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In this supplementary material, Section A summarizes
the details of our two-branch architecture and how to gen-
erate the initial proposals. Section B presents more evi-
dences of the spatial displacement problem in action detec-
tion. Section C provides more algorithm and result analysis.

A. Implementation Details
UCF101 Dataset. Table 4 shows the details of our two-

branch architecture. The network takes as inputs a sequence
of 512× 25× 25 feature maps from the backbone network
(i.e., VGG16) as well as a set of proposal tubelets. For each
proposal, an RoI pooling layer extracts a sequence of fixed-
length regional features from the feature maps. For tempo-
ral modeling in the global branch, we first spatially extend
each proposal tubelet to incorporate more scene context, as
described in Section 3.5 of the paper. We then forward the
extended features to three 3D convolutional layers to ob-
tain the global features. To perform action classification,
the global features are flatten and fed into a sequence of
fully connected (fc) layers, which finally output the soft-
max probability estimates over C classes plus background.
To perform tubelet regression, the global features are con-
catenated along channel dimension with the regional fea-
tures at each frame and then fed into another sequence of
fc layers, which produce a class-specific regression output
with the shape 4× (C + 1) for each frame.

AVA Dataset. The overall architecture is the same as
the one in Table 4 except that we do not introduce extra
3D convolutional layers for temporal modeling. Instead, the
Mixed 5b and Mixed 5c in I3D are used and followed by
a 1× 1× 1 convolutional layer to downsample the channel
dimension to 256.

We use 34 initial proposals in the experiments on AVA
since this datasets involves more actions on average at each
frame than UCF101. We define the 34 initial proposals fol-
lowing the practice in [24]. In details, we generate the ini-
tial proposals using a two-level spatial pyramid with [4/3,
2] scales and [5/6, 3/4] overlap for each spatial scale. In
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Layer Output size
Global branch

conv1 3×3×3, 1024
6×7×7max pool

conv2 3×3×3, 512
3×7×7max pool

conv3 3×3×3, 256
1×7×7average pool

fc1(2) 4096 1×1×1
out C+1, softmax 1×1×1

Local branch
fc1(2) 4096 1×1×1

out 4×(C+1) 1×1×1

Table 4: Architecture of the two-branch network, where T×
H×W,N represent the dimensions of convolutional kernels
and output feature maps.

other words, a sliding window with size 3W/4×3H/4 pix-
els and overlap ratio 5/6 is used for the first level, and a
sliding window with size W/2 × H/2 pixels and overlap
ratio 3/4 is used for the second level. Here, W and H de-
note the width and height of the frames, respectively. We
extract video frames in 12 fps and resize them to 400×400.

B. Spatial Displacement

The spatial displacement problem occurs in an action
tube when the sequence is long and or involves rapid move-
ment of people or camera. Here we analyze the spatial
displacement problem on UCF101 by calculating the min-
imum IoU within tubes (MIUT). Given a ground truth ac-
tion tube, MIUT is defined by the minimum IoU overlap
between the center bounding box (i.e., the box of the center
frame) and the other bounding boxes within the tube. Figure
10 demonstrates the statistics of different actions with dif-
ferent length using ground truth action tubes in the valida-
tion set. We observe that the spatial displacement problem
is not very obvious for short clips (e.g., K = 6), as most



Figure 9: Examples of the spatial displacement problem. Red boxes indicate the ground truth bounding boxes and blue ones
the spatial grids. From top to bottom are LongJump (ID: 12), FloorGymnastics (ID: 8) and CliffDiving (ID: 4).

Figure 10: MIUT of ground truth action tubes on UCF101.
K denotes different tube lengths, and red dash line coore-
sponds to MIUT = 0.5.

action classes have high MIUT values. However, the spa-
tial displacement problem becomes more severe for most
actions when the sequence length increases. For example,
“Skijet” (ID: 18) has a 0.12 MIUT and “CliffDiving” (ID:
4) has a 0.17 MIUT when K = 30, indicating both actions
encounter large spatial displacements within the tubes. We
also show some examples to illustrate the spatial displace-
ment problem in Figure 9.

C. More Analysis

In order to tackle the spatial displacement problem, we
introduce two methods to adaptively perform the temporal
extension, i.e., extrapolation and anticipation as defined in
Eqs.(4-5) of the paper. Figure 11 illustrates the extrapola-
tion: for each of the current proposals, following its first
and last tubelets (one tubelet with 6 bounding boxes), the
extrapolation linearly estimates the directions and scales of

Figure 11: Illustration of extrapolation for adaptive tem-
poral extension. Blue shaded boxes are the first and last
bounding boxes of the corresponding tubelets.

Figure 12: Analysis of the detection accuracy (blue) and the
average size (green) of each action class.

the extended tubelets. As for the impact of different action
scales, we qualitatively show the examples in Figure 8 of the
paper, and we report the frame-APs and average sizes of dif-
ferent action classes of UCF101 in Figure 12. Thanks to the
progressive learning, STEP is found to be robust to handle
the actions with small scales, though it starts with coarse-
scale proposals. Figure 13 demonstrates the per-class break-
down frame-AP on AVA.



Figure 13: Comparison of the per-class breakdown frame-AP at IoU threshold 0.5 on AVA.


