
Appendix

A. Architecture Search Settings

In this section, the implementation details for the search
phase are provided.

A.1. Search Space

We use the following 7 operations in our search on
CIFAR-10 and CIFAR-100:

1. skip_connect: identity connection
2. sep_conv_3x3: depthwise-separable 3x3 convolu-

tion
3. max_pool_3x3: max pooling with 3x3 kernel
4. dil_conv_3x3: dilated depthwise-separable 3x3

convolution
5. sep_conv_5x5: depthwise-separable 5x5 convolu-

tion
6. avg_pool_3x3: average pooling with 3x3 kernel
7. sep_conv_7x7: depthwise-separable 7x7 convolu-

tion
In the case of ImageNet, in order to make the search tractable,
we only use the first five operations. All operations use a
stride of 1 when part of the Normal Cell, and a stride of 2
when part of the Reduce Cell. Appropriate padding is added
to the input features to preserve the spatial dimensions. Each
convolution consists of a (ReLU-Conv-BN) block, and the
depthwise separable convolutions are always applied twice,
consistent with prior work [18, 26, 39, 43].

A.2. CIFAR-10 and CIFAR-100

The CIFAR-10 and CIFAR-100 datasets consist of 50,000
training images and 10,000 test images. During search, we
use 45,000 images from the original training set as our train-
ing set and the remaining as the validation set. The final
evaluation phase uses the original split. During architecture
search, a network is constructed by stacking 8 cells with 4
hidden nodes. Similar to DARTS [18], the cells are stacked
in the blocks of 2-2-2 Normal cells with Reduction cells in
between. The networks are trained using 4 Tesla V100 GPUs
with a batch size of 124, for 100 epochs. For the first 15
epochs, only the network parameters (www) are trained, while
the architecture parameters (���) are frozen. This pretraining
phase prevents the search from ignoring the operations that
are typically slower to train. The architecture parameters are
trained using the Adam optimizer with cosine learning rate
schedule starting from 2⇥10�3 annealed down to 3⇥10�4.
The network parameters are also trained using Adam with
cosine learning rate schedule starting from 6⇥10�4 annealed
down to 1⇥10�4. We use � = 0.5, and a Gumbel-Softmax
temperature of 0.4.

One issue with the factorized structure is that the archi-
tecture search may choose the same input and operation pair
for both incoming edges of a node due to the symmetric

expression in iiin ⌦ ooon + iii
0
n ⌦ ooo

0
n. To prevent this, we add

an architecture penalty term to our objective function us-
ing Larch(zzz) = E

h
�arch

PN
n=1 tr([iiin ⌦ ooon][iii0n ⌦ ooo

0
n]T )

i

where �arch is a trade-off parameter (�arch = 0.2). The
term inside the summation is one if the same input/op pairs
are selected by (iiin, ooon) and (iii0n, ooo

0
n).

A.3. ImageNet

We search using a 14-layer network with 16 initial chan-
nels, over 8 V100 GPUs, needing around 2 days. We use
a learning rate of 3⇥10�4 with Adam to learn the network
parameters of the mixed-op network. We train architecture
parameters with a learning rate of 1⇥10�3 using Adam. We
parallelize training over 8 GPUs without scaling the learn-
ing rate. For the first 5 epochs, we only train the network
parameters (www), and in the remaining 15 epochs, we update
both www and ���. We use � = 0.5 and �arch = 0.2, the same
as CIFAR-10, and a Gumbel-Softmax temperature of 0.4.
We use a weight decay of 3⇥10�4 on the weight parameters,
and 1⇥10�6 on the architecture parameters. 90% of the
ImageNet train set is used to train the weight parameters,
while the rest is used as the validation set for training the
architecture parameters.

B. Architecture Evaluation Settings

In this section, the implementation details for the evalua-
tion phase are provided.

B.1. CIFAR-10 and CIFAR-100

The final network is constructed by stacking a total of
20 cells. The networks are trained on a V100 GPU with a
batch size of 128 for 600 epochs. SGD with momentum 0.9
is used. The cosine learning rate schedule is used starting
from 5⇥10�2 annealed down to zero. Similar to DARTS,
the path dropout of the probability 0.2 on CIFAR-10 and 0.3
on CIFAR-100, and cutout of 16 pixels are used.

