
Volume 0 (1981), Number 0 pp. 1–10 COMPUTER GRAPHICS forum

Low-cost Subpixel Rendering for Diverse Displays

Thomas Engelhardt1, Thorsten-Walther Schmidt†1, Jan Kautz2, and Carsten Dachsbacher‡1

1Karlsruhe Institute of Technology 2University College London

Figure 1: Subpixel rendering of a plane with a structured texture for different subpixel layouts, similar to those found in diverse
displays nowadays. This image showcases high-quality texture filtering, one of the applications of our proposed optimal filtering
framework, comparing standard filtering (anisotropic and EWA) to our subpixel-aware filtering (again, using anisotropic and
EWA). Note how our method significantly reduces aliasing. Please see the additional material for more results.

Abstract
Subpixel rendering increases the apparent display resolution by taking into account the subpixel structure of a
given display. In essence, each subpixel is addressed individually, allowing the underlying signal to be sampled
more densely. Unfortunately, naïve subpixel sampling introduces color aliasing, as each subpixel only displays a
specific color (usually R, G, and B subpixels are used). As previous work has shown, chromatic aliasing can be
reduced significantly by taking the sensitivity of the human visual system into account. In this work, we find optimal
filters for subpixel rendering for a diverse set of 1D and 2D subpixel layout patterns. We demonstrate that these
optimal filters can be approximated well with analytical functions. We incorporate our filters into GPU-based
multisample antialiasing to yield subpixel rendering at a very low cost (1-2ms filtering time at HD resolution).
We also show that texture filtering can be adapted to perform efficient subpixel rendering. Finally, we analyze
the findings of a user study we performed, which underpins the increased visual fidelity that can be achieved for
diverse display layouts, by using our optimal filters.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Antialiasing, Bitmap and Framebuffer Operations

1. Introduction

Matrix display devices, such as cathode ray tubes, LCD
monitors, and projectors, display color images with pixels

† thorsten.schmidt@kit.edu
‡ dachsbacher@kit.edu

consisting of three or four subpixels representing the pri-
mary colors. Besides dynamic range and gamut, the dis-
play resolution is a physical limitation restricting the repro-
ducibility of real-world images. Recent work bypasses some
of these limitations by exploiting the characteristics of the
human visual system (HVS), e.g. by considering contrast
sensitivity to enhance the perceived contrast, or accounting

c© 2013 The Author(s)
Journal compilation c© 2013 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

T. Engelhardt, T.-W. Schmidt, J. Kautz, and C. Dachsbacher / Low-cost Subpixel Rendering for Diverse Displays

for retinal integration over time to increase the apparent res-
olution [DER∗10].

In this work we focus on better utilizing the display res-
olution: normally, every pixel is assigned a color and the
subpixels’ brightness is adjusted such that their joint emis-
sion creates the respective stimulus. By treating each sub-
pixel as an individual entity and taking their relative po-
sition into account, there is an opportunity to increase the
perceived resolution of the display. Microsoft’s ClearType
functionality [Pla00, PKH∗00] is a well-known example of
subpixel-aware rendering that is targeted at font rasteriza-
tion. Obviously, a naïve sampling of the image signal for
each subpixel, i.e. ignoring the subpixels’ respective colors,
yields distracting color fringing artifacts. The reason why
subpixel rendering can work is that the contrast sensitivity
of human vision is different for luminance and chrominance.
This allows one to derive an image filter that provides higher
perceived resolution, while suppressing color fringing to an
imperceptible degree, as shown by Platt [Pla00] and Klom-
penhouwer et al. [KdH03].

Many displays found in current commodity hardware pro-
vide high resolution where the benefit of subpixel rendering
is mostly noticeable for high-contrast parts in images, such
as black text on white background. However, there are also
many cases where the display resolution (given in pixels-
per-inch, PPI) is significantly lower and subpixel rendering
is also beneficial for color images, e.g. when using large
screens or projections for nearby observers, or simply be-
cause of the need for low display production cost.

In this paper, we make the following contributions:

• We generalize the approach of Platt [Pla00] to obtain fil-
ters for displays with diverse 1D and 2D subpixel layouts,
including displays that provide a fourth primary color to
improve luminance efficiency [ECH05].
• We derive analytical filters which are both easier to eval-

uate in practice and more suitable for image filtering.
• We show how to use our filters together with GPU-based

multisample antialiasing to yield subpixel rendering at lit-
tle additional cost compared to standard antialiasing.
• We demonstrate how texture sampling can be adapted to

directly employ subpixel-aware rendering.
• We conducted user studies simulating different subpixel

layouts and filters, confirming the optimality of our pro-
posed filters.

1.1. Previous Work

Sampling and reconstruction of image signals is an inte-
gral part of computer graphics and image processing and
has been widely studied for different tasks such as text ren-
dering [KU81], polygon rasterization [Duf89] or image fil-
tering [MN88]. Commonly, one color is determined for ev-
ery pixel, ignoring the relative locations of the subpixels

that emit the primary colors spanning the gamut of the dis-
play. Taking into account their arrangement allows one to in-
crease the resolution of the luminance signal of the display,
but care has to be taken not to produce chromaticity errors.
Platt [Pla00] and Platt et al. [PKH∗00] derive subpixel-aware
filters for luminance and chrominance signals, assuming an
RGB Stripe layout, by converting an RGB image into an op-
ponent color space and using perceptual metrics. Messing
and Daly’s method [MD02] operates in a similar manner,
but does not derive optimal filters. Messing et al. [MKD03]
adapt Platt et al.’s work, proposing to use constrained op-
timization to solve for filters than can mask out defective
subpixels; they demonstrate how their framework can be set
up for one specific 2D subpixel arrangement. Later work by
the same authors [MK06] extends this to arbitrary subpixel
patterns. However, as in Platt et al.’s work, the resulting fil-
ters are given in discretized form, i.e., for a specific display
resolution, while our optimal filters are analytical and can
thus be employed to efficiently downsample input signals of
arbitrarily high resolution. and do not need explicit storage
of filter kernels, which makes them more GPU friendly. Fur-
thermore, since our filters do not attempt to compensate for
defective display hardware, we decided to directly build our
method on the simpler approach by Platt et al.

