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Abstract

Training deep neural networks requires gradient estima-
tion from data batches to update parameters. Gradients
per parameter are averaged over a set of data and this has
been presumed to be safe for privacy-preserving training
in joint, collaborative, and federated learning applications.
Prior work only showed the possibility of recovering input
data given gradients under very restrictive conditions – a
single input point, or a network with no non-linearities, or
a small 32 ˆ 32 px input batch. Therefore, averaging gra-
dients over larger batches was thought to be safe. In this
work, we introduce GradInversion, using which input images
from a larger batch (8 – 48 images) can also be recovered
for large networks such as ResNets (50 layers), on complex
datasets such as ImageNet (1000 classes, 224ˆ 224 px). We
formulate an optimization task that converts random noise
into natural images, matching gradients while regularizing
image fidelity. We also propose an algorithm for target class
label recovery given gradients. We further propose a group
consistency regularization framework, where multiple agents
starting from different random seeds work together to find
an enhanced reconstruction of the original data batch. We
show that gradients encode a surprisingly large amount of
information, such that all the individual images can be recov-
ered with high fidelity via GradInversion, even for complex
datasets, deep networks, and large batch sizes.

1. Introduction
Sharing weight updates or gradients during training is

the central idea behind collaborative, distributed, and fed-
erated learning of deep networks [1, 22, 24, 25, 28]. In the
basic setting of federated stochastic gradient descent, each
device learns on local data, and shares gradients to update a
global model. Alleviating the need to transmit training data
offers several key advantages. This keeps user data private,
allaying concerns related to user privacy, security, and other
proprietary concerns. Further, this eliminates the need to
store, transfer, and manage possibly large datasets. With this
framework, one can train a model on medical data without
access to any individual’s data [3, 32], or perception model
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Figure 1: We propose (a) GradInversion to recover hidden training
image batches with high fidelity via inverting averaged gradients.
GradInversion formulates (b) an optimization process that trans-
forms noise to input images (Sec. 3.1). It starts with label restora-
tion from the gradient of the fully connected layer (Sec. 3.2), then
optimizes inputs to match target gradients under fidelity regular-
ization (Sec. 3.3) and registration-based group consistency regular-
ization (Sec. 3.4) to improve reconstruction quality. This enables
recovery of 224 ˆ 224 pixel ImageNet samples from ResNet-50
batch gradients, which was previously impossible (please zoom
into examples above. More in Sec. 4).

for autonomous driving without invasive data collection [41].
While this setting might seem safe at first glance, a few

recent works have begun to question the central premise of
federated learning - is it possible for gradients to leak private
information of the training data? Effectively serving as a
“proxy” of the training data, the link between gradients to the
data in fact offers potential for retrieving information: from
revealing the positional distribution of original data [33, 44],
to even enabling pixel-level detailed image reconstruction
from gradients [13, 53, 55]. Despite remarkable progress, in-



verting an original image through gradient matching remains
a very challenging task – successful reconstruction of images
of high resolution for complex datasets such as ImageNet [9]
has remained elusive for batch sizes larger than one.

Emerging research on network inversion techniques offers
insights into this task. Network inversion enables noise-to-
image conversion via back-propagating gradients on appro-
priate loss functions to the learnable inputs. Initial solutions
were limited to shallow networks and low-resolution syn-
thesis [11, 39], or creating an artistic effect [37]. However,
the field has rapidly evolved, enabling high-fidelity, high-
resolution image synthesis on ImageNet from commonly
trained classifiers, making downstream tasks data-free for
pruning, quantization, continual learning, knowledge trans-
fer, etc. [5, 17, 42, 48]. Among these, DeepInversion [48]
yields state-of-the-art results on image synthesis for Ima-
geNet. It enables the synthesis of realistic data from a vanilla
pretrained ResNet-50 [19] classifier by regularizing feature
distributions through batch normalization (BN) priors.

Building upon DeepInversion [48], we delve into the prob-
lem of batch recovery via gradient inversion. We formulate
the task as the optimization of the input data such that the
gradients on that data match the ones provided by the client,
while ensuring realism of the input data. However, since the
gradient is also a function of the ground-truth label, one of
the main challenges is to identify the ground-truth label for
each data point in the batch. To tackle this, we propose a
one-shot batch label restoration algorithm that uses gradients
from the last fully connected layer.

Our goal is to recover the exact images that the client
possesses. By starting from noisy inputs generated by differ-
ent random seeds, multiple optimization processes are likely
to converge to different minimas. Due to the inherently
spatially-invariant nature of convolutional neural networks
(CNNs), these resulting images share spatial information
but differ in the exact location and arrangement. To allow
for improved convergence towards the ground truth images,
we compute a registered mean image from all candidates
and introduce a group consistency regularization term on
every optimization process to reduce deviation. We find that
the proposed approach and group consistency regularization
provide superior better image recovery compared to prior
optimization approaches [13, 55].