B.2. ImageNet

For data augmentation, we use the same settings as
DARTS [18]. We randomly crop training images to a size of
224⇥224 px along with a random horizontal flip, and jitter
the color. During evaluation, we use a single center crop of
size 224⇥224 px after resizing the image to 256⇥256 px.

For the final evaluation, we train a 14 layer network
for 250 epochs with an initial channel count such that the
multiply-adds of the network is <600M, as per the mobile
setting proposed by [12]. We train our networks using SGD
with momentum of 0.9, base learning rate of 0.1, weight de-
cay of 3⇥10�5, with a batch size of 128 per GPU. We train
our model for 250 epochs in line with prior work [18, 38, 39],
annealing the learning rate to 0 throughout the training using
a cosine learning rate decay. We scale training to 8 V100



GPUs using the linear scaling rule proposed in [7], with a
learning rate warmup for the first 5 epochs.

C. Best Cell Structures

Figure 7: The best performing cell discovered on ImageNet.

(a) Normal Cell

c_{k-2}

0
sep_conv_3x3

skip_connect

1sep_conv_3x3

2
sep_conv_5x5

3sep_conv_3x3

c_{k-1}

skip_connect

sep_conv_3x3

dil_conv_3x3

c_{k}

(b) Reduce Cell

c_{k-2}

0

sep_conv_5x5

1

sep_conv_5x5

2

dil_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_5x5

3
sep_conv_3x3

c_{k}

dil_conv_3x3

Figure 8: The best performing cell discovered on CIFAR-10.

(a) Normal Cell

c_{k-2}

0
sep_conv_5x5

skip_connect

1skip_connect

2
sep_conv_3x3

3dil_conv_3x3

c_{k-1}

dil_conv_3x3

dil_conv_3x3

sep_conv_3x3

c_{k}

(b) Reduce Cell

c_{k-2}
0

sep_conv_3x3

sep_conv_5x5

1

sep_conv_3x3

2

skip_connect

c_{k-1}

skip_connect

avg_pool_3x3

3avg_pool_3x3
c_{k}sep_conv_5x5

Figure 9: The best performing cell found on CIFAR-100.

(a) Normal Cell

c_{k-2}

0
sep_conv_3x3

dil_conv_3x3

1sep_conv_3x3

2
skip_connect

3sep_conv_3x3

c_{k-1}

dil_conv_3x3

sep_conv_3x3

sep_conv_5x5

c_{k}

(b) Reduce Cell

c_{k-2}

0sep_conv_7x7

sep_conv_3x3

1
sep_conv_5x5

2

dil_conv_3x3

3

dil_conv_3x3

c_{k-1}
sep_conv_3x3

sep_conv_7x7

c_{k}
sep_conv_3x3

Figure 10: The best performing randomly proposed cell on
ImageNet.

(a) Normal Cell

c_{k-2}

0
sep_conv_3x3

2
sep_conv_3x3

3skip_connect

c_{k-1} sep_conv_3x3
1

sep_conv_3x3

max_pool_3x3
skip_connect

c_{k}

sep_conv_3x3

(b) Reduce Cell

c_{k-2}

0

max_pool_3x3
1

sep_conv_3x3
3

sep_conv_3x3

c_{k-1} skip_connect

sep_conv_3x3 2

skip_connect

max_pool_3x3

c_{k}
sep_conv_3x3



D. Comparison with the Previous Work in

DARTS Space

In this section, we compare the best cells discovered by
UNAS against previously published results on CIFAR-10,
CIFAR-100 and ImageNet.

CIFAR-10: In Table 4, the best cell discovered by UNAS
is compared against the previous work that uses similar
search space. For DARTS and P-DARTS, we list the original
results reported by the authors, as well as, the best cell we dis-
covered by running the original implementation four times.
The best cell discovered by UNAS outperforms DARTS and
SANS. In comparison to P-DARTS, UNAS obtains better
than the best cell that we discovered by running the original
P-DARTS code four times with different seeds. However,
UNAS achieves a comparable result to P-DARTS’ originally
reported result on CIFAR-10. Nevertheless, as we show in
Table 2, UNAS outperforms DARTS, P-DARTS, and SNAS
in terms of the average performance. As discussed by Li and
Talwalkar [15], the average performance is a better represen-
tative metric to evaluate the performance of NAS methods,
as it is more robust against rare architecture instances that
perform well, but, are less likely to be discovered by the
method. Such architectures require many search/evaluation
runs, making NAS models expensive for practical applica-
tions, and more challenging for reproducing the results.