The most widespread application of subpixel rendering is
Microsoft’s ClearType [Pla00, PKH∗00], which is targeted
at font rendering. It has even been evaluated perceptually us-
ing S-CIELAB [XFMW08]. Klompenhouwer et al. [KdH03]
describe a subpixel-aware scaling of images and conclude
that considering subpixel arrangements is a crucial part of
the signal processing chain. Fang et al. [FAY∗09] address
subpixel-aware image downscaling (fixed scale) using edge
detection and empirically determined low-pass filters for
suppressing chromaticity errors. Subpixel rendering is also
closely related to image sensors: most cameras use a sensor
overlaid with a Bayer filter to selectively sample different
wavelengths at interleaved locations, and the full RGB im-
age is reconstructed by interpolating the missing data. Atch-
eson [Atc05] describes a subpixel-aware reconstruction for
directly displaying images from Bayer patterns.

Recently, Didyk et al. [DER∗10,TDR∗11] describe an in-
teresting approach to increasing the apparent display resolu-
tion for moving images and animations by accounting for the
integration of the signal in the HVS. This work is orthogonal
to our subpixel rendering and we believe that both could be
combined to enhance the display of images.

We also investigate subpixel-aware texture filtering that
can be directly used in (GPU-based) rendering. Texture fil-
tering is a crucial part in the rendering pipeline. In their sem-
inal work, Greene and Heckbert [GH86] introduce the Ellip-
tical Weighted Average (EWA) filter for high-quality texture
filtering. McCormack et al. [MPFJ99] describe Feline, a fast
approximation of the EWA using mip-mapping that lowers
the filter cost. Shin et al. [SLK01] improve this work by in-

c© 2013 The Author(s)
Journal compilation c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

T. Engelhardt, T.-W. Schmidt, J. Kautz, and C. Dachsbacher / Low-cost Subpixel Rendering for Diverse Displays

Figure 2: The sim-
plified chromatic con-
trast sensitivity func-
tion is shown (right to
left) for Y ′, C1 and C2
[Pla00].

troducing an additional weighting of the samples. Recently,
Mavridis and Papaioannou [MP11] describe a filter for mod-
ern GPUs that closely matches the EWA filter.

2. Subpixel Rendering

In this section we briefly describe the approach for deriving
optimal filters for subpixel rendering. For displaying an im-
age on matrix displays, such as LCD monitors, the image
signal is normally sampled at the centers of the pixels, or an
average pixel color is determined. This image sample then
controls the brightness of the individual subpixels to create
the perceived color. Subpixel rendering in contrast takes the
underlying spatial subpixel structure within a pixel into ac-
count and retrieves an image sample for each subpixel. This
approach increases the perceived resolution of the display,
however, it is likely to cause obvious color artifacts if the
display colors of the subpixels are ignored (see Klompen-
houwer et al. [KdH03] for a discussion). These artifacts are
not surprising, as the chrominance signal is now undersam-
pled and therefore prone to aliasing. Fortunately, color alias-
ing can be tolerated to a certain degree. This can be under-
stood by converting the color displayed by the pixel to an op-
ponent color space that describes color in a manner similar
to the human visual system. Color is separated into a lumi-
nance channel, as well as an opponent red-green and yellow-
blue chrominance channel. The HVS acts as low-pass filter
in the opponent color space and diminishes the significance
of the chrominance channels quickly for high frequency im-
age details. This behavior can be modeled with the (chromi-
nance) contrast sensitivity function ((C-)CSF, Fig. 2), and in
turn be exploited to reduce the amount of perceptible alias-
ing.

2.1. The Contrast Sensitivity Function

The human eye’s sensitivity to luminance differences de-
pends on their spatial frequency [CR68]. This sensitivity is
greatest at about 5–10 cpd (cycles per degree), and falls off
for lower or higher cpd. The idea of contrast sensitivity can
also be applied to color differences, and is usually given for
opponent colors, i.e. red-green and yellow-blue. The sensi-
tivity for opponent color gratings (chrominance contrast sen-
sitivity) is highest at small cpd’s and then falls off quickly
[Mul85]. The actual shape of the function depends on the
exact opponent color space. We follow Platt [Pla00] and ap-

proximate the actual contrast sensitivity functions with sim-
ple functions, as depicted in Fig. 2.

2.2. Optimal Filtering

The goal of an optimal filter for subpixel rendering is to sup-
press color aliasing to be unnoticeable while keeping a high
spatial resolution of the luminance signal. We first review
Platt’s [Pla00] approach to derive an optimal filter for RGB-
stripe matrix displays. This assumes that a display pixel has
k = 3 subpixels, i.e., a red, green, and blue subpixel. It also
assumes that the RGB image signal is sampled at subpix-
els, denoted as αk. At each subpixel position, an RGB color
value γγγk is sampled from the image signal. The design of an
optimal filter is inspired by a perceptual error metric, that
seeks to minimize the error that is introduced when display-
ing an RGB color value γγγk of the image signal with only the
single color intensity αk of the k-th subpixel in an arbitrary
scanline of the display.