Our non-learning based image recovery method recovers
more specific details of the hidden input data when com-
pared to the state-of-the-art generative adversarial networks
(GAN), such as BigGAN [4]. More importantly, we demon-
strate that a full recovery of individual images of 224 ˆ 224
px resolution with high fidelity and visual details, by invert-
ing gradients of the batch, is now made feasible even up to
batch size of 48 images.

Our main contributions are as follows:
• We introduce GradInversion to recover hidden original

images from random noise via optimization given batch-
averaged gradients.

• We propose a label restoration method to recover ground
truth labels using final fully connected layer gradients.

• We introduce a group consistency regularization term,
based on multi-seed optimization and image registration,
to improve reconstruction quality.

• We demonstrate that a full recovery of detailed individual
images from batch-averaged gradients is now feasible
for deep networks such as ResNet-50.

• We introduce a new Image Identifiability Precision met-
ric to measure the ease of inversion over varying batch
sizes, and identify samples vulnerable to inversion.

2. Related Work
Image synthesis. GANs [16, 23, 36, 38, 50] have delivered
state-of-the-art results for generative image modeling, e.g.,
BigGAN-deep on ImageNet [4]. Training a GAN’s gen-
erator, however, requires access to original data. Multiple
works have also looked into training GANs given only a pre-
trained model [6, 34], but result in images that lack details
or perceptual similarities to original data.

Prior work in security studies image synthesis from a
pretrained single network. The model inversion attack by
Fredrikson et al. [11] optimizes inputs to obtain class images
using gradients from the target model. Follow-up works [20,
45, 47] scale to new threat scenarios, but remain limited to
shallow networks. The Secret Revealer [52] exploits priors
from auxiliary datasets and trains GANs to guide inversion,
scales the attack to modern architectures, but on the datasets
with less diverse samples, e.g., MNIST and face recognition.

Though originally aiming at understanding network prop-
erties, visualization techniques offer another viable option
to generate images from networks. Mahendran et al. [31]
explore inversion, activation maximization, and caricatur-
ization to synthesize “natural pre-images” from a trained
network [30, 31]. Nguyen et al. use global generative priors
to help invert trained networks [39] for images, followed by
Plug & Play [38] that boosts up image diversity and quality
via latent priors. These methods still rely on auxiliary dataset
information, feature embedding, or altered training.

Recent efforts focus on image generation from a pre-
trained network without any auxiliary information. Deep-
Dream [37] by Mordvintsev et al. hints on “dreaming” new
visual features onto images leveraging gradients on inputs,
extendable towards noise-to-image conversion. Saturkar et
al. [42] extended the approach to more realistic images. The
more recent extensions [5, 48] significantly improved state-
of-the-art performance on image synthesis from off-the-shelf
classifiers, without auxiliary information nor additional train-
ing but relying on BN statistics.
Gradient-based inversion. There have been early attempts



to invert gradients in pursuit of proxy information of the
original data, e.g., the existence of certain training sam-
ples [33, 44] or sample properties [21, 44] of the dataset.
These methods primarily focus on very shallow networks.

A more challenging task aims at reconstructing the ex-
act images from gradients. The early attempt by Phong et
al. [26] brought theoretical insights on this task by showing
provable reconstruction feasibility on single neuron or single
layer networks. Wang et al. [46] empirically inverted out
single image representations from gradients of a 4-layer net-
work. Along the same line, Zhu et al. [55] pushed gradient
inversion towards deeper architectures by jointly optimizing
for “pseudo” labels and inputs to match target gradients. The
method leads to accurate reconstruction up to pixel-level,
while remains limited to continuous models (e.g., ones with
sigmoid instead of ReLU) without any strides, and scales up
to low-resolution CIFAR datasets. Zhao et al. [53] extend
the approach with a label restoration step, hence improving
speed of single image reconstruction. The very recent work
by Geiping et al. [13] for the first time pushed the boundary
towards ImageNet-level gradient inversion - it reconstructs
single images from gradients. Despite remarkable progress,
the field struggles on ImageNet for any batch size larger than
one, when gradients get averaged.

3. GradInversion
In this section, we explain GradInversion in detail. We

first frame the problem of input reconstruction from gradi-
ents as an optimization process. Then, we explain our batch
label restoration method, followed by the auxiliary losses
used to ensure realism and group consistency regularization.

