
UNAS: Differentiable Architecture Search Meets Reinforcement Learning

Arash Vahdat, Arun Mallya, Ming-Yu Liu, Jan Kautz
NVIDIA

{avahdat, amallya, mingyul, jkautz}@nvidia.com

Abstract

Neural architecture search (NAS) aims to discover net-
work architectures with desired properties such as high ac-
curacy or low latency. Recently, differentiable NAS (DNAS)
has demonstrated promising results while maintaining a
search cost orders of magnitude lower than reinforcement
learning (RL) based NAS. However, DNAS models can only
optimize differentiable loss functions in search, and they
require an accurate differentiable approximation of non-
differentiable criteria. In this work, we present UNAS, a
unified framework for NAS, that encapsulates recent DNAS
and RL-based approaches under one framework. Our frame-
work brings the best of both worlds, and it enables us to
search for architectures with both differentiable and non-
differentiable criteria in one unified framework while main-
taining a low search cost. Further, we introduce a new
objective function for search based on the generalization
gap that prevents the selection of architectures prone to over-
fitting. We present extensive experiments on the CIFAR-10,
CIFAR-100 and ImageNet datasets and we perform search
in two fundamentally different search spaces. We show that
UNAS obtains the state-of-the-art average accuracy on all
three datasets when compared to the architectures searched
in the DARTS [18] space. Moreover, we show that UNAS
can find an efficient and accurate architecture in the Prox-
ylessNAS [28] search space, that outperforms existing Mo-
bileNetV2 [28] based architectures. The source code is avail-
able at https://github.com/NVlabs/unas.

1. Introduction

Since the success of deep learning, designing neural net-
work architectures with desirable performance criteria (e.g.
high accuracy, low latency, etc.) for a given task has been
a challenging problem. Some call it alchemy and some
refer to it as intuition, but the task of discovering a novel
architecture often involves a tedious and costly process of
trial-and-error for searching in an exponentially large space
of hyper-parameters. The goal of neural architecture search
(NAS) [6] is to find novel networks for new problem domains

and criteria automatically and efficiently.
Early work on NAS used reinforcement learning [1, 3, 24,

42, 43], or evolutionary algorithms [17, 27, 26, 37] to obtain
state-of-the-art performance on a variety of tasks. Although,
these methods are generic and can search for architecture
with a broad range of criteria, they are often computationally
demanding. For example, the RL-based approach [43], and
evolutionary method [26] each requires over 2000 GPU days.

Recently, several differentiable neural architecture search
(DNAS) frameworks [18, 39, 36, 4] have shown promising
results while reducing the search cost to a few GPU days.
However, these approaches assume that the objective func-
tion is differentiable with respect to the architecture parame-
ters and cannot directly optimize non-differentiable criteria
like network latency, power consumption, memory usage,
etc. To tackle this problem, DNAS methods [36, 4, 40] ap-
proximate network latency using differentiable functions.
However, these approximations may fail when the under-
lying criteria cannot be accurately modeled. For example,
if compiler optimizations are used, methods such as layer
fusion, mixed-precision inference, and kernel auto-tuning
can dramatically change latency, making it challenging to
approximate it accurately. In addition to the loss approxi-
mation, DNAS relies on the continuous approximation of
discrete variables in search, introducing additional mismatch
in network performance between discovered architecture and
the corresponding continuous relaxations.

In this paper, we introduce UNAS, a unified framework
for NAS that bridges the gap between DNAS and RL-based
architecture search. (i) UNAS offers the best of both worlds
and enables us to search for architectures using both differ-
entiable objective functions (e.g., cross-entropy loss) and
non-differentiable functions (e.g., network latency). UNAS
keeps the search time low similar to other DNAS models,
but it also eliminates the need for accurate approximation
of non-differentiable criteria. (ii) UNAS training does not
introduce any additional biases due to the continuous relax-
ation of architecture parameters. We show that the gradient
estimation in UNAS is equal to the estimations obtained
by RL-based frameworks that operate on discrete variables.
Finally, (iii) UNAS proposes a new objective function based

1

https://github.com/NVlabs/unas

on the generalization gap which is empirically shown to find
architectures less prone to overfitting.

We perform extensive experiments in both DARTS [18]
and ProxylessNAS [4] search spaces. We show that UNAS
achieves the state-of-the-art average performance on all three
datasets in comparison to the recent gradient-based NAS
models in the DARTS space. Moreover, UNAS can find
architectures that are faster and more accurate than architec-
tures, searched in the ProxylessNAS space.

1.1. Related Work

Zoph and Le [42] introduced the paradigm of NAS, where
a controller recurrent neural network (RNN) was trained to
output the specification of a network (filter sizes, number
of channels, etc.). The controller was trained using RE-
INFORCE [35] to maximize the expected accuracy of the
output network on the target validation set, after training on
the target task. Requiring the method to specify every layer
of the network made it challenging to deepen or transfer
an obtained network to other tasks. Based on the observa-
tion that popular manually-designed convolutional neural
networks (CNNs) such as ResNet [10] or Inception [30] con-
tained repeated generic blocks with the same structure, Zoph
et al. [43] trained the RNN to output stackable ‘cells’. The
task of NAS was thus reduced to learning two types of cells,
the Normal Cell - convolutional cells that preserve the spatial
dimensions, and the Reduce Cell - convolutional cells that
reduce spatial dimensions while increasing feature maps.

Recently, DARTS [18] relaxed the architecture search
space to be continuous by using a weighted mixture-of-
operations and optimized the candidate architecture through
gradient descent. Using weight-sharing [2, 24], they brought
search down to a few GPU days. As the final architecture
is required to be discrete, DARTS only retained the top two
operations based on the weight assigned to each operation.
Building upon DARTS, SNAS [39] used weights sampled
from a trainable Gumbel-Softmax distribution instead of
continuous weights. Both DARTS and SNAS assume that
the objective function for search is differentiable. We ex-
tend these frameworks by introducing unbiased gradient
estimators that can work for both differentiable and non-
differentiable objective functions.