Computing this error in a way that exploits the character-
istics of the HVS for optimal display requires a conversion
to an opponent color space, where the error at the position of
the k-th subpixel can be expressed as:

E(k) = 3mkαk︸ ︷︷ ︸
displayed color

−
3

∑
d=1

mdγk,d︸ ︷︷ ︸
image signal

, (1)

where d iterates over the RGB color channels and mi is the
(i mod 3)-th column vector of a 3× 3 matrix that converts
RGB to an opponent color space. We use the linear Y ′C1C2
opponent color space which was designed to work best with
linear transformations [JF05] and for which the conversion
from RGB is given by:

MY ′C1C2 =

 0.23 0.73 0.06
0.20 −0.31 0.11
0.23 0.66 −0.89

 . (2)

To measure the significance of the error on the perceived im-
age it has to be weighted with the contrast sensitivity func-
tion (CSF). To this end, the error must be represented in fre-
quency space:

ê f =
N−1

∑
k=0

E(k)exp
(
−2iπk f

N

)
, (3)

where ê f denotes one of the N (complex) Fourier coefficients
which are computed as a weighted sum over the error at each
of the N subpixels in a single scanline. The contrast sensi-
tivity function acts as a low-pass filter on the error which
quickly filters out errors that occur at high frequencies in
the image signal. As mentioned before, we use the C-CSF
suggested by Platt [Pla00] (Fig. 2), which models it as a
set of simple low-pass filters. We also examined other C-
CSF models that fit experimental data (on a small sample of
subjects) more accurately [Mul85]; however, these functions

c© 2013 The Author(s)
Journal compilation c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

T. Engelhardt, T.-W. Schmidt, J. Kautz, and C. Dachsbacher / Low-cost Subpixel Rendering for Diverse Displays

-15 -10 -5 5 10 15

-0.1

0.1

0.2

0.3

Red Subpixel

-15 -10 -5 5 10 15

-0.1

0.1

0.2

0.3

Green Subpixel

-15 -10 -5 5 10 15

-0.1

0.1

0.2

0.3

Blue Subpixel

Figure 3: Optimal filters for the RGB stripe layout. The curves are colored according to the color component that influences
the subpixel denoted. The x-axis is given in subpixel units, i.e. every pixel is three units wide.

tend to penalize luminance for low frequencies, which leads
to band-pass filters. These have high support in the spatial
domain and are also harder to model analytically. To support
our original goal of efficient, low-cost subpixel rendering,
we decided to utilize the simpler C-CSF by Platt.

The total squared error over all frequencies, luminance,
and opponent color channels can then be computed as a sum
over dot products:

E = ∑
c∈{Y ′,C1,C2}

N−1

∑
n=0

Wc(fn)
〈
ên, ê∗n

〉
, (4)

where Wc(.) is the CSF for opponent channel c, and n iter-
ates over all N Fourier coefficients ên. fn is the frequency (in
cycles per degree) the n-th Fourier coefficient corresponds
to. Note that the relation between Fourier coefficients and
spatial frequency depends on the distance of the viewer to
the display and the display’s resolution. In the rest of the pa-
per, we assume that 300 subpixels are viewed at roughly 16
cpd. With a pixel density of 100 pixels per inch (PPI) this
corresponds to a viewer distance of roughly 25 cm. These
numbers can easily be adjusted for different viewing config-
urations.

To derive the subpixel intensity values that minimize the
error, one has to compute the gradient

∇E =
(

∂E
∂α1

, · · · , ∂E
∂αN

)
(5)

and solve for ∇E = 0. The i-th component of ∇E can be
derived as:

∂E
∂αi

=∑
c,n,k

Wc(fn)mc,i

(
mc,kαk−

3

∑
d=1

mc,dγk,d

)
cos
(

2n(k− i)
π−1N

)
,

(6)
where c runs over all three opponent color channels, and n
and k run over N subpixels and N Fourier coefficients, re-
spectively.

Using Eq. 6, one can restructure∇E = 0 into a system of
linear equations, whose solution yields a direct mapping of
the RGB color values to subpixel intensity values:

Ax =
3

∑
d=1

Bdyd → x = A−1
3

∑
d=1

Bdyd ,

with x = (α1, · · · ,αN)
T and yd =

(
γ1,d , · · · ,γN,d

)T . The ma-
trices Cd = A−1Bd form a direct mapping of the d-th color
channel of the RGB values γγγk to the subpixel intensities αk
of the k-th subpixel. Platt [Pla00] observed that those map-
ping matrices are block Toeplitz matrices and thus, instead of
solving the linear system for each scanline, nine discrete fil-
ter kernels can be extracted from those matrices. To control
the intensity of each subpixel, one obtains three discrete fil-
ter kernels for every subpixel color, which combine all three
RGB values into a single intensity αk of the k-th subpixel.
All 9 filter kernels are shown in Fig. 3. These filters can be
stored and applied directly to obtain a subpixel-filtered im-
age. However, due to their large spatial extent, the direct ap-
plication of these filters is costly and we thus strive for sim-
plifications without significant loss in filtering quality. Fur-
thermore, we seek to model these filters analytically in order
to simplify their description and evaluation. This is discussed
in the following section.