3.1. Objective Function
Given a network with weights W and a batch-averaged

gradient �W calculated from a ground truth batch with
images x˚ and labels y˚, our optimization solves for

x̂

˚ “ argmin
x̂

Lgradpx̂;W,�Wq ` Rauxpx̂q, (1)

where x̂ P RKˆCˆHˆW (K,C,H,W being the batch size,
number of color channels, height, width) is a “synthetic” in-
put batch, initialized as random noise and optimized towards
the ground truth x

˚. Lgradp¨q enforces matching of the gradi-
ents of this synthetic data (on the original loss for a network
with weights W) with the provided gradients �W. This
is augmented by auxiliary regularization Rauxp¨q based on
image fidelity and group consistency regularization,

Rauxpx̂q “ Rfidelitypx̂q ` Rgrouppx̂q. (2)

We next elaborate on each term individually. For gradient
matching, we minimize the `2 distances between gradients
on the synthesized images x̂ and the ground truth gradient:

Lgradpx̂;W,�Wq “ ↵G
∞

l ||r
W

plqLpx̂, ŷq ´ �W

plq||2, (3)

where �W

plq “ r
W

plqLpx˚,y˚q refers to ground truth
gradient at layer l, and the summation, scaled by ↵G, runs
over all layers. One key yet missing component here is the
ŷ that initiates the backpropagation. We next explain an
effective algorithm for restoring batch-wise label from the
gradients of the fully connected classification layer.

3.2. Batch Label Restoration
Considering the cross-entropy loss for the classification

task, the ground truth gradient of x˚ “ rx1, x2, ..., xKs of
batch size K can be decomposed into:

r
W

Lpx˚,y˚q “ 1

K

ÿ

k

r
W

Lpxk, ykq, (4)

where xk, yk denotes an original image/label pair. For each
image xk, the gradient w.r.t. the network final logits z at
index n is rzn,kLpxk, ykq “ pk,n ´ yk,n, where pk,n is
the post-softmax probability in range (0, 1), and yk,n is the
binary presentation of yk at index n among N total classes.
Consequentially, this leaves sign

`

rzn,kLpxk, ykq
˘

negative
iff n “ n˚

k at the ground truth index, and positive other-
wise. However, we do not have access to rzn,kLpxk, ykq as
gradients are only given w.r.t. the model parameters.

Denote the parameters of the final fully connected classi-
fication layer by W(FC) P RMˆN with M being the number
of embedded features, and N being the number of target
classes. Define �W

(FC)
m,n,k :“ rwm,nLpxk, ykq as the gradi-

ent of the training loss for image xk w.r.t. W(FC)
m,n, connecting

feature m to logits n. We are only given the average of
the tensor �W

(FC) along the batch dimension k. Using the
chain rule we have:

�W

(FC)
m,n,k “ rzn,kLpxk, ykq ˆ Bzn,k

Bwm,n
. (5)

Note that Bzn,k

Bwm,n
“ om,k where om,k is the mth input of the

fully connected layer, and is also the mth output of previous
layer. If the previous layer has commonly used activation
functions such as ReLU or sigmoid, om,k is always non-
negative. This hints on target label existence via signs of a
new informative indicator:

Sn,k :“
ÿ

m

�W

(FC)
m,n,k “

ÿ

m

rzn,kLpxk, ykq
loooooooomoooooooon

neg. iff n = n˚
k

ˆ om,k
loomoon

non-neg.

,

(6)

where S “ tSn,ku is an N ˆ K-matrix, constructed by
summing the tensor �W

(FC) along the feature dimension
m. Interestingly, S contains negative values for the ground
truth label of each instance. Thus, the kth column of S

can be used to restore the ground truth label for the kth

image by simply identifying the index of the negative entry.
Zhao et al. [53] explored this rule for single image label
restoration. However, we do not have access to S in our



multi-sample batch setup as the given gradients are averaged
over all images.

Motivated by this, we define the N -dimensional batch-
level vector s “ tsnu by averaging S along its columns:

sn :“ 1

K

ÿ

k

Sn,k “
ÿ

m

` 1

K

ÿ

k

�W

(FC)
m,n,k

loooooooomoooooooon

given in �W

(FC)

˘

.
(7)

The appealing property of s is that it can be computed easily
from the given gradient for the fully connected layer by
summing it along the feature dimension m as shown on the
right hand side of Eqn. 7.

As noted above, each column in S is a vector, contain-
ing a single negative peak at the label index and positive
otherwise. Since the vector s is a linear super-position of
S’s columns, from all individual images xk’s in the batch,
this information can be lost during summation. However,
we empirically observe that the encoded positions often pos-
sess larger magnitudes |Sn˚

k ,k| " |Sn‰n˚
k ,k|. This leaves a

negative sign mostly intact when the summation brings in
positive values from other images.