Recent works [4, 36, 40, 11, 31] consider latency in ar-
chitectures search. ProxylessNAS [4], FBNet [36] and Ne-
tAdapt [40] convert the non-differentiable latency objective
to a differentiable function by learning an accurate latency
approximation. However, these approximations may fail
when latency cannot be predicted by a trainable function.
MnasNet [31] does not require a differentiable approxima-
tion of the latency as it relies on an RL-objective, how-
ever, it requires ⇠300 TPU-days for each architecture search.
Our framework bridges the gap between differentiable and
RL-based NAS; it can search with differentiable and non-

DARTS [18
]

SNAS [39
]

P-D
ARTS [16

]

Prox
yle

ssN
AS [4]

FBNet
[36

]

Mna
sN

et
[31

]

UNAS (ou
rs)

Differentiable loss 3 3 3 3 3 3 3
Non-differentiable loss 7 7 7 7 7 3 3
Latency optimization 7 7 7 3 3 3 3
Low search cost 3 3 3 3 3 7 3

Table 1: Comparison with differentiable NAS methods.

differentiable functions and it does not require an accurate
approximation of non-differentiable terms in the objective.
Our work is compared against previous works in Table. 1.

Recently, P-DARTS [5] proposes a progressive version
of DARTS and shows that by gradually increasing the depth
of the network during the search, deeper cells can be discov-
ered. UNAS explores an orthogonal direction to P-DARTS
and it proposes generic gradient estimators that work with
both differentiable and non-differentiable losses and new
generalization-based search objective functions.

2. Background

In differentiable architecture search (DARTS) [18], a
network is represented by a directed acyclic graph, where
each node in the graph denotes a hidden representation
(e.g., feature maps in CNNs) and each directed edge rep-
resents an operation transforming the state of the input
node. The nth node xn is connected to its predecessors
(i.e., Pn) and its content is computed by applying a set
of operations to the predeceasing nodes, represented by
xn =

P
xm2Pn

Om,n(xm), where Om,n is the operation
applied to xm. The goal of architecture search is then
to find the operation Om,n for each edge (m, n). Repre-
senting the set of all possible operations that can be ap-
plied to the edge e := (m, n) using {O

(1)
e , O

(2)
e , . . . , O

(K)
e }

where K is the number of operations, this discrete as-
signment problem can be formulated as a mixed opera-
tion denoted by Oe(xm) =

PK
k=1 z

(k)
e O

(k)
e (xm), where

zzze = [z(1)e , z
(2)
e , . . . , z

(K)
e] is a one-hot binary vector (i.e.,

z
(k)
e 2 {0, 1}) with a single one indicating the selected oper-

ation. Typically, it is assumed that the set of operations also
includes a zero operation that enables omitting edges in the
network, and thus, learning the connectivity as well.

We can construct a network architecture given the set of
all operation assignments for all edges denoted by zzz = {zzze}.
Therefore, the objective of the architecture search is to find
a distribution over architecture parameters, zzz such that it
minimizes the expected loss Ep���(zzz)[L(zzz)] where p��� is a ���-
parameterized distribution over zzz and L(zzz) is a loss function
measuring the performance of the architecture specified by
zzz using a performance measure such as classification loss.

op0 op1 op2 op3

zzz ⇠ p(zzz)

(a) categorical sample

op0 op1 op2 op3

⇣⇣⇣ ⇠ r(⇣⇣⇣|zzz)

(b) smoothed sample

Figure 1: (a) Operation selection corresponds to sampling
from a categorical distribution that selects an operation. (b)
Sampling from the conditional Gumbel-Softmax distribution
r(⇣⇣⇣|zzz) acts as a smoothing distribution that yields continuous
samples (⇣⇣⇣), correlated with the discrete samples (zzz).

We assume that the architecture distribution is a facto-
rial distribution with the form p���(zzz) =

Q
e p���e

(zzze) where
p���e

(zzze) is a ���e-parameterized categorical distribution de-
fined over the one-hot vector zzze. Recently, SNAS [39] pro-
posed using the Gumbel-Softmax relaxation [20, 14] for
optimizing the expected loss. In this case, the categorical
distribution p���(zzz) is replaced with a Gumbel-Softmax dis-
tribution p���(⇣⇣⇣) where ⇣⇣⇣ denotes the continuous relaxation
of the architecture parameter zzz. SNAS assumes that the
loss L(zzz) is differentiable with respect to zzz and it uses the
reparameterization trick to minimize the expectation of the
relaxed loss Ep���(⇣⇣⇣)[L(⇣⇣⇣)] instead of Ep���(zzz)[L(zzz)].

3. Method

As discussed above, the problem of NAS can be for-
mulated as optimizing the expected loss Ep���(zzz)[L(zzz)]. In
this section, we present our framework in two parts. In
Sec. 3.1, we start by presenting a general framework for
computing @

@���Ep���(zzz)[L(zzz)] which is required for optimizing
the expected loss. Then, we present our formulation of the
loss function L(zzz) in Sec. 3.2.