2.3. Frequency Analysis and Analytical Formulation

To gain further insight into the optimal filters, we investi-
gated the impulse response spectrum of each filter kernel il-
lustrated in Fig. 4. We note that for each subpixel we obtain a
low-pass filter and two band-pass filters that peak at about 16
cpd. We also see that the impact that band-pass filters have
on the intensity of the subpixel is restricted to a narrow fre-
quency band. Furthermore, due to their low amplitude, they
hardly contribute to the intensity at all. Due to their limited
support in frequency space and their marginal contribution,
it is safe to omit those filters without introducing distract-
ing artifacts. We have also verified this observation in our
experiments (see Sect. 4.1).

cpd0.00
0.01
0.02
0.03
0.04
0.05

0.00
0.01
0.02
0.03
0.04
0.05

5 10 15 20 25 305 10 15 20 25 30

Figure 4: Filter response spectra for all three subpixels of an
RGB display. Colored curves show the filter response of the
corresponding color channels in the RGB signal that influ-
ence the red (left), green (middle) and blue (right) subpixels.

c© 2013 The Author(s)
Journal compilation c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

T. Engelhardt, T.-W. Schmidt, J. Kautz, and C. Dachsbacher / Low-cost Subpixel Rendering for Diverse Displays

Virtual SubpixelSubpixel Sample

a) b)

1 Pixel

Figure 5: a) The PenTile RGBG subpixel layout reduces the
number of red/blue subpixels, while increasing their size; a
single pixel consists of only two subpixels. b) We use virtual
subpixels to incorporate such patterns into our derivation.

The filter kernels based on the derivation from Sect. 2.2
are discrete and only defined at subpixel positions. This is
highly impractical for image filtering applications, as the
filter usually needs to be evaluated for multiple pixel sam-
ples that do not align with the subpixel positions. This im-
plies that the optimal filter would have to be recomputed and
stored for each sample layout used. Hence, we strive for an
analytical description of the filter kernels. Empirically we
have found that the low-pass filters can be modeled well with
a Gaussian-windowed sinc function:

f (x) =
1
3

sinax
ax

exp

(
− x2

b

)
. (7)

Using a non-linear least square fit, we determine the coeffi-
cients a and b as presented in Table 1. Our proposed analyt-
ical model fits the data exceptionally well, with a root mean
squared error of less than 0.02 for each color channel. We
also considered fitting well-known filters like the Mitchell
filter [MN88], but deemed it unsuitable since there are only
two negative lobes.

Table 1: Parameters for optimal filtering for displays with
different subpixel patterns. For RGB stripe and 2D RGBW
parameters are given in subpixel units. RGBG parameters
are shown in units of virtual subpixels (cf. Fig. 5).

RGB Stripe
R G B –

a π/3 π/3 π/3 –
b 92.65 76.58 46.62 –

PenTile RGBG
R G B G

a π/12 π/6 π/12 π/6

b 457.37 476.62 457.37 479.06
2D RGBW

R G B W
a 2.06 1.75 1.89 3.04
b 7.12 1.40 2.66 16.36

2.4. Arbitrary 1D Subpixel Patterns

We now extend the basic analysis to arbitrary 1D subpixel
patterns. We exemplify this with the PenTile RGBG subpixel

0.1

-50 -25 +25 +50

0.2

0.3

virtual subpixels
0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

cpd

Figure 6: Optimal filters for the PenTile RGBG layout.
Band-pass filters have been omitted, as their contribution is
similarly low as for RGB displays. There are two green fil-
ters for the two different green subpixels involved in order to
display an RGB color signal (cf. Fig. 5). The frequency plot
shows the characteristics of the filters (note that the red and
blue curves are very similar).

layout, which is commonly found on mobile devices such as
smartphones. Exploiting the different sensitivity characteris-
tics of the HVS, these displays offer less resolution for the
red and blue color channels. To that end, each pixel of the
PenTile RGBG display is built of a green plus either a red or
blue subpixel, where the latter have twice the extent of the
green subpixel (Fig. 5a). To apply optimal filtering, we have
to take the layout of the subpixel pattern into account. For ir-
regular sampling patterns we use zero padding by introduc-
ing virtual subpixels that are laid out in a regular pattern and
then align the centers of each physical subpixel of the irreg-
ular layout to the virtual subpixels (Fig. 5b). This leaves vir-
tual subpixels that cannot be assigned to physical subpixels
and need to be ignored. To this end, we modify mk, which
was used to select columns of the color conversion matrix
(Eq. 2), so that if k does not align with a subpixel center, we
set it to 0 , effectively “deactivating” irrelevant virtual sub-
pixels (similar to [MK06]) . Fig. 6 shows the optimal filters
we obtain for PenTile subpixels. As can be seen, the filters
for red and blue subpixels adapt to the lower resolution and
thus the filters have larger support than the filters for the two
green subpixels.

2.5. 2D Subpixel Patterns

Similar to Messing et al. [MKD03], we extend the math-
ematical framework to two-dimensional subpixel patterns.
However, we use the original formulation by Platt instead
of constrained optimization, since most subpixel geometries
exhibit rectangular structure, which is quite amenable to a
straight-forward extension of the 1D approach. In situations
where subpixel shape is not negligible, we can introduce vir-
tual subpixels, as in the previous subsection. In the 2D case
the error metric is a function of both the horizontal subpixel
position s and the vertical subpixel position t:

E(s, t) = 3ms,tαs,t −
3

∑
d=1

mdγs,t,d .

c© 2013 The Author(s)
Journal compilation c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

T. Engelhardt, T.-W. Schmidt, J. Kautz, and C. Dachsbacher / Low-cost Subpixel Rendering for Diverse Displays

In frequency space the error then becomes:

ênx,ny =
N

∑
s=1,t=1

E(s, t)exp
(
−2iπsnx

N

)
exp
(
−2iπtny

N

)
.