To further enable a more robust propagation of negative
signs, we utilize column-wise minimum values, instead of
summation along the feature dimension for the s calculation:
to have a sum along the feature dimension be negative, at
least one of its positions has to be negative, but not vice
versa. This further boosts up the label restoration accuracy,
especially when the batch size is large. Thus, we formulate
the final label restoration algorithm for batch size K as:

ŷ “ arg sort
`

min
m

r
W

(FC)
m,n

Lpx˚,y˚q
˘

r: Ks, (8)

with m corresponding to the feature embedding dimension
before the fully connected layer. The resulting ŷ supports
Eqn. 3 in subsequent x̂ optimization in pursuit for x˚. One
limitation of the proposed method is that it assumes non-
repeating labels in the batch, which generally holds for a
randomly sampled batch of size K that is much smaller than
the number of classes at 1000 for ImageNet.

Even with correct y

˚, finding the global minima for
Lgradp¨q remains challenging. The task is under-constrained,
suffers from information loss due to non-linearity and pool-
ing layers, and has only one correct solution [13, 55]. We
next introduce Rauxp¨q based on fidelity and group consis-
tency regularization to assist with this optimization.

3.3. Fidelity (Realism) Regularization
We use the strong prior proposed in DeepInversion [48] to

guide the optimization towards natural images. Specifically,
we add Rfidelityp¨q to the loss function to steer x̂ away from
unrealistic images with no discernible visual information:

Rfidelitypx̂q “ ↵tvRTVpx̂q`↵`2R`2px̂q`↵BNRBNpx̂q, (9)

original results of independent optimization processes
Figure 2: Reconstruction variation in single-path optimization,
focusing on one target from a batch of size 8. Optimizations follow
the exact same loss hyperparameters, given only varying random
seeds for pixel-wise initialization of x̂.

where RTV and R`2 denote standard image priors [30, 37,
40] that penalize the total variance and `2 norm of x̂, resp.,
with scaling factors ↵tv, ↵`2 . The key insight of DeepInver-
sion resides in exploiting a strong prior in BN statistics:

RBNpx̂q “
ÿ

l

|| µlpx̂q ´ BNlpmeanq||2`
ÿ

l

|| �2
l px̂q ´ BNlpvarianceq||2,

(10)

where µlpx̂q and �2
l px̂q are the batch-wise mean and variance

estimates of feature maps corresponding to the lth convolu-
tional layer. By enforcing valid intermediate distributions
at all levels, Rfidelityp¨q yields convergence towards realistic-
looking solutions.

3.4. Group Consistency Regularization
An additional challenge of gradient-based inversion lies

in the exact localization of the target object, due to transla-
tional invariance of CNNs. Unlike an ideal scenario where
optimization converges to one ground truth, we observe that
when repeating the optimization with different seeds, e.g., as
in Fig. 2, each optimization process unveils a local minimum
that allocates semantically correct image features at all levels,
but differs from others – images shift around the ground truth,
focusing on slightly different details. During the forward
pass, the existence of pooling layers, strided convolutions,
and zero-padding, jointly causes spatial equivariance among
the restored images, as also observed by Geiping et al. [13].
A combination of the restored images from varying seeds,
however, hints at the potential for a better restoration of the
final image closer to the ground truth.

We introduce a group consistency regularization term that
exploits multiple seeds simultaneously in a joint optimization
manner, as shown in Fig 3. Intuitively, a joint exploration
with multiple paths can expand and enlarge the search space
during gradient descent. However, we have to regularize
them to prevent too much divergence, at least in the final
stages, given the search for a single target. We optimize
each input using the target Eqn. 1. To facilitate information
exchange, we regularize all the inputs simultaneously with a
new group consistency regularization term:

Rgrouppx̂, x̂gPGq “ ↵group||x̂ ´ Epx̂gPGq||2, (11)

that jointly considers all the image candidates across all the



Average

Image
registration

Image
registration

Inputs Registered
images

Average

Registered
average

Seed N

Seed 1

... ...

Figure 3: Overview of group consistency regularization.

seeds, and penalizes any candidate x̂g once it deviates away
from the “consensus” image Epx̂gPGq of the group.

One quick and intuitive option for Epx̂gPGq is pixel-wise
averaging. Though “lazy” as it seems, pixel-wise mean
already leads to visual improvements by mixing the infor-
mation and feedback from all seeds in the group, as we will
show later. To further explore the underlying transformations
across seeds and create better consensus, we add in image
registration to improve Epx̂gPGq:

Epx̂gPGq “ 1

|G|
ÿ

g

F

x̂gÑ 1
|G|

∞

g
x̂g

px̂gq. (12)

This leads to our final group consistency regularization
shown in Fig. 3. We (i) first compute the pixel-wise mean
within the candidate set of size |G| as a coarse registration
target, (ii) register each individual image towards the tar-
get via Fp¨q, and (iii) obtain the post-registered mean as
the target for regularization. We use RANSAC-flow [43]
for Fp¨q. As we will show later, group consistency regular-
ization enables consistent improvements in recovery across
various evaluation metrics, further closing the gap between
reconstructed and original batches.

