
Supplementary Material for
Self-Supervised Object Detection via Generative Image Synthesis

Siva Karthik Mustikovela1,3* Shalini De Mello1 Aayush Prakash1

Umar Iqbal1 Sifei Liu1 Thu Nguyen-Phuoc2 Carsten Rother3 Jan Kautz1

1NVIDIA 2University of Bath 3Heidelberg University
{siva.mustikovela, carsten.rother}@iwr.uni-heidelberg.de; aayush382.iitkgp@gmail.com;

T.Nguyen.Phuoc@bath.ac.uk; {shalinig, sifeil, uiqbal, jkautz}@nvidia.com

1. Overview
In this supplementary document, we provide the archi-

tectural and training details of our SSOD framework. Sec-
tion 2 provides the architectures for the various networks
(S, F , Dscn, Dfg , Dbg) used in SSOD. Section 3 describes
the training procedure and all its hyper-parameters. Further,
in Section 4 we present the analysis of the case when the
pose-aware synthesis network is trained directly on the tar-
get data with unknown number of objects per image, which
fails to successfully disentangle the background and fore-
ground representations. Lastly, we discuss the performance
of the object detector on heavily occluded objects (‘Hard’
cases in KITTI [2]) in Section 5. We open-source our code
at https://github.com/NVlabs/SSOD.

2. Network Architectures
2.1. Pose-Aware Synthesis Network

The architecture for the pose-aware synthesis network
(S), described in Section 3.3 and Figure 3 of the main pa-
per, is detailed in Table 3. The architectures of S’s fore-
ground and background object branches are presented in
Table 1 and Table 2. As shown in Figure 3 of the main pa-
per, each of these branches take a learnable 3D object repre-
sentation as input and perform a series of 3D convolutions
on them. The 3D features are stylized using separate in-
put style codes for the foreground (zf ) and the background
(zb) objects. The style codes pass through their respective
MLP blocks, the output of which is used by adaptive in-
stance normalization (AdaIN) [4] to control the style of each
generated object/background. The MLP blocks contain 4
fully-connected layers each with a width of 200 neurons
and leaky ReLU activations after each layer. The resulting
3D features are finally transformed using the input pose.
These branches are used by S (Table 3), which performs
an element-wise maximum operation on all the 3D features
from all foreground objects and the background, followed
by a projection of these features onto 2D. This is further
followed by a set of 2D convolutions to generate an image
of size 256× 256.

*Siva Karthik Mustikovela was an intern at NVIDIA during the project.

2.2. Scene and MSO Discriminator

The architectures of scene (Dscn) and multi-scale object
(Dmso) discriminators are described in Table 4. The input
to each of these networks is an image of size 256 × 256.
This is followed by a set of 2D convolutions and a fully-
connected layer to produce a single class membership score
indicating the probability of real/fake for the input image.
We use Spectral Normalization [7] in these discriminator
networks.

2.3. Patch Discriminator for Foreground and Back-
ground

The patch-based architectures of the foreground (Dfg)
and the background (Dbg) discriminators are described in
Table 5. The input to each of these networks is an image
of size 256× 256. Each network is fully convolutional and
produces an output of size 8× 8. We use Spectral Normal-
ization [7] in these discriminator networks.

2.4. Object Detection Network

We use Faster-RCNN [9] with a Resnet-50-FPN [6]
backbone as our detection network. It takes a 2D image as
input and extracts features using the backbone layer. These
features are further used by the object detection head to pre-
dict the top-left and bottom-right corners of the bounding
box pertaining to a detected object. We use the object de-
tection implementation from [11] in our work.

3. Training
We implement SSOD in Tensorflow [1]. We use the

Adam [5] optimizer to learn our networks with beta param-
eter values (0.9, 0.99). The learning rate for all the networks
is set to 0.00005. The batch size is 16. The dimensions of
the style codes for the foreground (zf ) and the background
(zb) are 200 and 100, respectively. The style codes are sam-
pled from a uniform distribution between (-1, 1). For our
camera in S we use a focal length of 35mm with a sensor
size of 32mm similar to [8].



Layer Kernel Size stride Activation Normalization Output Dimension

Learnable 3D-Code - - LReLU AdaIN 4× 4× 4× 512

3D-Deconv 3× 3× 3 2 LreLU AdaIN 8× 8× 8× 128

3D-Deconv 3× 3× 3 2 LreLU AdaIN 16× 16× 16× 64

3D-Transform - - - - 16× 16× 16× 64

Table 1: Architecture of foreground object branch

Layer Kernel Size stride Activation Normalization Output Dimension

Learnable 3D-Code - - LReLU AdaIN 4× 4× 4× 256

3D-Deconv 3× 3× 3 2 LreLU AdaIN 8× 8× 8× 128

3D-Deconv 3× 3× 3 2 LreLU AdaIN 16× 16× 16× 64

3D-Transform - - - - 16× 16× 16× 64

Table 2: Architecture of background object branch

3.1. Training Procedure

As described in the paper, we adopt a stage-wise training
strategy to learn the modules of SSOD.
Uncoupled Training. Here, we first train the pose-aware
synthesis network for 20 epochs. We initialize the weights
of S, Dscn, Dmso using N (0, 0.2) and biases with 0. We
train S, supervised by the discriminators Dscn and Dmso

in a Generative Adversarial Network [3] framework. We
found empirically that updating S twice for every update
of Dscn and Dmso, results in the best visual quality. The
weights for the losses from Dscn and Dmso are 0.5, each.
The real images for Dscn and Dmso are sampled from the
real-world source image collection {Is}. During this train-
ing stage, we synthesize images with a single foreground
object as described in Sec. 3.3 of the main paper.

