ logZψ,θ = 0.

C.2 RESULTS

We train VAEBM with an additional loss term that updates the parameter θ to minimize
DKL(pθ(x)||hψ,θ(x)) as explained above. Our experiment uses the same initial VAE as in Sec. 5.2,
and details of the implementation are introduced in Appendix F. We obtain FID 14.0 and IS 8.05,
which is similar to the results of plain VAEBM (FID 12.96 and IS 8.15). Therefore, we conclude
that training the model by minimizingDKL(pθ(x)||hψ,θ(x)) does not improve the performance, and
updating the decoder is not necessary. This is likely because the initial VAE is pulled as closely as
possible to the data distribution already, which is also the target for the joint VAEBM hψ,θ(x).

D COMPARING LIKELIHOODS ON TRAIN AND TEST SET

In Figure 6, we plot a histogram of unnormalized log-likelihoods of 10k CIFAR-10 train set and test
set images. We see that our model assigns similar likelihoods to both train and test set images. This
indicates that VAEBM generalizes well to unseen data and covers modes in the training data well.

E IMPLEMENTATION DETAILS

In this section, we introduce the details of training and sampling from VAEBM.
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Figure 6: Histogram of unnormalized log-likelihoods on 10k CIFAR-10 train and test set images

NVAE: VAEBM uses NVAE as the pθ(x) component in the model. We train the NVAE with its
official implementation3. We largely follow the default settings, with one major difference that we
use a Gaussian decoder instead of a discrete logistic mixture decoder as in Vahdat & Kautz (2020).
The reason for this is that we can run Langevin dynamics only with continuous variables. The
number of latent variable groups for CIFAR-10, CelebA 64, LSUN Church 64 and CelebA HQ 256
are 30, 15, 15 and 20, respectively.

Table 7: Network structures for the energy function Eψ(x)

CIFAR-10
3× 3 conv2d, 128

ResBlock down 128
ResBlock 128

ResBlock down 256
ResBlock 256

ResBlock down 256
ResBlock 256

Global Sum Pooling
FC layer→ scalar

CelebA 64
3× 3 conv2d, 64

ResBlock down 64
ResBlock 64

ResBlock down 128
ResBlock 128

ResBlock down 128
ResBlock 256

ResBlock down 256
ResBlock 256

Global Sum Pooling
FC layer→ scalar

LSUN Church 64
3× 3 conv2d, 64

ResBlock down 64
ResBlock 64

ResBlock down 128
ResBlock 128
ResBlock 128

ResBlock down 128
ResBlock 256
ResBlock 256

ResBlock down 256
ResBlock 256

Global Sum Pooling
FC layer→ scalar

CelebA HQ 256
3× 3 conv2d, 64

ResBlock down 64
ResBlock 64

ResBlock down 128
ResBlock 128

ResBlock down 128
ResBlock 128

ResBlock down 256
ResBlock 256

ResBlock down 256
ResBlock 256

ResBlock down 512
ResBlock 512

Global Sum Pooling
FC layer→ scalar

Network for energy function: We largely adopt the energy network structure for CIFAR-10 in Du
& Mordatch (2019), and we increase the depth of the network for larger images. There are 2 major
differences between our energy networks and the ones used in Du & Mordatch (2019): 1. we replace
the LeakyReLU activations with Swish activations, as we found it improves training stability, and
2. we do not use spectral normalization (Miyato et al., 2018); instead, we use weight normalization
with data-dependent initialization (Salimans & Kingma, 2016). The network structure for each
dataset is presented in Table 7.

Training of energy function: We train the energy function by minimizing the negative log likeli-
hood and an additional spectral regularization loss which penalizes the spectral norm of each con-
volutional layer in Eψ . The spectral regularization loss is also used in training NVAE, as we found

3https://github.com/NVlabs/NVAE
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it helpful to regularize the sharpness of the energy network and better stabilize training. We use a
coefficient 0.2 for the spectral regularization loss.

Table 8: Important hyper-parameters for training VAEBM

Dataset Learning rate Batch size Persistent # of LD steps LD Step size
CIFAR-10 w/o persistent chain 4e−5 32 No 10 8e−5
CIFAR-10 w/ persistent chain 4e−5 32 Yes 6 6e−5
CelebA 64 5e−5 32 No 10 5e−6
LSUN Church 64 4e−5 32 Yes 10 4e−6
CelebA HQ 256 4e−5 16 Yes 6 3e−6

We summarize some key hyper-parameters we used to train VAEBM in Table 8.

On all datasets, we train VAEBM using the Adam optimizer (Kingma & Ba, 2015) and weight decay
3e−5. We use constant learning rates, shown in Table 8. Following Du & Mordatch (2019), we clip
training gradients that are more than 3 standard deviations from the 2nd-order Adam parameters.

