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1. Overview
In this document, we provide additional details, discus-

sions, and experiments to support the original submission.

2. Scale-Shift Invariant Metric
To allow for a fair comparisons we employ a scale and

shift invariant loss for methods which either produce rela-
tive depth or depth in a different scale. A specialized scale
invariant loss formulation for a comparison with intrinsic
imaging based papers, as the predicted diffuse color is not
subject to an absolute scale as diffuse albedo parameter is.
To achieve the scale and shift in-variance we define it as

L(x, xgt) = argmin
α,β

1

2D

D∑
i=1

(αxi + β − xgt
i )

2 (1)

where α accounts for the scale and β for the shift, D for
the image dimension, x for the predicted result and xgt for
the corresponding ground truth. For the scale invariant loss
only the α is optimized.

3. Detailed Network Architectures
The proposed cascaded network architecture uses four

distinct network architectures. In the following we will de-
note a regular 2D convolution with a kernel size of 4, a
stride of 2, InstanceNorm, ReLU activation and k filters as
c-k. A transposed convolution is called ct-k with the
same kernel size, stride, and activations.
Shape Estimation with Merge Convolutions: The input of
the shape estimation network is the two-shot input images
and the segmentation mask. We use MergeConv blocks in
an encoder-decoder architecture. Refer to the paper for de-
tails about a MergeConv block. We use four MergeConv
blocks for encoding and also for decoding in U-net inspired
shape [6]. The initial input each of the pathways is one of
the two-shot input images channel stacked with the segmen-
tation mask.

To denote the network architecture, we use the following
naming scheme. A MergeConv block with a kernel size of

4, a stride of 2, InstanceNorm, and ReLU activation is de-
noted as mo-k. Here, k defines the number of output filters
for the merged and input pathways. Upsampling or down-
sampling is denoted in o, where d is used for the down-
sampling operation and u for the upsampling. A regular
convolution with a kernel size of 5 and a stride of 1 is de-
noted as c-k. The k parameter also defines the number of
output features, and a sigmoid activation function is used.
The network architecture is described as:
md-32, md-64, md-128, md-256, mu-256,

mu-128, mu-64, mu-32, c-4

Shape Guided Illumination Estimation: The input for this
network architecture now consists of the two-shot input im-
ages, the segmentation mask, and the previous shape esti-
mation (Normals and Depth). Here, we do not employ the
merge convolutions, and all inputs are channel stacked. As
the network output is 24 RGB values, we only employ an
encoder, followed by fully connected blocks. An additional
convolution operation is denoted as cn-k, with a kernel
size of 3, a stride of 2, and a ReLU activation. Lastly, a
fully connected layer is referred to as f-k. The architec-
ture is then denoted as:
c-16, c-32, c-64, c-128, c-256,

c-256, cn-256, cn-512, f-256, ReLU,
f-72, Sigmoid

The last fully-connected consists of 72 outputs, which
corresponds to 24 RGB values for the spherical Gaussian
amplitudes.

Guided SVBRDF Estimation: For BRDF prediction, we
stack the channels of the previous predictions and the two-
shot input images. The illumination prediction is here ap-
pended to each pixel of the input images. An additional
output convolution is referred to as co-k with a kernel size
of 5, a stride of 1, and sigmoid activation. The network
architecture is defined as:
c-32, c-64, c-96, c-128, c-160,

c-192, ct-192, ct-160, ct-128, ct-96,
ct-64, ct-32, co-7

Joint Shape and SVBRDF Refinement: Similar to the
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Figure 1: Spherical Gaussian Environment Illumination. Visualization of an environment with varying number of spher-
ical Gaussians. The top row shows the evaluated spherical Gaussians, and the bottom rows show two spheres rendered with
the spherical Gaussian approximation. Here, the left sphere is a glossy and the right a rough material.

BRDF estimation, we stack each of the previous predictions
in the channel dimensions. We also add the residual loss
image between the input flash image and the re-rendered
initial predictions. A resnet block here consists of two pre-
activated 2D convolutions with a kernel size of 3, a stride of
1, InstanceNorm, and ReLU activation. The shortcut con-
nection is added from the input to the final block output.
The block is denoted as r-k. A final output convolution is
denoted as c0-k with a kernel size of 5, a stride of 1, and a
sigmoid activation. The overall network is described as:

c-64, c-128, c-256, r-256, r-256,
r-256, r-256, ct-256, ct-128, ct-64,
co-11

The final output consists of 11 channels corresponding
to diffuse (3), specular (3), roughness (1), depth (1), and
normal (3).

4. Mobile Application
The mobile android application is written in kotlin and

handles the capturing of objects, the segmentation, and pre-
diction. The capturing automatically takes the two-shot in-
put pair. The segmentation is done using OpenCV’s Grab-
Cut implementation on the device. For the prediction, we
converted the trained models to TensorFlow lite. Here, we
do not use quantization as the results degraded too harshly.
An aware quantization training could remedy this effect. A
quantized output and model increases the prediction speed
even further, but it is already reasonably fast. On recent mo-
bile phones (Pixel 4, Pixel 2, OnePlus 6t), the full inference
takes about 6 seconds.