When we ran the original P-DARTS source code with
four different initialization seeds7, we could not find an ar-
chitecture with accuracy similar to the reported number. We
believe this is because i) P-DARTS reports the lowest error
observed during the evaluation phase while we report the
error at the end of evaluation following DARTS. Taking the
minimum of test error values, across small fluctuations to-
wards the end of training, can reduce the error rate by 0.1%,
ii) P-DARTS does not report the number of searches per-
formed to obtain the best result. We hypothesize that the
reported result is the best architecture obtained from many
searches. However, we do not intend to discount the contri-
butions made by P-DARTS. When we evaluate the original
discovered cell by P-DARTS on CIFAR-10, we can repro-
duce the same results in the evaluation phase. Nevertheless,
the contributions of UNAS are orthogonal to P-DARTS the-
sis as discussed in Sec. 1.1. UNAS proposes new gradient es-
timators that work with differentiable and non-differentiable
objective functions and it also introduces a new objective
function based on the generalization gap.

CIFAR-100: In Table 5, our best cell discovered using
UNAS is compared against previous work. We can see that
UNAS outperforms DARTS, SANS, and P-DARTS on this
dataset. Similar to CIFAR-10, when we ran P-DARTS code

7We exactly followed the hyperparameters and commands using the
search/eval code provided by the authors. We only set the initialization seed
to a number in {0, 1, 2, 3}.

four times, we could not discover a cell as performant as the
cell discovered originally on CIFAR-100.

Table 4: Results on CIFAR-10.

Architecture
Test Error Params Search Cost Search

(%) (M) (GPU Days) Method

NASNet-A [43] 2.65 3.3 2000 RL
BlockQNN [41] 3.54 39.8 96 RL
AmoebaNet-A [26] 3.12 3.1 3150 evolution
AmoebaNet-B [26] 2.55 2.8 3150 evolution
H. Evolution [17] 3.75 15.7 300 evolution
PNAS [16] 3.41 3.2 225 SMBO
ENAS [24] 2.89 4.6 0.45 RL
Random [18] 3.29 3.2 4 random

DARTS-1st [18] 3.00 3.3 1.5 grad-based
DARTS-2nd [18] 2.76 3.3 4 grad-based
SNAS [39] 2.85 2.8 1.5 grad-based
P-DARTS [39] 2.50 3.4 0.3 grad-based

Best cell discovered after running the original code 4 times
DARTS-2nd [18] 2.80 3.6 4 grad-based
P-DARTS [39] 2.75 3.5 0.3 grad-based

UNAS 2.53 3.3 4.3 grad RL

Table 5: Results on CIFAR-100.

Architecture
Test Error Params Search Cost Search

(%) (M) (GPU Days) Method

BlockQNN [41] 18.06 39.8 96 RL

P-DARTS [39] 15.92 3.6 0.3 grad-based

Best cell discovered after running the original code 4 times
DARTS-2nd [18] 20.49 1.8 4 grad-based
P-DARTS [39] 17.36 3.7 0.3 grad-based

UNAS 15.79 4.1 4.0 grad RL

ImageNet: Here, we compare UNAS on the ImageNet
dataset against previous works. We also provide a surpris-
ingly strong baseline using randomly generated architectures.
Table 6 summarizes the results.

Random Baseline: We provide a strong random baseline,
indicated by “Random Cell” in Table 6, that outperforms
most prior NAS methods. Random cells are generated by
drawing uniform random samples from factorized cell struc-
ture. We train a total of 10 networks constructed by randomly
generated Normal and Reduce cells. The best network yields
top-1 and top-5 errors of 25.55% and 8.06% respectively
(see Fig 10 for the cell structure). To the best of our knowl-
edge, we are the first to report performance of a randomly
discovered cell on ImageNet that outperforms most previous
NAS methods, although not UNAS and P-DARTS.