In the same manner as in Sect. 2.2, we can derive a gradient
vector of the total error and set it to zero. In the 2D case the
gradient is given as:

∇E =
(

∂E
∂α1,1

, · · · , ∂E
∂α1,N

, · · · , ∂E
∂αN,N

)T

,

and contains N2 components. The analytical expression for
the partial derivative of the error is:

∂E
∂αs,t

= ∑
c,k,l,u,v

Wc(fk, fl)mc,s,t
[
mc,u,vαu,v−∑mc,dγd,u,v

]
Φ,

with Φ = cos
(

2π

N (k(u− s)+ l(v− t))
)

. In the same manner
as in the 1D case, we can construct and solve a system of lin-
ear equations, where the solution of this system yields matri-
ces which transform an entire 2D block of RGB color values
into subpixel intensities. Also as in the 1D case, we can ex-
tract discrete filter kernels that transform color values into
subpixel intensities. The system of linear equations grows
quadratically with the number of subpixels and is inefficient
to solve if many subpixels (i.e., hundreds) are taken into ac-
count. Fortunately, we only need to solve the equations once
for each subpixel pattern.

2.5.1. 2D RGBW Pattern

As an example, we have applied the analysis to the 2D Pen-
Tile RGBW pattern, where 2× 2 subpixels containing red,
green, blue and white primaries form a single pixel. To be
able to consider such a pattern for optimal filtering we need
to treat white as a primary color and thus employ a ma-
trix that can convert from RGBW into the Y ′C1C2 opponent
color space [RKAJ08]:

Mrgbw =

 0.15 0.47 0.04 0.37
0.13 −0.20 0.07 0
0.14 0.43 −0.57 0

 .

As most images and textures are given in RGB color space,
we need to convert them first to RGBW. We do this by com-
puting the minimum of all three RGB color channels, then
subtracting that value from each component, treating it as
pure white [ECH05]. Using Mrgbw and the above derivation,
we can compute the optimal 2D filters which are shown in
Fig. 7. Again, we ignore the band-pass filters and approxi-
mate the filters with low-pass characteristics using the fol-
lowing model:

f (x,y) =
1
4

sinc
(

a
√

x2 + y2
)

exp

(
− (x2 + y2)

b

)
.

3. Subpixel Rendering in Image Synthesis

In the following we propose to include subpixel rendering in
GPU-based image synthesis, which as we will see, induces

Figure 7: Four 2D filters for red, green, blue, and white
subpixels. The overall shape of the filters is similar to the
ones in Fig. 3, but extended to the 2D RGBW pattern.

only very small overhead. In particular, we describe how
multisampled antialiasing (MSAA) can incorporate subpixel
rendering, as well as how texture filtering can take advantage
of subpixel rendering. For brevity we restrict the discussion
in the following section to the RGB stripe layout. Similar
arguments can be made for other subpixel layouts.

3.1. MSAA Resolve

Multisampled antialiasing is a common technique used in
interactive rendering to improve the quality of the displayed
image. This technique computes images at a much higher
resolution than required for display, using multiple color
samples per pixel. Afterwards all color samples within a
pixel are resolved into a single color value for display, ap-
plying an antialiasing filter that spans the entire pixel.

This technique can be easily extended to subpixel-
awareness without increasing computation time of the re-
solve significantly. In order to apply subpixel filters during
the MSAA resolve, we use the analytic formulation from
Sect. 2.3 to compute the filter weights. We compute the dis-
tance dx (in subpixel units) in the horizontal direction (for
1D patterns) between the subpixel centers and the sample
positions and compute the filter weights w(dx), exemplarily
shown for the RGB stripe layout, as follows:

w(dx) =

{
1
3 sinc(adx)exp

(
−bd2

x

)
↔ |dx| ≤ 6

0 ↔ |dx|> 6
(8)

Since the optimal filter has infinite support, we truncate it af-
ter the first negative lobe, as the filter weights quickly dimin-
ish beyond this point. In case of the RGB stripe layout this
is the case for distances dx larger than 6 subpixels. For other
layouts, this clamping distance has to be adjusted appropri-
ately. This MSAA resolve can be executed very efficiently
on the GPU, as will be shown in the results section. For 2D
patterns, we compute distances dx and dy and evaluate the
appropriate (clamped) 2D filter.

c© 2013 The Author(s)
Journal compilation c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

T. Engelhardt, T.-W. Schmidt, J. Kautz, and C. Dachsbacher / Low-cost Subpixel Rendering for Diverse Displays

3.2. Texture Filtering

In rendering algorithms, texture filtering is an integral com-
ponent. A single (sub-)pixel may cover a large texture region
which must be filtered in order to avoid distracting artifacts
due to undersampling of the texture. We propose subpixel
texture filtering in order to increase the perceived display
resolution, yielding textures that appear sharper.

3.2.1. Elliptical Weighted Average Subpixel Filtering

For high quality texture filtering, the elliptical weighted av-
erage (EWA) [GH86] is often employed. This filter deter-
mines the elliptical footprint of a pixel in texture space and
computes the pixel’s color from all texels that fall within the
elliptical region. The size of the ellipse is determined using
the partial derivatives of the texture coordinates. To account
for all texels that fall within the elliptical region in texture
space, all texels in the bounding box of the ellipse are enu-
merated and tested for overlap with the ellipse.

For subpixel rendering we can directly fold subpixel fil-
tering into the texture filtering algorithm. The optimal fil-
ter is a low-pass filter with a support of multiple subpixels
on the screen. To account for this extended filter support in
texture space, we scale the partial derivatives of the texture
coordinates to span the filter’s support and compute the el-
lipse from the scaled derivatives. For simplicity we assume
that all subpixels share the same derivatives, hence we need
to compute the ellipse only once per pixel. To compute the
subpixel-filtered color value, we then need to displace the
ellipse in texture space. Afterwards we traverse the common
bounding box of all ellipses and compute a texel’s contribu-
tion to all subpixels simultaneously. We use a Gaussian with
hand-tuned standard deviation to obtain best filtering results,
although any other filter kernel can be used for EWA filter-
ing.