3.1. Gradient Estimation

The most generic approach for optimizing the expected
loss is the REINFORCE gradient estimator

@

@���
Ep���(zzz)[L(zzz)] = Ep���(zzz) [L(zzz)@��� log p���(zzz)] , (1)

where @ log p���(zzz) is known as the score function and L(zzz)
is a loss function. As we can see, the gradient estimator in
Eq. 1 only requires computing the loss function L(zzz) (not the
gradient @zzzL(zzz)), so it can be applied to any differentiable
and non-differentiable loss function. However, this estimator
is known to suffer from high variance and therefore a large
number of trained architecture samples are required to reduce
its variance, making it extremely compute intensive. The

REINFORCE estimator in Eq. 1 can be also rewritten as

@

@���
Ep���(zzz)[L(zzz)] = Ep���(zzz)[(L(zzz) � c(zzz)) @��� log p���(zzz)]+

@���Ep���(zzz)[c(zzz)], (2)

where c(zzz) is a control variate [22]. The gradient estima-
tor in Eq. 2 has lower variance than Eq. 1, if c(zzz) is cor-
related with L(zzz), and @���Ep���(zzz)[c(zzz)] has a low-variance
gradient estimator [21, 23, 25].1 Without loss of general-
ity, we assume that the loss function is decomposed into
L(zzz)=Ld(zzz)+Ln(zzz) where Ld(zzz) contains the terms that
are differentiable with respect to zzz and Ln(zzz) includes the
non-differentiable terms. We present a baseline function
c(zzz) = cd(zzz)+cn(zzz), where cd(zzz) and cn(zzz) are for Ld(zzz)
and Ln(zzz) respectively. Intuitively, the baseline is designed
such that the term @���Ep���(zzz)[c(zzz)] in Eq. 2 is approximated
using the low-variance reparameterization trick.

Gradient Estimation for Differentiable Loss Ld: Fol-
lowing REBAR [33], in order to construct cd(zzz), a con-
trol variate for Ld, we use stochastic continuous relax-
ation r���(⇣⇣⇣|zzz) that samples from a conditional Gumbel-
Softmax distribution given the architecture sample zzz. Here,
⇣⇣⇣ can be considered as a smooth architecture defined based
on zzz as shown in Fig. 1. Hence, it is highly correlated
with zzz (see REBAR [33] for details). With the definition
cd(zzz) := Er���(⇣⇣⇣|zzz)[Ld(⇣⇣⇣)], the gradient in Eq. 2 can be writ-
ten as

@

@���
Ep���(zzz)[Ld(zzz)] = Ep���(zzz)

⇥
(Ld(zzz)� cd(zzz)) @���log p���(zzz)

⇤

| {z }
(i) reinforce

� Ep���(zzz)

⇥
@���cd(zzz)

⇤

| {z }
(ii) correction

+ @���Ep���(zzz)[cd(zzz)]
| {z }
(iii) Gumbel-Softmax

. (3)

The gradient estimator in Eq. 3 consists of three terms: (i)
is the reinforce term, which is estimated using the Monte
Carlo method by sampling zzz ⇠ p���(zzz) and ⇣⇣⇣ ⇠ r���(⇣⇣⇣|zzz). (ii)
is the correction term due to the dependency of cd(zzz) on ���.
This term is approximated using the reparameterization trick
applied to the conditional Gumbel-Softmax r���(⇣⇣⇣|zzz). (iii) is
the Gumbel-Softmax term that can be written as

Ep���(zzz)[cd(zzz)] = Ep���(zzz)

h
Er���(⇣⇣⇣|zzz)[Ld(⇣⇣⇣)]

i
= Ep���(⇣⇣⇣)[Ld(⇣⇣⇣)], (4)

which is the expected value of loss evaluated under the
Gumbel-Softmax distribution p���(⇣⇣⇣). Thus, its gradient can
be computed also using the low-variance reparameterization
trick. In practice, we only need two function evaluations for
estimating the gradient in Eq. 3, one for computing Ld(zzz),
and one for Ld(⇣⇣⇣). The gradients are computed using an
automatic differentiation library.

1The low variance of Eq. 2 comes from fact that Var(X � Y) =
Var(X)+Var(Y)� 2Cov(X,Y) for any random variable X and Y . If X
and Y are highly correlated the negative contribution from �2Cov(X,Y)
reduces the overall variance of X � Y .

Eq. 3 unifies the differentiable architecture search with
policy gradient-based NAS methods [42, 39, 31]. This es-
timator does not introduce any bias due to the continuous
relaxation, as in expectation the gradient is equal to the
REINFORCE estimator that operates on discrete variables.
Moreover, this estimator uses the Gumbel-Softmax estima-
tion of the differentiable loss for reducing the variance of
the estimate. Under this framework, it is easy to see that
SNAS [39] is a biased estimation of the policy gradient as
it only uses (iii) for search, ignoring other terms. On the
other hand, policy gradient-based NAS [24, 42, 43] assumes
a constant control variate (cd(zzz) = C) which only requires
computing (i) as @���Ep���(zzz)[C] = 0.

Gradient Estimation for Non-Differentiable Loss Ln:

The gradient estimator in Eq. 3 cannot be applied to non-
differentiable loss Ln(zzz) as the reparameterization trick is
only applicable to differentiable functions. For Ln(zzz), we
use RELAX [8] that lifts this limitation by defining the base-
line function cn(zzz) := Er���(⇣⇣⇣|zzz)[g(⇣⇣⇣)], where g(.) is a surro-
gate function (e.g., a neural network) trained to be correlated
with Ln(zzz). The gradient estimator for Ln is obtained by
replacing cd in Eq. 3 with cn:

@

@���
Ep���(zzz)[Ln(zzz)] = Ep���(zzz)

⇥
(Ld(zzz)� cn(zzz)) @���log p���(zzz)

⇤

| {z }
(i) reinforce

� Ep���(zzz)

⇥
@���cn(zzz)

⇤

| {z }
(ii) correction

+ @���Ep���(⇣⇣⇣)[g(⇣⇣⇣)]
| {z }
(iii) Gumbel-Softmax

, (5)

However, the main difference is that here the reparameteri-
zation trick is applied to Er���(⇣⇣⇣|zzz)[g(⇣⇣⇣)] in (ii) and similarly
to Ep���(⇣⇣⇣)[g(⇣⇣⇣)] in (iii). Here, to make g(zzz) be correlated
with Ln(zzz), we train g by minimizing ||g(zzz) � Ln(zzz)||22. In
the case of latency, this corresponds to training g to predict
latency on a set of randomly generated architectures before
search. Similar to FBNet [36] and ProxylessNAS [4], we
use a simple linear function to represent g(zzz).