Direct Search on ImageNet: Searching on ImageNet
gives us the cell in Fig. 7. Our cell searched on Ima-



Table 6: Best results on ImageNet in the mobile setting (#Multi.-Adds<600M) [12].

Architecture
Val Error (%) Params ⇥+ Search Cost

Search Methodtop-1 top-5 (M) (M) (GPU Days)

MobileNetV2 [28] 25.3 – 6.9 585 – manual
ShuffleNetV2 2⇥ [19] 25.1 7.8 7.4 591 – manual

NASNet-A [43] 26.0 8.4 5.3 564 2000 RL
AmoebaNet-B [26] 26.0 8.5 5.3 555 3150 evolution
AmoebaNet-C [26] 24.3 7.6 6.4 570 3150 evolution
PNAS [16] 25.8 8.1 5.1 588 ⇠255 SMBO
DARTS [18] 26.7 8.7 4.7 574 4 grad-based
SNAS [39] 27.3 9.2 4.3 522 1.5 grad-based
P-DARTS [5] 24.4 7.4 4.9 557 0.3 grad-based

Best cell discovered after running the original code 4 times
DARTS [18] 25.2 7.7 5.12 595 4 grad-based
P-DARTS [5] 24.5 7.3 5.2 599 0.3 grad-based

Random Cell 25.55 8.06 5.37 598 ⇠250 random
UNAS 24.46 7.44 5.07 563 16 grad-based RL

geNet obtains a performance, comparable to P-DARTS and
AmoebaNet-C [26], giving a top-1 and top-5 error of 24.46%
and 7.44% resp. at a fraction of the cost (0.5%) required by
the best AmoebaNet-C [26].

E. UNAS with ProxylessNAS Search Space

In this section, we list the implementation details used for
the latency based experiments presented in Sec. 5.

E.1. Search Space

We follow ProxylessNAS [4] to construct the search space
which is based on MobileNetV2 [28]. During search we seek
operations assigned to each layer of a 21-layer network. The
operations in each layer are constructed using mobile in-
verted residual blocks [28] by varying the kernel size in
{3, 5, 7} and the expansion ratio in {3, 6} yielding 6 choices
with the addition of a skip connection (i.e., an identity oper-
ation) which enables removing layers. For the channel sizes,
we followed the ProxylessNAS-GPU architecture. For the
first 20 epochs, only the network parameters (www) are trained,
while the architecture parameters (���) are frozen. The archi-
tecture parameters are trained in 15 epochs using the Adam
optimizer with cosine learning rate schedule starting from
1⇥10�3 annealed down to 3⇥10�4. The network parame-
ters are also trained using Adam with cosine learning rate
schedule starting from 3⇥10�4 annealed down to 1⇥10�4.
Batch of 192 images on 8 V-100 GPUs are used for training.
For the latency-based search, we use the following objective
function:

Ep���(zzz)[Lgen(zzz,www)] + �latEp���(zzz)[f(Llat(zzz) � ttarget)]

where ttarget represents the target latency, f(u) = max(0, u)
penalizes the architectures that has latency higher than the
target latency.

We linearly anneal �lat from zero to 0.1 to focus the ar-
chitecture search on the classification loss initially. However,
we empirically observed that the latency loss has a low gra-
dient variance that provides a very strong training signal for
selecting low-latency operations such as skip connection. To
avoid this, Inspired by P-DARTS [5], we apply dropout to
the skip connection during search. We observe that a small
amount of dropout with probability 0.1 prevents the search
from over-selecting the skip operation.

E.2. Evaluation

After search, the operations in each layer with the highest
probability values are chosen for the final network. The
training in the evaluation phase is based on the Proxyless-
NAS evaluation. Batches of 512 images on 8 V-100 GPUs
are used for training in 300 epochs. We train our networks
using SGD with momentum of 0.9, base learning rate of 0.2,
linear learning-rate warmup in 5 epoch, and weight decay of
5⇥10�5. The learning rate is annealed to 0 throughout the
training using a cosine learning rate decay.