3.2.2. GPU-Based Subpixel Texture Filtering

While EWA filtering produces superior results, it is ex-
pensive to evaluate. It is also possible to modify GPU-
based anisotropic texture filtering to become subpixel-aware.
While it is not as accurate as EWA filtering, its performance
is substantially higher. To this end, we apply the subpixel fil-
ter directly in screen space. We compute the filter taps by dis-
placing a pixel’s interpolated texture coordinates along the
directions of its partial derivatives and then sample the tex-
ture using a trilinear or anisotropic texture lookup. For tex-
ture sampling we require samples from multiple subpixels,
which are then convolved with the subpixel filters. Conse-
quently, we need to adjust the mip-map level from which we
retrieve a texture sample. For this, we scale the partial deriva-
tives to the extent of a subpixel and compute the appropriate
mip-map level as described by Schilling et al. [SKS96].

Full Optimal Filtering Low-Pass Only Difference x32

Figure 8: The influence of the band-pass filters obtained by
optimal filtering is visually insignificant as demonstrated on
this test pattern.

4. Results

In the following we discuss our results. All filters were im-
plemented and executed on the GPU using Direct3D 11
shaders. Timings were taken on a PC with an Intel Core
i7 860 processor with 2.80 GHz, 8 GB of main memory, and
an AMD Radeon 5870 GPU. First we discuss our experi-
mental evaluation of the band-pass filters derived for optimal
filtering. Then we present our results for MSAA rendering
for different subpixel layouts, which we simulated directly
in the pixel shader, followed by a discussion of our subpixel
texture filtering results. We also investigated the temporal
properties of our filters, showing that our optimal filter is
stable. Please see the supplementary material for an example
animation. Finally, we present the findings of a user study we
conducted in order to assess the visual quality of our pro-
posed optimal subpixel filter, simulating different subpixel
layouts. For all our results, we applied filtering in linear RGB
color space, i.e. before gamma correction. This is the natu-
ral space for doing the MSAA resolve, but assumes linear
input images for texture filtering (or requires inverse gamma
correction beforehand).

4.1. Influence of Band-Pass Filters

We briefly discuss the influence of the omitted band-pass fil-
ters. As shown in Sect. 2.3 these filters only contribute to the
filtered image for frequencies close to the cutoff frequency
of the low-pass filters. We evaluate their influence on a high
frequency pattern in Fig. 8, indicating that it is minimal. As
can be seen in the difference image the contributions are neg-
ligible, and become only visible when scaled 32-fold.

4.2. MSAA Resolve

In order to measure the performance of our custom MSAA
resolve, we render an image with 8×MSAA in full HD res-
olution (1920× 1080) using a render target with 8-bit pre-
cision per color channel. Fig. 9 shows several examples of
this (please also see the supplemental material). We enabled
execution of the pixel shader per image sample and thus we
effectively perform super-sampling when rendering into an
MSAA texture. To perform the subpixel resolve, the shader
has to process 40 samples for the optimal filter, compared to
8 samples for a common per-pixel resolve pass (which corre-
sponds to a non-subpixel-aware box filter). For efficiency we
precompute the coefficients for the optimal filter, and then
the performance of the resolve pass scales linearly with the

c© 2013 The Author(s)
Journal compilation c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

T. Engelhardt, T.-W. Schmidt, J. Kautz, and C. Dachsbacher / Low-cost Subpixel Rendering for Diverse Displays

RGB stripe RGBG 2D RGBW

subpixel filtering x8 subpixel filtering x8 subpixel filtering x8

RGB stripe RGBG 2D RGBW

subpixel filtering x8 subpixel filtering x8 subpixel filtering x8

Figure 9: These images show subpixel renderings of a photograph and an image from the UNIGINE game engine benchmark;
both images are high resolution and have been injected into an MSAA render target. We show different subpixel arrangements
with filtering obtained from our subpixel-aware MSAA resolve (please look at the images on the screen and zoom in). The second
and fourth row show the absolute difference (×8) to images resolved with standard antialiasing. The colorful appearance is
due to the relative positions of subpixels: the difference image for the RGB stripe pattern is mostly purple as the green subpixels
reside on the RGB pixel centers, while red and blue subpixels are offset and thus most affected by the filtering. For the RGBG
pattern the green subpixels are shifted, while all subpixels are roughly equally affected with the 2D RGBW pattern. (Image
captured from UNIGINE Heaven DX11 Benchmark. UNIGINE Corp. 2012. All rights reserved.)

number of samples in the MSAA texture and the color pre-
cision. For the standard per-pixel box filter the 8×MSAA
resolve at 1920×1080 takes 0.53ms, compared to 2.29ms
for our optimal filter.

4.3. Texture-Filtering
We evaluated our proposed subpixel texture filtering in terms
of quality and speed. Fig. 1 shows a comparison of different
texture filtering techniques. For this example a square texture
with a resolution of 61442 pixels was used, while the final
rendering was 10242 pixels in size. We have implemented
all filtering methods in pixel shaders. Our implementation
of the EWA algorithm is based on the original formulation
by Greene [GH86]. Furthermore, we simulated the different
subpixel layouts in a pixel shader for display on a generic
LCD display. As can be seen in the right part of Fig. 1, sub-

pixel texture filtering reduces blurriness and increases the
sharpness of the texture. In terms of performance, filtering
cost mostly scales linearly with the number of required tex-
ture lookups. Since the performance of the filters depends
strongly on the resolution of the input texture, we only re-
port relative performance values. For the RGBG layout, we
have found that the filtering costs when using our optimal
subpixel filtering algorithm increase by a factor of about 1.1
to 1.2. This only moderate gain in rendering time is due to
the reduced pixel resolution that the PenTile RGBG display
offers. For the other subpixel layouts, filtering is 1.8 to 2.2
times more costly than standard filtering.