While persistent sampling using a sample replay buffer has little effect on CIFAR-10, we found it
to be useful on large images such as CelebA HQ 256. When we do not use persistent sampling,
we always initialize the LD chains with (εεεx, εεεz), sampled from a standard Gaussian. When we use
persistent sampling in training, we keep a sample replay buffer that only stores samples of εεεz, while
εεεx is always initialized from a standard Gaussian. The size of the replay buffer is 10,000 for CIFAR-
10 and LSUN Church 64, and 8,000 for CelebA HQ 256. At every training iteration, we initialize
the MCMC chains on εεεz by drawing εεεz from the replay buffer with probability p and from standard
Gaussian with probability 1− p. For CIFAR-10 and LSUN Church 64, we linearly increase p from
0 to 0.6 in 5,000 training iterations, and for CelebA HQ 256, we linearly increase p from 0 to 0.6 in
3,000 training iterations. The settings of Langevin dynamics are presented in Table 8.

We do not explicitly set the number of training iterations. Instead, we follow Du & Mordatch
(2019) to train the energy network until we cannot generate realistic samples anymore. This happens
when the model overfits the training data and hence energies of negative samples are much larger
than energies of training data. Typically, training takes around 25,000 iterations (or 16 epochs) on
CIFAR-10, 20,000 iterations (or 3 epochs) on CelebA 64, 20,000 iterations (or 5 epochs) on LSUN
Church 64, and 9,000 iterations (or 5 epochs) on CelebA HQ 256.

Test time sampling: After training the model, we generate samples for evaluation by running
Langvin dynamics with (εεεx, εεεz) initialized from standard Gaussian, regardless of whether persis-
tent sampling is used in training or not. We run slightly longer LD chains than training to obtain the
best sample quality. In particular, our reported values are obtained from running 16 steps of LD for
CIFAR-10, 20 steps of LD for CelebA64 and LSUN Church 64, and 24 steps for CelebA HQ 256.
The step sizes are the same as training step sizes.

In CelebA HQ 256 dataset, we optionally use low temperature initialization for better visual quality.
To do this, we first draw samples from the VAE with low temperature and readjusted the BN statistics
as introduced by Vahdat & Kautz (2020), and then initialize the MCMC chain by (εεεx, εεεz) obtained
by encoding the low-temperature samples using VAE’s encoder without readjusted BN statistics.

Evaluation metrics: We use the official implementations of FID4 and IS5. We compute IS using
50k CIFAR 10 samples, and we compute FID between 50k generated samples and training images,
except for CelebA HQ 256 where we use 30k training images (the CelebA HQ dataset contains only
30k samples).

F SETTINGS FOR ABLATION STUDY

In this section, we present the details of ablation experiments in Sec. 5.2. Throughout ablation
experiments, we use a smaller NVAE with 20 groups of latent variables trained on CIFAR-10. We
use the same network architectures for the energy network as in Table 7, with potentially different

4https://github.com/bioinf-jku/TTUR
5https://github.com/openai/improved-gan/tree/master/inception_score
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normalization techniques discussed below. We spent significant efforts on improving each method
we compare against, and we report the settings that led to the best results.

WGAN initialized with NVAE decoder: We initialize the generator with the pre-trained NVAE
decoder, and the discriminator is initialized by a CIFAR-10 energy network with random weights.
We use spectral normalization and batch normalization in the discriminator as we found them neces-
sary for convergence. We update the discriminator using the Adam optimizer with constant learning
rate 5e−5, and update the generator using the Adam optimizer with initial learning rate 5e−6 and
cosine decay schedule. We train the generator and discriminator for 40k iterations, and we reach
convergence of sample quality towards the end of training.

EBM on x, w/ or w/o initializing MCMC with NVAE samples: We train two EBMs on data
space similar to Du & Mordatch (2019), where for one of them, we use the pre-trained NVAE
to initialize the MCMC chains that draw samples during training. The setting for training these
two EBMs are the same except for the initialization of MCMC. We use spectral normalization in
the energy network and energy regularization in the training objective as done in Du & Mordatch
(2019) because we found these modifications to improve performance. We train the energy function
using the Adam optimizer with constant learning rate 1e−4. We train for 100k iterations, and we
reach convergence of sample quality towards the end of training. During training, we draw samples
from the model following the MCMC settings in Du & Mordatch (2019). In particular, we use
persistent sampling and sample from the sample replay buffer with probability 0.95. We run 60
steps of Langevin dynamics to generate negative samples and we clip gradients to have individual
value magnitudes of less than 0.01. We use a step size of 10 for each step of Langevin dynamics.
For test time sampling, we generate samples by running 150 steps of LD with the same settings as
during training.