It is worth noting that the Gumbel-Softmax term, (iii) in
Eq. 5, minimizes the expectation of the approximation of
the non-differentiable loss (e.g., latency) using the Gumbel-
Softmax relaxation. This gradient estimator was used in
FBNet [36] for optimizing latency. In Eq. 5, we can see that
if g cannot predict latency correctly, Ld(zzz) � cn(zzz) will be
large, thus, optimizing only (iii) will suffer from additional
bias due to the approximation error. However, even if g(zzz)
cannot approximate Ln(zzz) accurately, for example in the
case of compile-time performance optimizations, our gradi-
ent estimator is equal to the REINFORCE estimator, and it
optimizes the true expected latency. Hence, UNAS does not
suffer from any bias introduced due to the approximation of
non-differentiable criteria.

3.2. Training Objective

Several recent works on differentiable NAS have pro-
posed bi-level training of architecture parameters and net-

work parameters. In the architecture update, either training
loss [39], or validation loss [18] given the current network
parameters www, are used to update architecture parameters
using

min
���

Ep���(zzz)[Ltrain(zzz,www)], or min
���

Ep���(zzz)[Lval(zzz,www)]. (6)

Then, the network parameters www are updated given samples
from the architecture by minimizing

min
www

Ep���(zzz)[Ltrain(zzz,www)]. (7)

The parameters ��� and www are updated iteratively by taking a
single gradient step in Eq. 6 and Eq. 7. It has been shown
that by sharing network parameters among all the architec-
ture instances, we gain several orders of magnitude speedup
in search [18, 24]. However, this comes with the cost of up-
dating architecture parameters at suboptimial www. Intuitively,
this translates to making decision on architecture without
considering its optimal performance.

To avoid overfitting, we base our objective function on the
generalization gap of an architecture. The rationale behind
this is that the selected architecture not only should perform
well on the training set, but also, should generalize equally
well to the examples in the validation set, even if network
weights are suboptimal. This prevents search from choosing
architectures that do not generalize well. Formally, we define
the generalization loss in search Ep���(zzz)[Lgen(zzz,www)] by:

Ep���(zzz)[Ltrain(zzz,www)+�|Lval(zzz,www) � Ltrain(zzz,www)|], (8)

where � is a scalar balancing the training loss and general-
ization gap. We observe that � = 0.5 often works well in
our experiments.2 For training, we iterate between updating
��� using Eq. 8 and updating www using Eq. 7. In each parameter
update, we perform a simple gradient descent update.

Latency Loss: In resource-constrained applications, we
might be interested in finding an architecture that has a low
latency as well as high accuracy. In this case, we can measure
the latency of the network specified by zzz in each parameter
update3. Representing the latency of the network using
Llat(zzz), we augment the objective function in Eq. 8 with
Ep���(zzz)[�latLlat(zzz)], where �lat is a scalar balancing the
trade-off between the architecture loss and the latency loss.
Although Llat(zzz) is not differentiable w.r.t. zzz, we construct
a low-variance gradient estimator using Eq. 5 for optimizing
this term.

4. Experiments in DARTS Search Space

In this section, we apply the proposed UNAS framework
to the problem of architecture search for image classifica-

2We also explored with the objective function without the absolute
value, i.e., Ltrain(zzz,www)+�(Lval(zzz,www)� Ltrain(zzz,www)). We observed that
this variants does not perform as good as Eq. 8.

3We measure latency on the same hardware that the model is being
trained.

0

1

· · ·
· · ·
0 0 0
0 0 1
1 0 0

z0,3

z1,3

z2,3

z1,2

z0,2

0 1 2
0 1 0
0 0 1

1 0 0
0 0 1

Input Selector Operation Selector
op0 op1 op2

op0 op1 op2

op0

op2

2

3

Figure 2: The factorized cell structure ensures that each node depends on two previous nodes. On the left, a small graph with
4 nodes is visualized. In the middle, zzz = {zzze}, the operation assignment for the incoming edges to node 3 is shown. On
the right, the input and operation selectors for these edges are shown. The shaded matrix on zzz is parameterized by the outer
product iii3 ⌦ ooo3 + iii

0
3 ⌦ ooo

0
3.

tion using DARTS [18] search space, which was also used
in [43, 24, 39, 5]. We closely follow the experimental setup
introduced DARTS [18]. In the search phase, we search for
a normal and reduction cell using a network with a small
number of feature maps and/or layers. Given the stochastic
representation of the architecture, the final cells are obtained
by taking the configuration that has highest probability for
each node as discussed below. Then, in the evaluation phase,
the cells are stacked into a larger network which is retrained
from scratch. Sec. 4.1 discuses a simple approach for fac-
torizing cells that eliminates the necessity of post-search
heuristics. Sec. 4.2 provides comparisons to previous work
on three datasets.

4.1. Factorized Cell Structure

Training the cell structure introduced in DARTS [18] may
result in a densely connected cell where each node depends
on the output of all the previous nodes. In order to induce
sparsity on the connectivity, prior work [5, 18, 43] heavily
relies on post-search heuristics to limit the number of incom-
ing edges for each node. DARTS [18] uses a heuristic to
prune the number of input edges to two by choosing opera-
tions with the largest weights. P-DARTS [5] uses an iterative
optimization to limit the number of skip-connections and the
number of incoming edges to two. The main issue with such
post-search methods is that they create inconsistency be-
tween search and evaluation by constructing a cell structure
without directly measuring its performance [39].