4.4. User Studies
We conducted a user study to compare the quality of our
proposed optimal filter with other filters. To this end, we

c© 2013 The Author(s)
Journal compilation c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

T. Engelhardt, T.-W. Schmidt, J. Kautz, and C. Dachsbacher / Low-cost Subpixel Rendering for Diverse Displays

a) d)

b) c)

e)

Figure 10: Different (subpixel) filters employed in the user study (RGB stripe layout). a) Reference image. b) Mitchell filter,
no supbixel rendering. c) Box filter, subpixel rendering. d) Mitchell filter, supbixel rendering. e) Our optimal filter, subpixel
rendering. Filtered images are dimmer due to simulating subpixels with real pixels. Although the differences seem negligible in
the zoom-ins, they are noticeable when viewing the resulting images on the screen (as supported by our user study).

employed a 56" (142.24 cm) Quad-HD monitor with a res-
olution of 3840×2160 pixels, i.e., a pixel pitch of 0.32mm.
Participants sat 1.8m away from the display, which corre-
sponds to a distance of about 50cm on a regular 24" Full-
HD display (Fig. 11 shows our set-up). The high-resolution
display was used to show each of six different reference im-
ages (see Fig. 10 for an example; the supplemental material
contains all images used) at the full resolution of the display.
We then took grids of 3×3 monitor pixels to simulate a low-
resolution display, e.g. for RGB stripe layout, the left col-
umn of the 3× 3 pixels shows red only, the middle column
green, and the right column blue. We used our optimal sub-
pixel filter, a box-shaped subpixel filter (roughly correspond-
ing to ClearType), a subpixel Mitchell filter, and a standard
Mitchell filter (no subpixel processing) to create four down-
sampled versions (by 1/3 along each axis) of the original
images. Both Mitchell filters use parameters B = C = 1/3,
following the recommendation B+ 2C = 1 [MN88]. Partic-
ipants of our study performed a pairwise comparison exper-
iment on these images: each stimulus consisted of two pairs
of images (enumerating all possible combinations of filters
in random order) and participants chose the image that (sub-
jectively) best replicated the high-resolution image. Subjects
were allowed to look at the reference, high-resolution im-
age in order to better assess the image quality of filtered
results. To this end, they could selectively display the ref-
erence, which was displayed in place of the filtered images
after a brief (1 sec) pause. Twenty-two participants took part
in the experiment. Fig. 12 summarizes the findings (more
detail in supplemental material). Overall, our optimal sub-
pixel filter was significantly better than any other filtering
method (p < 0.01, t-test). There is a clear benefit to using
our optimal filter, even for displaying photographs or game-
like content.

In a second experiment, we compared different subpixel
patterns. The set-up was identical to the first experiment, i.e.,
using a Quad-HD monitor to simulate three different lower-
resolution displays with an RGB, an RGBG, and an RGBW

pattern, see Fig. 1 for the exact layouts. Please note that for
the user study we used slightly different RGBG and RGBW
layouts: to ensure a fair comparison of all sub-pixel patterns
we simulated all of them with the same number of pixels
(6× 6) on the physical high-resolution screen. For all three
cases, we used our optimal subpixel filter to drive the ren-
dering. Participants again performed a pairwise comparison,
where each stimulus compared an image rendered with two
different subpixel patterns (enumerating all possible pairs of
patterns). This was done for the same six images as above.
The same 22 participants took part and the findings are sum-
marized in Fig. 13. Overall, RGB and RGBW were not sig-
nificantly different. However, both were significantly better
(p < 0.01) than RGBG.

5. Conclusion
We have presented methods for subpixel-aware MSAA and
texture filtering. To this end, we have analyzed different 1D
and 2D subpixel patterns, and derived (perceptually) opti-
mal, analytic filters. Our results show that the perceived dis-
play resolution increases without noticeable artifacts. The
additional cost for subpixel-aware MSAA and texture filter-
ing is small compared to the benefit of using it. An inter-
esting direction for future work is combining our low-cost
subpixel rendering with temporal integration in the spirit of

Figure 11: Test set-up for the user study. Conditions in the
image do not match actual testing conditions, where the en-
vironment illumination was completely darkened.

c© 2013 The Author(s)
Journal compilation c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

T. Engelhardt, T.-W. Schmidt, J. Kautz, and C. Dachsbacher / Low-cost Subpixel Rendering for Diverse Displays

!1.5%

!1%

!0.5%

0%

0.5%

1%

1.5%

sub_opt% sub_box% sub_mit% def_mit%Sc
al
es
'

All'Images'

Figure 12: User study results for comparing different sub-
pixel filtering methods for six different images (bridge, cat,
fairy, hairball, text, and tree). Participants were asked to
perform a pairwise comparison between the different meth-
ods and choose the best reproduction of a given image.
Thurstonian scaling was applied and our optimal filter was
significantly better than any other method (p < 0.01, t-test).

!1.5%

!1.0%

!0.5%

0.0%

0.5%

1.0%

1.5%

RGB% RGBW% RGBG%

All#Images#

Figure 13: User study results for comparing different sub-
pixel patterns for six different images (bridge, cat, fairy,
hairball, text, and tree). Participants were asked to perform
a pairwise comparison between the different pattern layouts
and choose the best reproduction of a given image. There
was no statistical significant difference between RGB and
RGBW, but GRGB was significantly worse than RGB and
RGBW (p < 0.01, t-test).
Didyk et al. and Templin et al. [DER∗10, TDR∗11], which
works best for static images, in order to enhance the display
of both static and dynamic images.