3.5. The Final Update
Using all the above losses, we update the input in an

iterative manner. To further encourage exploration and di-
versity, we add pixel-wise random Gaussian noise in each
update, inspired by the Langevin updates in energy-based
models [10, 12, 15]. Our final optimization steps are:

�
x̂

ptq – r
x̂

`

Lgradpx̂pt´1q,rWq ` Rauxpx̂pt´1qq
˘

⌘ – N p0, Iq
x̂

ptq – x̂

pt´1q ` �ptq�
x̂

ptq ` �ptq↵n⌘

where �
x̂

ptq corresponds to an optimizer update, ⌘ denotes
randomly sampled noise to encourage exploration, �ptq is
the learning rate, and ↵n re-scales the finally added noise.

4. Experiments
We evaluate our method for the classification task on the

large-scale 1000-class ImageNet ILSVRC 2012 dataset [9] at
224 ˆ 224 pixels. We first perform a number of ablations to

evaluate the contribution of each component of our method.
Then, we show the success of GradInversion and compare
with prior art. Finally, we increase the batch size to explore
the limits of gradient inversion.
Implementation details. In all cases, image pixels are ini-
tialized i.i.d. from Gaussian noise of µ “ 0 and � “ 1. We
primarily focus on the ResNet-50 architecture for the clas-
sification task, pre-trained with MOCO V2 and fine-tuned
only the classification layer, achieving 71.0% top-1 accuracy
on ImageNet1. We observe that stronger feature extraction
leads to better restoration as compared to the default pre-
trained PyTorch model, and shallower network architectures
(ResNet-18). We use Adam for optimization with a 0.1 learn-
ing rate with cosine learning rate decay, and 50 iterations as
warm up. We use ↵tv “ 1 ¨ 10´4,↵`2 “ 1 ¨ 10´6,↵BN “
0.1,↵G “ 0.001,↵group “ 0.01,↵n “ 0.2 as loss scaling
constants. For feature distribution regularization, we primar-
ily focus on the case when BN statistics of the target batch is
jointly provided with the gradients as commonly required in
distributed learning for global BN updates [29, 49, 54]. We
also analyze regularization towards network BN means and
variances - averaged over dataset, they offer proxy for single
batch statistics. We synthesize image batches of resolution
224ˆ 224 using NVIDIA V100 GPUs and automatic-mixed
precision (AMP) [35] acceleration. Optimization of each
batch consumes 20K optimization iterations.
Evaluation metrics. We present visual comparisons of im-
ages obtained under different settings and evaluate three
quantitative metrics for image similarity. To account for
pixel-wise mismatch, we compute: (i) the cosine similarity
in FFT2D frequency response, (ii) post-registration PSNR,
and (iii) LPIPS perceptual similarity score [51] between
reconstruction and original images.

4.1. Ablation Studies
4.1.1 Label restoration
We first restore labels from the gradients of the fully con-
nected layer. Table 1 summarizes the averaged label restora-
tion accuracy on ImageNet training and validation sets, given
10K randomly drawn samples divided into varying batch
sizes. In a zero-shot method, GradInversion restores original
labels accurately, improving upon prior art [53].

4.1.2 Batch reconstruction

We next gradually add each proposed loss to the optimization
process. Here we focus on a batch of 8 images for algorithm
ablations before expanding towards a larger batch size. We
summarize results in Table 5 and discuss insights next:
Adding Lgrad. We find `2 loss outperforms cosine similar-
ity [13] for gradient matching - see Appendix for details.

1Based on https://github.com/facebookresearch/moco.
MOCO V2 (Chen et al. [8]) enhances MOCO (He et al. [18]) with SimCLR
(Chen et al. [7]) and reports ImageNet top-1 accuracy at 71.1% [8].



Batch Label Restoration Accuracy (%)
Training Set Validation Set

size [53]: ours [53]: ours
1 100.0 100.0 100.0 100.0
8 95.89 99.56 96.08 99.47
32 89.88 99.29 90.32 99.19
64 84.51 98.79 82.27 98.21
96 80.53 97.88 82.13 98.11

Table 1: Average restoration accuracy over 10K random samples
of different batch size from the ImageNet training/validation sets
without label repeats. :: the original method [53] only works for
single image - we extend it by adopting its sum rule for Eqn. 7 and
then show improvements.

Obj. Function Lgradpx̂˚;rWq Distance to Original Images
FFT2D Ó PSNR Ò LPIPS Ó

N p0, Iq 8.625 0.706 9.964 1.351

Lgrad 4.190 0.404 10.753 0.919
+ Rfidelity 3.206 0.279 12.058 0.655
+ Rgroup.lazy 2.918 0.233 12.261 0.578
+ Rgroup.reg 2.685 0.175 12.929 0.484

x

˚ Lgrad `Rfidelity `Rgroup.lazy `Rgroup.reg

Table 2: Ablation study when each proposed loss to optimization
objective function - quantitative (up) and qualitative (bottom) com-
parison. Original batch contains 8 samples - we show 4 samples
visually here amid space limit, see Appendix for entire batch.