In order to explicitly induce sparsity, we factorize the
operation assignment problem on the edges using two selec-
tion problems: i) an input selector that selects two nodes
out of the previous nodes and ii) an operation selector that
selects two operations that are applied to each selected in-
put. We name this structure a factorized cell as it enables
us to ensure that the content of each node depends only
on two previous nodes without relying on any post-search
heuristic. Formally, we introduce iiin and iii

0
n, two one-hot

vectors for the nth node representing the input selectors as
well as two one-hot vectors ooon and ooo

0
n denoting the oper-

ation selectors. The architecture is specified by the sets
{iiin, iii

0
n}Nn=1 and {ooon, ooo

0
n}Nn=1, where N is the number of

nodes in a cell. This formulation is easily converted to the
operation assignment problem on edges (i.e. {zzze}) in Sec. 2
using the outer product iiin ⌦ooon +iii

0
n ⌦ooo

0
n, as shown in Fig. 2.

We use the product of categorical distributions in the formQ
n p(iiin)p(iii0n)p(ooon)p(ooo0n) to represent the distribution over

architecture parameters.

4.2. Comparison with the Previous Work

The current literature on NAS often reports the final per-
formance obtained by the best discovered cell. Unfortu-
nately, such qualitative metric fails to capture i) the number
of searches conducted before finding the best cell, ii) the per-
formance variation resulted from different searches, iii) the
effect of each model component on the final performance,
and iv) the effect of post-search heuristics used for creat-
ing the best architecture. To better provide insights into
our framework, we conduct extensive ablation experiments
on the CIFAR-10, CIFAR-100 and ImageNet datasets. We
run the search and evaluation phases end-to-end four times
on each dataset and we report mean and standard devia-
tion of the final test error as well as the best cell out of
the four searches. We do not use any post-search heuristic,
as our factorized cell structure always yields two-incoming
edges per node in the cell. This stands in a stark contrast to
DARTS [18] and P-DARTS [5] that use post-search heuris-
tics to sparsify the discovered cell.

Here, we only consider the differentiable cross-entropy
loss functions as the search objective function (i.e., we do
not optimize for latency). Since the direct search on Ima-
geNet is computationally expensive, we reduce the search
space on this dataset to five operations including skip connec-
tion, depthwise-separable 3⇥3 convolution, max pooling, di-
lated depthwise-separable 3⇥3 convolution, and depthwise-
separable 3⇥3 convolution. Prior work on ResNets [10],
DenseNets [13], as well as the recent RandWire [38] suggest
that it should be possible to achieve high accuracy by using
only these three operations.

Below, we discuss the different baselines summarized in
Table 2. Additional details of search and evaluation can be
found in Appendix A, and Appendix B respectively.

The state-of-the-art: The previous works closest to our

Table 2: Comparison against the state-of-the art methods. Different objective functions for updating architecture parameters
and different gradient estimators are examined for UNAS. We run UNAS and the original publicly-available source code for
DARTS [18] and P-DARTS [5] end-to-end four times with different initialization seeds. Mean±standard deviation of all four
discovered architectures as well as the best architecture at the end of the evaluation phase are reported. For other techniques,
the original best results are reported. The search cost is reported on CIFAR-10. UNAS with Lgen and REBAR significantly
outperforms gradient-based methods on all three datasets.

Objective Gradient CIFAR-10 CIFAR-100 ImageNet Search Cost

Function Estimator mean best mean best mean best (GPU days)

U
N

A
S Lval Gumbel-Soft. 2.79±0.10 2.68 17.11±0.38 16.80 26.06±0.51 25.41 -

Lgen Gumbel-Soft. 2.81±0.01 2.74 16.98±0.34 16.59 24.64±0.13 24.46 -
Lgen REBAR 2.65±0.07 2.53 16.72±0.76 15.79 24.60±0.06 24.49 4.3

G
r
a

d
ie

n
t DARTS [18] 3.03±0.16 2.80 27.83±8.47 20.49 25.27±0.06 25.20 4

P-DARTS [5] 2.91±0.14 2.75 18.09±0.49 17.36 24.98±0.44 24.49 0.3
SNAS [39] - 2.85 - - - 27.3 1.5

R
e
in

fo
r
c
e NASNet-A [43] - 2.65 - - - 26.0 2000

BlockQNN [41] - 3.54 - 18.06 - - 96
ENAS [24] - 2.89 - - - - 0.45

E
v
o

lu
ti

o
n AmoebaNet-A [26] - 3.12 - - - 25.5 3150

AmoebaNet-B [26] - 2.55 - - - 26.0 3150
AmoebaNet-C [26] - - - - - 24.3 3150
Hierarchical. Evolution [17] - 3.75 - - - - 300

c_{k-2}

0
sep_conv_5x5

skip_connect

1skip_connect

2
sep_conv_3x3

3dil_conv_3x3

c_{k-1}

dil_conv_3x3

dil_conv_3x3

sep_conv_3x3

c_{k}

(a) Normal Cell

c_{k-2}
0

sep_conv_3x3

sep_conv_5x5

1

sep_conv_3x3

2

skip_connect

c_{k-1}

skip_connect

avg_pool_3x3

3avg_pool_3x3
c_{k}sep_conv_5x5

(b) Reduce Cell

Figure 3: The best performing cell on CIFAR-10.