VAEBM withDKL(pθ(x)||hψ,θ(x)) loss: We use the same network structure forEψ as in VAEBM.
We find persistent sampling significantly hurts the performance in this case, possibly due to the
fact that the decoder is updated and hence the initial samples from the decoder change throughout
training. Therefore, we do not use persistent training. We train the energy function using the Adam
optimizer with constant learning rate 5e−5. We draw negative samples by running 10 steps of LD
with step size 8e−5. We update the decoder with the gradient in Eq. 21 using the Adam optimizer
with initial learning rate 5e−6 and cosine decay schedule. For test time sampling, we run 15 steps
of LD with step size 5e−6.

VAEBM: The training of VAEBM in this section largely follows the settings described in Appendix
E. We use the same energy network as for CIFAR-10, and we train using the Adam optimizer with
constant learning rate 5e−5. Again, we found that the performance of VAEBM with or without
persistent sampling is similar. We adopt persistent sampling in this section because it is faster. The
setting for the buffer is the same as in Appendix E. We run 5 steps of LD with step size 8e−5 during
training, and 15 steps of LD with the same step size in testing.

G QUALITATIVE RESULTS OF ABLATION STUDY

In Figure 7, we show qualitative samples from models corresponding to each item in Table 4, as
well as samples generated by VAEBM with additional DKL(pθ(x)||hψ,θ(x)) loss.

H ADDITIONAL QUALITATIVE RESULTS

We present additional qualitative results in this section.

Additional samples and visualizations of MCMC on CIFAR-10 are in Figures 8 and 9, respectively.

Additional samples on CelebA 64 are in Figure 10.

Additional samples on LSUN Church 64 are in Figure 11. We visualize the effect of running MCMC
by displaying sample pairs before and after MCMC in Figure 12.

Additional samples on CelebA HQ 256 generated by initializing VAE samples with temperature
0.7 are shown in Figure 13. Samples generated by initializing VAE samples with full temperature
1.0 are shown in Figure 14. We visualize the effect of running MCMC by displaying sample pairs
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(a) NVAE baseline (b) WGAN, initialized with NVAE decoder

(c) EBM on x, MCMC initialized with NVAE sam-
ples (d) VAEBM with DKL(pθ′(x)||hψ,θ(x)) loss

(e) VAEBM

Figure 7: Qualitative results of ablation study in Sec. 5.2. and Appendix C

before and after MCMC in Figure 15. Note that the samples used to visualize MCMC are generated
by initializing MCMC chains with VAE samples with full temperature 1.0.
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Figure 8: Additional CIFAR-10 samples

I NEAREST NEIGHBORS

We show nearest neighbors in the training set with generated samples on CIFAR-10 (in Figure 16
and 17) and CelebA HQ 256 (in Figure 18 and 19). We observe that the nearest neighbors are
significantly different from the samples, suggesting that our models generalize well.

J SETTINGS OF SAMPLING SPEED EXPERIMENT

We use the official implementation and checkpoints of NCSN at https://github.com/
ermongroup/ncsn. We run the experiments on a computer with a Titan RTX GPU. We use
PyTorch 1.5.0 and CUDA 10.2.
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Figure 9: Additional visualizations of MCMC chains when sampling from the model for CIFAR-10

24



Published as a conference paper at ICLR 2021

Figure 10: Additional CelebA 64 samples
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Figure 11: Additional LSUN Church 64 samples
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Figure 12: Visualizing the effect of MCMC sampling on LSUN Church 64 dataset. For each subfig-
ure, the top row contains initial samples from the VAE, and the bottom row contains corresponding
samples after MCMC. We observe that MCMC sampling fixes the corrupted initial samples and
refines the details.
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Figure 13: Additional CelebA HQ 256 samples. Initial samples from VAE for MCMC initializations
are generated with temperature 0.7. Samples are uncurated.
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Figure 14: Additional CelebA HQ 256 samples. Initial samples from VAE for MCMC initializations
are generated with full temperature 1.0. Samples are uncurated.
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Figure 15: Visualizing the effect of MCMC sampling on CelebA HQ 256 dataset. Samples are
generated by initializing MCMC with full temperature VAE samples. MCMC sampling fixes the
artifacts of VAE samples, especially on hairs.
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Figure 16: CIFAR-10 nearest neighbors in pixel distance. Generated samples are in the leftmost
column, and training set nearest neighbors are in the remaining columns.

Figure 17: CIFAR-10 nearest neighbors in Inception feature distance. Generated samples are in the
leftmost column, and training set nearest neighbors are in the remaining columns.
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Figure 18: CelebA HQ 256 nearest neighbors in pixel distance, computed on a 160 × 160 center
crop to focus more on faces rather than backgrounds. Generated samples are in the leftmost column,
and training set nearest neighbors are in the remaining columns.
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Figure 19: CelebA HQ 256 nearest neighbors in Inception feature distance, computed on a 160×160
center crop. Generated samples are in the leftmost column, and training set nearest neighbors are in
the remaining columns.
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