References
[Atc05] ATCHESON B.: Subpixel rendering of Bayer-patterned

images. http://www.cs.ubc.ca/~atcheson/projects.html, 2005. 2

[CR68] CAMPBELL F. W., ROBSON J. G.: Application of Fourier
analysis to the visibility of gratings. Journal of Physiology 197,
3 (1968), 551–566. 3

[DER∗10] DIDYK P., EISEMANN E., RITSCHEL T.,
MYSZKOWSKI K., SEIDEL H.-P.: Apparent display reso-
lution enhancement for moving images. ACM Transactions on
Graphics (Proceedings SIGGRAPH 2010) 29, 4 (2010). 2, 10

[Duf89] DUFF T.: Polygon scan conversion by exact convolu-
tion. Proceedings International Conference on Raster Imaging
and Digital Typography (1989), 151–168. 2

[ECH05] ELLIOTT C., CREDELLE T., HIGGINS M.: Adding a
white subpixel. Information Display 21, 5 (2005). 2, 6

[FAY∗09] FANG L., AU O., YANG Y., TANG W., WEN X.: A
new adaptive subpixel-based downsampling scheme using edge
detection. In Circuits and Systems (Proceedings of ISCAS)
(2009), pp. 3194 –3197. 2

[GH86] GREENE N., HECKBERT P.: Creating raster omni-
max images from multiple perspective views using the elliptical
weighted average filter. IEEE Computer Graphics and Applica-
tions 6, 6 (1986), 21–27. 2, 7, 8

[JF05] JOHNSON G. M., FAIRCHILD M. D.: The effect of op-
ponent noise on image quality. In Proceedings of SPIE (2005),
vol. 5668, pp. 82–89. 3

[KdH03] KLOMPENHOUWER M. A., DE HAAN G.: Subpixel
image scaling for color matrix displays. Journal of the Society
for Information Display 11, 1 (2003), 99–108. 2, 3

[KU81] KAJIYA J., ULLNER M.: Filtering high quality text for
display on raster scan devices. In Proceedings SIGGRAPH 1981
(1981), pp. 7–15. 2

[MD02] MESSING D., DALY S.: Improved display resolution of
subsampled colour images using subpixel addressing. In Interna-
tional Conference on Image Processing (2002), vol. 1, pp. I–625
– I–628. 2

[MK06] MESSING D. S., KEROFSKY L. J.: Using optimal ren-
dering to visually mask defective subpixels. In Proceedings of
SPIE (2006), vol. 6057, pp. 60570O–1–60570O–12. 2, 5

[MKD03] MESSING D., KEROFSKY L., DALY S.: Subpixel ren-
dering on non-striped colour matrix displays. In Image Process-
ing (Proceedings of ICIP) (2003), vol. 2, pp. 949–952. 2, 5

[MN88] MITCHELL D. P., NETRAVALI A. N.: Reconstruction
filters in computer-graphics. Computer Graphics (Proceedings
of SIGGRAPH’88) 22 (1988), 221–228. 2, 5, 9

[MP11] MAVRIDIS P., PAPAIOANNOU G.: High quality elliptical
texture filtering on gpu. In Symposium on Interactive 3D Graph-
ics and Games (2011), pp. 23–30. 3

[MPFJ99] MCCORMACK J., PERRY R., FARKAS K. I., JOUPPI
N. P.: Feline: fast elliptical lines for anisotropic texture mapping.
In SIGGRAPH ’99 (1999), pp. 243–250. 2

[Mul85] MULLEN K. T.: The contrast sensitivity of human colour
vision to red-green and blue-yellow chromatic gratings. Journal
of Physiology 359 (1985), 381–400. 3

[PKH∗00] PLATT J. C., KEELY B., HILL B., DRESEVIC B., BE-
TRISEY C., MITCHELL D. P., HITCHCOCK G., BLINN J. J.,
WHITTED T.: Displaced filtering for patterned displays. In
Proceedings Society for Information Display Symposium (May
2000), pp. 296–299. 2

[Pla00] PLATT J. C.: Optimal filtering for patterned displays.
IEEE Signal Processing Letters 7, 7 (2000), 179–180. 2, 3, 4

[RKAJ08] REINHARD E., KHAN E. A., AKYÜZ A. O., JOHN-
SON G. M.: Color Imaging: Fundamentals and Applications. A.
K. Peters, Ltd., 2008. 6

[SKS96] SCHILLING A., KNITTEL G., STRASSER W.: Texram:
A smart memory for texturing. IEEE Computer Graphics and
Applications 16 (1996), 32–41. 7

[SLK01] SHIN H.-C., LEE J.-A., KIM L.-S.: SPAF: sub-texel
precision anisotropic filtering. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware
(2001), pp. 99–108. 2

[TDR∗11] TEMPLIN K., DIDYK P., RITSCHEL T., EISEMANN
E., MYSZKOWSKI K., SEIDEL H.-P.: Apparent resolution en-
hancement for animations. In Proceedings of the 27th Spring
Conference on Computer Graphics (2011), pp. 85–92. 2, 10

[XFMW08] XU J., FARRELL J., MATSKEWICH T., WANDELL
B.: Prediction of preferred ClearType filters using the S-CIELAB
metric. In Image Processing (Proceedings of ICIP) (2008),
pp. 361 –364. 2

c© 2013 The Author(s)
Journal compilation c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