0 5000 10000 15000

Search Iterations

0.4

0.6

0.8

1.0

1.2

V
al

id
at

io
n

L
os

s

Ltrain(zzz,www)

Lval(zzz,www)

Lgen(zzz,www)

Figure 4: Validation loss in search.

work DARTS [18], P-DARTS [5] and SNAS [39] have un-
fortunately reported the performance for the best discovered
cell. Since DARTS and P-DARTS implementations are pub-
licly available, for a fair comparison, we run their original
source code end-to-end four times similar to our model with
different random initialization seeds using hyperparameters
and commands released by the authors on CIFAR-10 and
CIFAR-100.4 For the ImageNet datasets, we transfer the
discovered cells from CIFAR-10 to this dataset as described
in [18, 5]. The implementation of SNAS [39] is not publicly
available. So, we compare against this work using the origi-

4We exactly followed the hyperparameters and commands using the
search/eval code provided by the authors. We only set the initialization seed
to a number in {0, 1, 2, 3}.

nal published results. Finally, in order to better contextualize
our results, we compare UNAS against previous methods
that use reinforcement learning or evolutionary search. On
ImageNet, we only consider the mobile-setting (FLOPS <

600M) which is often used to compare NAS models.

UNAS baselines: We also explore the different variants
of UNAS. The objective function column in Table 2 repre-
sents the loss function used during search for updating ���.
Here, Lval (Eq. 6) and Lgen (Eq. 8) are considered. The gradi-
ent estimator column represents the gradient estimator used
for updating ��� during search. We examine Gumbel-Softmax
and REBAR (Eq. 3).

Observations: From the first group of Table 2, we ob-

Co
nv

 3
x3

M
B1

 3
x3

M
B3

 5
x5

sk
ip

sk
ip

sk
ip

M
B3

 7
x7

sk
ip

sk
ip

M
B3

 3
x3

M
B6

 7
x7

sk
ip

sk
ip

M
B3

 5
x5

M
B6

 5
x5

sk
ip

M
B3

 3
x3

M
B3

 5
x5

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 5
x5

M
B6

 7
x7

Co
nv

 3
x3

M
B1

 3
x3

M
B3

 5
x5

M
B3

 3
x3

sk
ip

sk
ip

M
B3

 7
x7

sk
ip

sk
ip

sk
ip

M
B3

 7
x7

M
B3

 3
x3

M
B3

 3
x3

M
B3

 3
x3

M
B3

 5
x5

M
B3

 3
x3

M
B3

 3
x3

M
B3

 3
x3

M
B6

 7
x7

M
B3

 7
x7

M
B3

 7
x7

M
B3

 7
x7

M
B6

 7
x7

Po
ol

in
g

FC
Po

ol
in

g
FC

(a) Cell discovered by UNAS in the ProxylessNAS [4] search space with 9.8 ms GPU latency and 24.7% top-1 error

Co
nv

 3
x3

M
B1

 3
x3

M
B3

 5
x5

sk
ip

sk
ip

sk
ip

M
B3

 7
x7

sk
ip

sk
ip

M
B3

 3
x3

M
B6

 7
x7

sk
ip

sk
ip

M
B3

 5
x5

M
B6

 5
x5

sk
ip

M
B3

 3
x3

M
B3

 5
x5

M
B6

 7
x7

M
B6

 7
x7

M
B6

 7
x7

M
B6

 5
x5

M
B6

 7
x7

Co
nv

 3
x3

M
B1

 3
x3

M
B3

 5
x5

M
B3

 3
x3

sk
ip

sk
ip

M
B3

 7
x7

sk
ip

sk
ip

sk
ip

M
B3

 7
x7

M
B3

 3
x3

M
B3

 3
x3

M
B3

 3
x3

M
B3

 5
x5

M
B3

 3
x3

M
B3

 3
x3

M
B3

 3
x3

M
B6

 7
x7

M
B3

 7
x7

M
B3

 7
x7

M
B3

 7
x7

M
B6

 7
x7

Po
ol

in
g

FC
Po

ol
in

g
FC

(b) Cell discovered by ProxylessNAS [4] with 10.1 ms GPU latency and 24.9% top-1 error

Figure 5: Visualization of the network discovered by UNAS in the ProxylessNAS [4] search space. MBe K⇥K denotes a
mobile inverted residual block with expansion ratio e and kernel size K. UNAS, in contrast to ProxylessNAS, keeps the cells
at the deeper layers (on the right side) computationally inexpensive by using a small expansion ratio, enabling more MBConv
layers in the shallower layers. Although UNAS architecture is deeper, it has a lower latency with the same network width.

serve that architecture search with the generalization loss
yields a better model often in terms of both average perfor-
mance and best results. The improvement obtained by the
generalization is especially profound in ImageNet as this
loss function improves Lval by 1.4% in average. We can
also see that our REBAR gradient estimator often improves
the results across all datasets. From the second group of
Table 2, we observe that our UNAS framework with REBAR
estimator and the generalization loss significantly outper-
forms DARTS, P-DARTS, and SNAS on all three datasets.5
Interestingly, our full model (Lgen with REBAR) exhibits
a low variance on CIFAR-10 and ImageNet, showing the
robustness of the framework in discovering high-performing
architectures. Finally, comparing UNAS against the evolu-
tionary and RL-based models shows that UNAS outperforms
these models. The only exception is AmoebaNet-C [26] on
ImageNet. However, note that this method requires 700x
more GPU time to search.

Why does the generalization loss help in search: Re-
call that in differentiable architecture search, we often update
the architecture distribution parameters ��� using suboptimal
www. We hypothesize that even if validation loss is used in
search due to the suboptimality of www, the architecture is not
discovered using the the true generalization of the network
to unseen examples. To illustrate this, the validation loss
during architecture search visualized in Fig. 4 for different
loss functions. We observe that even using the validation
loss for updating architecture parameters does not prevent
the network from overfitting.