5. Rendering Setup
Rendering the domain randomized shape in a realistic

setup for real-world usage is a crucial aspect of a success-
ful domain transfer. To achieve this, our rendering setup
closely follows real-world scenarios. The camera is posi-
tioned randomly on a sphere with a radius of 70cm from the

origin. The objects are constructed at the origin, and due to
the random translation, rotation and scaling can grow up to
17cm distance from the camera. This is a reasonable dis-
tance between an object and a mobile phone for real-world
capture. To always have the object in focus, the camera
view is rotated towards the origin.

The flash-light is approximated as a point light source
and positioned in a 2cm radius around the camera with a
flash strength of 45 Lumen, which are typical settings of
smartphone cameras and flashes.

For the flash image, we separately rendered two HDR
images with only flash and only environment illumination
and linearly combine these two HDR renderings to obtain
the final flash image. This strategy allows us to randomly
vary the flash strength by using randomly sampled weights
for a linear combination of the ambient and flash rendering.
As the network receives LDR input images, we perform a
Saturation Based Sensitivity auto exposure calculation [2].

In Fig. 1, the effect of a varying number of spherical
Gaussians (SG) is shown. As seen, the detail and sharpness
of the environment and object illumination increases with
a growing number of SGs. As a compromise of estimating
too many parameters, our method predicts 24 SGs.

Our SGs are parametrized by the direction µ, the sharp-
ness λ, and the amplitude α of the lobe. The lobe is then
defined as:

G(v;µ, λ, α) = αeλ·v−1 (2)

where v now represents the evaluation direction. Further
details about the evaluation and the BRDF SG fitting are
based on [7].

6. Results

We analyze the prediction quality improvements in syn-
thetic examples. Further real-world and synthetic results are
available as a website in the supplementary.
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Figure 2: Comparison with Lasinger et al. Even on chal-
lenging shapes as the first example, our method provides a
more accurate prediction.

6.1. Visual Comparison with Lasinger et al.

Larsinger et al. [3] predicts the relative depth from a sin-
gle input image. We use the scale and shift-invariant metric
to compare our work with theirs. In Fig. 2 several prediction
examples are shown.

The first example is a sheet of wood formed into a com-
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Figure 3: Comparison with Nestmeyer et al. In many
cases our predictions is on par or surpases Nestmeyer et al.
with a more complex BRDF model to disentangle.

plex object. Lasinger et al. and our method struggle with
this object. However, overall, our method follows the shape
of the object much closer and plausible than Lasinger et al.
In the second example, our method predicts the shape of
the baseball also closer. Here, the closest point is correctly
predicted in the center of the ball. In the last example, the
top of the pot is also predicted slightly better. Lasinger et
al. nearly predicts the top part to be nearly flat while ours
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Figure 4: Comparison with Barron et al. Notice the over-
all improved shape and diffuse accuracy in the prediction.

follows the curved, extending top.

6.2. Visual Comparison with Nestmeyer et al.

Additional comparisons with Nestmeyer et al. [5] are
shown in Fig. 3. Here, we want to highlight that our method
tackles a complex BRDF model, which is more difficult to
disentangle than the intrinsic imaging model of Nestmeyer

et al. Due to this, we only compare, similar to Barron et al.,
with the scale-invariant diffuse color. As seen, our method
can reconstruct the diffuse color either with equal quality or
surpass the prediction quality of Nestmeyer et al. Especially
texture details are preserved better in our method.

6.3. Additional Comparison with Barron et al.

As Barron et al. [1] predict a relative depth and the re-
flectance, which is a non-absolute diffuse color, we employ
a scale-shift invariant loss for the depth map and a scale-
invariant for the diffuse color. In Fig. 4 we compare our
predictions with theirs.

Our method, in general, provides advances in the shape
prediction with improved depth and normal parameters. In
general, the features are captured more accurate and plau-
sible. The material color is also separated better from the
shading. This is especially visible in the last two examples
where Barron et al. predicted most of the color in the shad-
ing of the objects.

6.4. Additional Comparison with Li et al.

We also provide more comparisons with Li et al. [4]. The
results are shown in Fig. 5. In the depth map, the improved
performance of our method is apparent. In the first exam-
ple, Li et al. predict the barrel to be concave instead of con-
vex. The bottom is also predicted as the closest point to the
camera. Our method captures the general shape of the ob-
ject quite well but also struggles with the top of the barrel
slightly. Here, the visible top rim in the back is not predicted
accurately as well as the top plate of the barrel. In the sec-
ond example, Li et al. predict the baseball to be concave
again. Our method predicts the spherical nature of the ball
accurately. In the last example, the method of Li et al. again
fails to predict the shape of the box correctly. Here, the cor-
ner closest to the user is predicted far away, and the sides in
the bottom are predicted closer. In general, our method also
produces smoother and more accurate normal maps, but are
not as detailed as the normals from Li et al. This can be at-
tributed to our cascaded network design, which still can not
leverage correlations between maps as well as the joint pre-
diction model. Our method also reduces the visible shading
in the diffuse parameters, and the highlights from the flash
input and environment illumination are less visible.
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