Model Distance to Original Images
FFT2D Ó PSNR Ò LPIPS Ó

ResNet-50 (MOCO V2) 0.175 12.929 0.484
ResNet-50 (standard) 0.204 11.771 0.584
ResNet-18 (standard) 0.218 10.729 0.693

Table 3: Reconstruction under varying feature extraction strength.

Reconstructed images remain noisy. Partial original features
emerge, but leak among images within the batch.
Adding Rfidelity. Adding fidelity regularization immediately
improves image quality. Conditioned on image prior, gradi-
ent inversion starts to allocate visual details towards individ-
ual images, enabling both visual and quantitative improve-
ments in Table 5.
Adding Rgroup. Group consistency regularization further
improves reconstruction. For this analysis, we use 8 random
seeds, each determining a Gaussian initialization of inputs
and the associated pixel-wise perturbations. All seeds are

jointly optimized, compatible with standard multi-node train-
ing pipeline that supports synchronization only for Epx̂gPGq
computation. For better insights, we next compare the choice
of (i) “lazy” pixel-wise mean, and (ii) registration-augmented
mean as the regularization target.
a) Lazy regularization. We observe “lazy” pixel-wise mean
as regularization target already brings in performance im-
provements. Though not yet accommodating for inter-seed
variation, pixel-wise mean hints on correct “perceived” posi-
tions of the target objects. Objects start to emerge at correct
positions with improved orientations.
b) Registration enhancement. We then add in registration
to exploit consensus among candidates. We start registration
after 5K initial optimization iterations to allow for sufficient
feature emergence, then iterate every 100 iterations. Ideally,
each candidate shall be registered to its original image for the
best spatial adjustment. While given no such access, regis-
tration to pixel-wise mean turns out to be effective. The final
registration-based regularization helps close the remaining
gap - it improves all evaluation metrics in Table 5. At this
stage, GradInversion accurately allocates detailed original
contents to individual images, from averaged gradients.
Inverting different networks. We observe that gradients
from a stronger feature extractor leak more information - see
a quick comparison in Table 3. Self-supervised pretraining
of ResNet-50 leads to the best image reconstruction, when
compared to a standard training recipe of the same ResNet-
50 architecture, and a weaker ResNet-18. We continue our
analysis with ResNet-50 MOCO V2 to study the limits of
batch reconstruction under gradient inversion.

4.2. Comparison with the state-of-the-art

We next compare with prior art on the batch size of 8
images with 224x224px. We summarize both qualitative
(Fig. 4) and quantitative results (Table 4). We compare with
three viable methods for image synthesis:
(i) Gradient inversion [13, 55]: We first compare with prior
model inversion methods for gradient matching: (i) deep
gradient leakage method by Zhu et al. [55] and (ii) federated
gradient inversion by Geiping et al. [13]. We first extend both
techniques towards ImageNet batch restoration following
the authors’ public open-sourced repository [14, 56]. For
an additional fair comparison, we also compare with both
methods at batch size one in Fig. 5, and show notable fidelity
and localization improvements.
(ii) DeepInversion [48]: We also analyze performance im-
provements over the baseline DeepInversion method that
synthesizes images conditioned on ground-truth labels.
(iii) GAN latent space projection [23]: We finally compare
with the GAN-based latent code optimization method. We
applied latent code projection as in StyleGAN2 [23] for
BigGAN-deep generator [4] at resolution 256 ˆ 256. Given
no access to original images for projection loss [23], we



Original batch - ground truth

GradInversion (Ours) - LPIPS Ó: 0.484

Latent Projection (Karras et al. CVPR’20 [23]) of BigGAN-deep (Brock et al. ICLR’19 [4]) for Gradient Matching - LPIPS Ó: 0.732

DeepInversion (Yin et al. CVPR’20 [48]) - LPIPS Ó: 0.728

Inverting Gradients (Geiping et al. NeurIPS’20 [13]) - LPIPS Ó: 0.749

Deep Gradient Leakage (Zhu et al. NeurIPS’19 [55]) - LPIPS Ó: 1.319
Figure 4: ImageNet batch gradient inversion for ResNet-50 visual comparison with state-of-the-art methods. GradInversion labels rearranged
in ascending order to match ground truth after label restoration at 100% accuracy. Best viewed in color.

base the target loss on `2 distances between synthesized and
ground truth gradients.