One question is whether our generalization loss is re-
quired in the case of the original RL-based NAS [24, 42, 43],
which updates architecture parameters using www closer to opti-

5The significance test between UNAS and any other approach passes on
all the datasets with p-value < 0.05, except on ImageNet between UNAS
and P-DARTS which yields p-value = 0.18.

mality. To answer this, we also examine with ENAS [24]-like
training where network parameters www are updated for half
epoch in every ��� update (i.e., the network parameters www are
brought closer to the optimum). In this case, the architec-
tures found by generalization loss in average obtains test
error 2.92% on CIFAR-10 compared with the validation loss
based search that achieves 3.12%. This provides another evi-
dence that architecture search can potentially benefit from
considering generalization, opening up new research direc-
tions in NAS.

Cell visualization: The best cell discovered on the
CIFAR-10 dataset is visualized in Fig. 3. See Appendix C
for the visualization of best cells on other datasets.

More comparisons: We provide in-depth comparisons
against the state-of-the-art techniques with more detailed
information including the number of parameters, search cost,
and the number of floating point operations in Appendix. D.

5. Experiments on Latency-based Search

In this section, we examine our proposed framework for
searching architectures with low latency directly on the Im-
ageNet dataset. Unfortunately, the DARTS search space
results in high-latency networks due to the parallel branches
and concatenation in each cell. So, here, we change the
building blocks of our search space to the mobile inverted
bottleneck convolution (MBConv) [28] that has been used
in ProxylessNAS [4] and FBNet [36] for discovering low-
latency networks. For this section, we closely follow the
search space introduced in ProxylessNAS [4] for ImageNet
in which a 21-layer network with seven choices of opera-
tions in each layer is searched. Specifically, for each layer,
an MBConv is selected among various kernel sizes {3, 5, 7}
and expansion ratios {3, 6}. To allow layer removal, an
additional skip-connection is used in ProxylessNAS yield-
ing seven operations per layer. For search and evaluation

Table 3: Latency-based architecture search. Models are sorted
based on their top-1 error. For a better illustration, Fig. 6
compares the models visually.

Architecture
Val Error Latency

top-1 top-5 (ms)

EfficientNet B0 [32] 23.7 6.8 14.5
MobileNetV3 Large [11] 24.7 7.6 11.0
MnasNet-A1 [31] 24.8 7.5 10.9
Single-Path NAS [29] 25.0 7.8 10.2
FBNet-C [36] 25.1 - 11.5
MobileNetV2 1.4x [28] 25.3 7.5 13.0
MnasNet-B1 [31] 25.5 - 9.4
ShuffleNet V2 2x [19] 26.3 - 9.16
MobileNetV2 1x [28] 28.0 9. 9.2

ProxylessNAS-GPU [4] 24.9 7.5 10.1

UNAS 24.7 7.6 9.8

5.0 7.5 10.0 12.5 15.0 17.5 20.0

Latency (ms)

23.75

24.00

24.25

24.50

24.75

25.00

25.25

25.50

T
op

-1
E

rr
or

(%
)

E�cientNet B0

FBNet-C

MnasNet A1

MnasNet B1

MobileNetV2 1.4x

MobileNetV3

Shu�eNet v2 2×

SinglePathProxylessNAS-GPU

UNAS

Figure 6: Latency-based architecture search. We seek
architectures that are in the bottom-left side of the error
vs. latency axes. UNAS discovers an architecture that is
more accurate and has a low latency compared to the cur-
rent state-of-the-art architectures based on MobileNetV2.

we closely follow the settings used in ProxylessNAS (see
Appendix E for details).

For gradient estimation of the latency loss in UNAS, we
use Eq. 5 with a simple linear function as the surrogate func-
tion, i.e., g(zzz) =

P
i,j li,jzi,j where zi,j 2 {0, 1} is a binary

scalar indicating if operation i is used in layer j and li,j is
the approximate latency associated with the operation. Sim-
ilar to ProxylessNAS, we randomly generate 10K network
samples before search and we train the parameters of g (i.e.,
all li,j) by minimizing an L2 regression loss.

We search for architecture on V100 GPUs, as it allows
us to measure the true latency on the device during search.
These GPUs were also used in ProxylessNAS [4] which
enables us to have a fair comparison against this method.
We measure latency using a batch size of 32 images. We

empirically observed that smaller batch sizes under-utilize
GPUs, resulting in inaccurate latency measurements.

Table 3 and Fig. 6 report the latency and validation set
error on ImageNet for our model in comparison to recent
hardware-aware NAS frameworks that operate in a similar
search space (i.e., MobileNetV2 [28]) and have similar la-
tency (⇠10 ms on V100 GPUs). We can see that UNAS
finds an architecture that is slightly faster but more accu-
rate than the ProxylessNAS-GPU [4] architecture that uses
exactly the same search space and the same target device.
EfficientNet B0 [32] is the only architecture that is more
accurate than UNAS but it is also 48% slower on the GPU.
Although EfficientNet B0 has a low number of mathemati-
cal operations, it is not so efficient on TPU/GPU due to the
heavy usage of depth-wise separable convolutions [9]. The
architectures that are faster than UNAS including ShuffleNet
v2 [19], MnasNet B1 [31] and MobileNetV2 1.0x [28] are
also less accurate.6

In Fig. 5, the architecture discovered by UNAS is com-
pared against ProxylessNAS-GPU that has been discovered
for the same type of GPUs. Interestingly, UNAS discovers an
architecture that is deeper, i.e., it has 3 more MBConv layers.
But, it also faster and more accurate than the architecture
discovered by ProxylessNAS.

6. Conclusions

In this paper, we presented UNAS that unifies differen-
tiable and RL-based NAS. Our proposed framework uses the
gradient of the objective function for search without intro-
ducing any bias due to continuous relaxation. In contrast
to previous DNAS methods, UNAS search objective is not
limited to differentiable loss functions as it can also search
using non-differentiable loss functions. We also introduced a
new objective function for search based on the generalization
gap and we showed that it outperforms previously proposed
training or validation loss functions.

In extensive experiments in both DARTS [18] and Prox-
ylessNAS [4] search spaces, we showed that UNAS finds
architectures that 1) are more accurate on CIFAR-10, CIFAR-
100, and ImageNet and 2) are more efficient to run on GPUs.
We will make our implementation publicly available to facil-
itate the research in this area.

References

[1] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh
Raskar. Designing neural network architectures using re-
inforcement learning. In ICLR, 2017. 1

6All models are examined in PyTorch. For MobileNetV2 and ShuffleNet
V2 the official PyTorch implementations are used. For ProxylessNAS-GPU,
the original code provided in [4] is used. Other networks implementations
are obtained from EfficientNets repo [34] which are optimized for PyTorch.

[2] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay
Vasudevan, and Quoc Le. Understanding and simplifying
one-shot architecture search. In ICML, 2018. 2

[3] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun
Wang. Efficient architecture search by network transforma-
tion. In AAAI, 2018. 1

[4] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct
neural architecture search on target task and hardware. In
ICLR, 2019. 1, 2, 4, 7, 8, 14

[5] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive
differentiable architecture search: Bridging the depth gap
between search and evaluation. In ICCV, 2019. 2, 5, 6, 14

[6] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Neural architecture search: A survey. arXiv preprint
arXiv:1808.05377, 2018. 1

[7] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large mini-
batch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017. 12

[8] Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and
David Duvenaud. Backpropagation through the void: Opti-
mizing control variates for black-box gradient estimation. In
ICLR, 2018. 4

[9] Suyog Gupta and Mingxing Tan. EfficientNet-EdgeTPU.
https://ai.googleblog.com/2019/08/
efficientnet-edgetpu-creating.html, Nov
2019. 8

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
2, 5

[11] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for MobileNetV3. In ICCV, 2019. 2, 8

[12] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 11, 14

[13] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional networks.
In CVPR, 2017. 5

[14] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparam-
eterization with Gumbel-Softmax. In ICLR, 2017. 3

[15] Liam Li and Ameet Talwalkar. Random search and repro-
ducibility for neural architecture search. arXiv preprint
arXiv:1902.07638, 2019. 13

[16] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens,
Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang,
and Kevin Murphy. Progressive Neural Architecture Search.
In ECCV, 2018. 2, 13, 14

[17] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fer-
nando, and Koray Kavukcuoglu. Hierarchical representations
for efficient architecture search. In ICLR, 2018. 1, 6, 13

[18] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable Architecture Search. In ICLR, 2019. 1, 2, 4, 5,
6, 8, 11, 13, 14

[19] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In ECCV, 2018. 8, 14

[20] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The
concrete distribution: A continuous relaxation of discrete
random variables. In ICLR, 2017. 3

[21] Andriy Mnih and Karol Gregor. Neural variational inference
and learning in belief networks. In ICML, 2014. 3

[22] Art B. Owen. Monte Carlo theory, methods and examples.
2013. 3

[23] John Paisley, David M Blei, and Michael I Jordan. Variational
bayesian inference with stochastic search. In ICML, 2012. 3

[24] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and
Jeff Dean. Efficient neural architecture search via parameter
sharing. In ICML, 2018. 1, 2, 4, 5, 6, 7, 13

[25] Rajesh Ranganath, Sean Gerrish, and David Blei. Black box
variational inference. In Artificial Intelligence and Statistics,
2014. 3

[26] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. arXiv preprint arXiv:1802.01548, 2018. 1, 6, 7, 11,
13, 14

[27] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,
Yutaka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey
Kurakin. Large-scale evolution of image classifiers. In ICML,
2017. 1

[28] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, 2018. 1, 7, 8, 14

[29] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lym-
beropoulos, Bodhi Priyantha, Jie Liu, and Diana Marculescu.
Single-path NAS: Designing hardware-efficient convnets in
less than 4 hours. In arXiv preprint arXiv:1904.02877, 2019.
8

[30] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In CVPR, 2015. 2

[31] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnasnet:
Platform-aware neural architecture search for mobile. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019. 2, 4, 8

[32] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105–6114, 2019. 8

[33] George Tucker, Andriy Mnih, Chris J Maddison, John Law-
son, and Jascha Sohl-Dickstein. REBAR: Low-variance, un-
biased gradient estimates for discrete latent variable models.
In NIPS, 2017. 3

[34] Ross Wightman. Eficientnet for pytorch.
https://github.com/rwightman/
gen-efficientnet-pytorch, Nov 2019. 8

[35] Ronald J Williams. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Machine
learning, 1992. 2

[36] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. FBnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019. 1, 2, 4, 7, 8

[37] Lingxi Xie and Alan Yuille. Genetic CNN. In ICCV, 2017. 1
[38] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming

He. Exploring randomly wired neural networks for image
recognition. arXiv preprint arXiv:1904.01569, 2019. 5, 11

[39] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS:
Stochastic Neural Architecture Search. In ICLR, 2019. 1, 2,
3, 4, 5, 6, 11, 13, 14

[40] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec
Go, Mark Sandler, Vivienne Sze, and Hartwig Adam. Ne-
tadapt: Platform-aware neural network adaptation for mobile
applications. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 285–300, 2018. 1, 2

[41] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-
Lin Liu. Practical block-wise neural network architecture
generation. In CVPR, 2018. 6, 13

[42] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. In ICLR, 2017. 1, 2, 4, 7

[43] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In CVPR, 2018. 1, 2, 4, 5, 6, 7, 11, 13, 14