GradInversion outperforms prior art both visually (Fig. 4)
and numerically (Table 4). Without label restoration, a joint
optimizing to seek for image-label pairs [55] struggles to
converge on ImageNet, as also observed by [13] even at
batch size one. Total variation prior and magnitude-invariant
loss as in [13] help improve reconstruction, but remain too
weak to guide optimization towards ground truth. The Deep-
Inversion [48] baseline improves image fidelity as expected,
but inverts images with little observable links to the orig-
inal batch. Projection onto BigGAN’s latent space offers
a balance between image fidelity and restored details, but
falls short under a weaker guidance from original gradients
rather than original images, as projection to latent space is

NP-hard [27] and misses visual details [23].

4.3. Effect of scaling up the batch size

We next increase the batch size. Our current analysis
scales up to batch size 48 using a 32GB NVIDIA V100
GPU. As shown in Fig. 6, the amount of recoverable image
content gradually decreases as batch size increases. As ex-
pected, more averaging of gradient information in a batch
better protects privacy of an individual image. Surprisingly,
GradInversion still unveils a decent amount of original vi-
sual information at batch size 48, and sometimes a viable
complete reconstruction, as shown in Fig. 7.
Image Identifiablity Precision (IIP). We formulate a new
score that measures the amount of “image-specific” features
revealed by gradient inversion. Intuitively, this measures



Method Requirements Distance to Original Images
y

˚ GAN FFT2D Ó PSNR Ò LPIPS Ó
Noise N p0, Iq (starting point) - - 0.706 9.964 1.351

Latent projection (Karras et al. CVPR’20 [23]) of BigGAN-deep (Brock et al. ICLR’19 [4]) X X 0.275 10.149 0.722
DeepInversion (Yin et al. CVPR’20 [48]) X - 0.238 10.131 0.728
Inverting Gradients (Geiping et al. NeurIPS’20 [13]) X - 0.355 11.703 0.749
Deep Gradient Leakage (Zhu et al. NeurIPS’19 [55]) - - 0.602 10.252 1.319

GradInversion - BNapprox. (ours) - - 0.232 11.235 0.633
GradInversion - BNexact (ours) - - 0.175 12.929 0.484

Table 4: Comparison of GradInversion with state-of-the-art methods for ResNet-50 gradient inversion on ImageNet1K. BNapprox. denotes
regularizing towards BN statistics in the network learnt from the original dataset; BNexact denotes the BN statistics of target batch shared (or
leaked) in distributed setup for global BN updates, e.g., Synchronized Batch Normalization [49].

Original Zhu et al. [55] Geiping et al. [13]

(d) Ours - BNapprox. (e) Ours - BNexact

Figure 5: Comparison with prior art on ResNet-50 (ImageNet) gra-
dient inversion at batch size 1 for a “challenging” sample from [13].

Original batch size 4 batch size 16 batch size 48
Restored

Figure 6: Reduced amount of restored original visual features as
batch size increases.

how easy it is to identify a particular image, given only
its reconstruction, among all its similar peers in the origi-
nal dataset. Quantifiably, we calculate the fraction of exact
matches between an original image and the nearest neigh-
bor to its reconstruction. The resulting metric, referred to
as Image Identifiability Precision (IIP), evaluates gradient
inversion strength across varying batch sizes. Fig. 8 plots
the IIP curve for GradInversion. As expected, reconstruc-
tion efficacy gradually decreases as batch size increases, as
also seen in Fig. 6. We make a surprising observation that
many samples („ 28%) can be correctly identified even after
averaging gradient from 48 images.
The Vulnerable Population. We empirically observe a pos-
itive correlation between reconstruction efficacy and gradient
magnitude. Delving deeper into this observation, we identify
a new set of images that are more “vulnerable” to leak infor-
mation under GradInversion. To this end, we identify one
image per ImageNet class category whose gradient `2 norm
is the largest within that class folder. When compared to
random images in Fig. 8, batches sampled from such “vulner-
able population” increases the IIP by large margins, nearly
doubled at batch size 48. This advocates for careful attention

(a) details restored

(b) semantics restored

(c) no visual information
Figure 7: Varying level of information leakage at batch size 48
on ImageNet validation set. Each block containing a pair of (left)
original sample and its (right) reconstruction by GradInversion.

Figure 8: The Image Indentifiability Precision (IIP) curve of Grad-
Inversion on ImageNet validation set, as a function of increasing
batch size. Each point averaged per 256 randomly selected samples
of varying batch sizes (240 samples for batch size 48). Nearest
neighbors measured in avgpool feature space cosine similarity.

to such vulnerable samples before gradient sharing.

Conclusions
We introduced GradInversion to reconstruct individual

images in a batch, given averaged gradients. We showed that
the assumption of privacy when sharing gradients from deep
networks on complex datasets even at large batch sizes, does
not hold. This offers new insights into the development of
privacy-preserving deep learning frameworks.

It can also be fruitful to study the underlying mechanism
of information transfer that enables original data recovery
from gradients. We hope that future work can study vulnera-
bilities of aggregration-based federated learning [2], as well
as further strengthen them to prevent inversion.
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Suresh, and D. Bacon. Federated learning: Strategies
for improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

[26] T. Le, Y. Aono, T. Hayashi, et al. Privacy-preserving deep
learning: Revisited and enhanced. In ICATIS, pages 100–110,
2017.

[27] Q. Lei, A. Jalal, I. S. Dhillon, and A. G. Dimakis. Inverting
deep generative models, one layer at a time. In NeurIPS,
2019.

[28] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling
distributed machine learning with the parameter server. In
OSDI, pages 583–598, 2014.

[29] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia. Path aggregation
network for instance segmentation. In CVPR, 2018.

[30] A. Mahendran and A. Vedaldi. Understanding deep image
representations by inverting them. In CVPR, 2015.

[31] A. Mahendran and A. Vedaldi. Visualizing deep convolutional
neural networks using natural pre-images. IJCV, 2016.

[32] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas. Communication-efficient learning of deep networks
from decentralized data. In AISTATS.

[33] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov. Ex-
ploiting unintended feature leakage in collaborative learning.
In IEEE Symp. Security and Privacy (SP).

[34] P. Micaelli and A. J. Storkey. Zero-shot knowledge transfer
via adversarial belief matching. In NeurIPS, 2019.

[35] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen,
D. Garcia, B. Ginsburg, M. Houston, O. Kuchaiev,
G. Venkatesh, and H. Wu. Mixed precision training. In
ICLR, 2018.

[36] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral
normalization for generative adversarial networks. In ICLR,
2018.

[37] A. Mordvintsev, C. Olah, and M. Tyka. In-
ceptionism: Going deeper into neural networks.
https://research.googleblog.com/2015/06/



inceptionism-going-deeper-into-neural.

html, 2015.
[38] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosin-

ski. Plug & play generative networks: Conditional iterative
generation of images in latent space. In CVPR, 2017.

[39] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune.
Synthesizing the preferred inputs for neurons in neural net-
works via deep generator networks. In NeurIPS, 2016.

[40] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks
are easily fooled: High confidence predictions for unrecog-
nizable images. In CVPR, 2015.

[41] S. Samarakoon, M. Bennis, W. Saad, and M. Debbah. Feder-
ated learning for ultra-reliable low-latency V2V communica-
tions. In GLOBECOM, 2018.

[42] S. Santurkar, A. Ilyas, D. Tsipras, L. Engstrom, B. Tran, and
A. Madry. Image synthesis with a single (robust) classifier.
In NeurIPS, 2019.

[43] X. Shen, F. Darmon, A. A. Efros, and M. Aubry. RANSAC-
Flow: Generic two-stage image alignment. In ECCV, 2020.

[44] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Member-
ship inference attacks against machine learning models. In
IEEE Symp. Security and Privacy (SP).

[45] Y. Wang, C. Si, and X. Wu. Regression model fitting under
differential privacy and model inversion attack. In IJCAI,
2015.

[46] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi.
Beyond inferring class representatives: User-level privacy
leakage from federated learning. In INFOCOM, 2019.

[47] Z. Yang, E.-C. Chang, and Z. Liang. Adversarial neural
network inversion via auxiliary knowledge alignment. arXiv
preprint arXiv:1902.08552, 2019.

[48] H. Yin, P. Molchanov, J. M. Alvarez, Z. Li, A. Mallya,
D. Hoiem, N. K. Jha, and J. Kautz. Dreaming to distill:
Data-free knowledge transfer via DeepInversion. In CVPR.

[49] H. Zhang, K. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, and
A. Agrawal. Context encoding for semantic segmentation. In
CVPR, 2018.

[50] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. Self-
attention generative adversarial networks. In ICML, 2019.

[51] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang.
The unreasonable effectiveness of deep features as a percep-
tual metric. In CVPR, 2018.

[52] Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li, and D. Song. The
secret revealer: Generative model-inversion attacks against
deep neural networks. In CVPR, 2020.

[53] B. Zhao, K. R. Mopuri, and H. Bilen. iDLG: Improved deep
leakage from gradients. arXiv preprint arXiv:2001.02610,
2020.

[54] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene
parsing network. In CVPR, 2017.

[55] L. Zhu, Z. Liu, and S. Han. Deep leakage from gradients. In
NeurIPS, 2019.

[56] L. Zhu, Z. Liu, and S. Han. Deep Leakage From Gra-
dients Github Source Code. https://github.com/

mit-han-lab/dlg, 2019. [Online; accessed 3-Nov-
2020].