Next, we train the object detector F (initialized with Im-
ageNet pretraining) using 10k images synthesized by S con-
taining 1 or 2 objects paired with their computed bounding
box labels 〈Ig,Ag〉. The learning rate forF is set to 0.00005
and it is trained for 10 epochs. In addition to the images syn-
thesized from S, we use real background regions {Ibt} ex-
tracted from target collection {It}. To obtain the real back-
ground images {Ibt}, we leverage Grad-CAM [10] to iden-
tify regions in {It} that do not contain the object of interest
(‘Vehicle’, ‘Car’, ‘Wagon’, ‘Van’) with a high confidence
(> 0.9). To achieve this, we use layer-4 of the Resnet-152
network trained on Imagenet with Grad-CAM.
Coupled Training. In this stage, we tightly couple all net-
works (S, F , Dscn, Dmso, Dfg , Dbg) together in an end-to-
end manner and fine-tune them with the source {Is}, target
{It} and synthesized {Ig} images. Similar to the uncoupled
training stage, the real images for training Dscn and Dmso

are sampled from the source collection {Is}. The real im-
ages for training Dbg come from {Ibt}.

The real images for trainingDfg are obtained as follows.
We use the object detector F trained in the uncoupled train-
ing stage to obtain high-confidence (> 0.9) detections of
cars in {It}. Further, we use these detections to crop out im-
age patches {Pt} of size 256×256 around the object using
the centers of the detections. These form image-annotation
pairs 〈Pt,Mt〉 where Mt is the corresponding binary mask
indicating the region inside the detection. Mt is used in
computing the foreground appearance loss as discussed in
Sec. 3.5.1 of the main paper.

The weights for the losses from Dfg and Dbg , (Lfg

and Lbg) are initially set to a 0.05 and are progressively
increased by 0.01 every 200 iterations to reach 0.5. Lfg

and Lbg update the components of S that affect the over-
all appearance of images. Hence only the parameters of the
MLPs and of 2D convolutional blocks of S are updated. F
is trained using images synthesized by S using the image-
annotation pairs 〈Ig, Ag〉. The weight for Ldet is 0.4. We
train SSOD in coupled training stage for 25k iterations.

4. Training synthesizer directly on target data
In this section, we explore the case when the pose-aware

synthesis network, S is trained directly on the target data
{It} instead of the source data {Is}. As described in Sec.
4.1 of the main paper, we use the Compcars dataset [12] as
the source dataset {Is}, which is an in-the-wild collection
of images with one car per image (see examples in Figure
1 of main paper). The target dataset for this experiment is
the KITTI [2] dataset which contains outdoor driving scenes
with unkown numbers of cars image (zero to multiple cars
per image) with heavy occlusions, reflections and extreme



Layer Kernel Size stride Activation Normalization Output Dimension
3D

B
ra

nc
he

s n× FG Branch (a) - - - - 16× 16× 16× 64

BG Branch (b) - - - - 16× 16× 16× 64

Element-Wise Maximum(a,b) - - - - 16× 16× 16× 64

Pr
oj

ec
t Collapse - - - - 16× 16× (16.64)

Conv 1× 1 1 LReLU - 16× 16× 256

2D
C

on
vs

2D-Deconv 4× 4 2 LReLU - 32× 32× 128
2D-Deconv 4× 4 2 LReLU - 64× 64× 64
2D-Deconv 4× 4 2 LReLU - 128× 128× 32
2D-Deconv 4× 4 2 LReLU - 256× 256× 16

2D-Conv (to RGB) 4× 4 1 - - 256× 256× 3

Table 3: Architecture of pose-aware synthesis network

Layer Kernel Size stride Activation Normalization Output Dimension

2D-Conv (from RGB) 4× 4 1 LReLU - 256× 256× 8

2D-Conv 5× 5 2 LReLU SpectralNorm 128× 128× 16

2D-Conv 5× 5 2 LReLU SpectralNorm 64× 64× 32

2D-Conv 5× 5 2 LReLU SpectralNorm 32× 32× 64

2D-Conv 5× 5 2 LReLU SpectralNorm 16× 16× 128

2D-Conv 5× 5 2 LReLU SpectralNorm 8× 8× 256

2D-Conv 5× 5 2 LReLU SpectralNorm 4× 4× 512

Fully Connected - - - - 1

Table 4: Architecture of scene discriminator and multi-scale object discriminators

lighting (see examples in Figure 1).

To train S with the target data, we first identify regions
in {It}, which contain foreground objects of interest. We
use Grad-CAM [10] to identify regions in the target image
collections where there is a high confidence response for
the classes (‘Vehicle’, ‘Car’, ‘Wagon’, ‘Van’). We do this
to obtain training images with a fixed number (one) car per
image. Figure 1 illustrates some example images obtained
using this method. However, notice that these images do
not necessarily contain only one foreground object, but a
random unknown number of them per image. This is be-
cause Grad-CAM can only identify regions, which have a
high response to a specific class and cannot separate out ob-
jects. However, it is important for S to know the number of
foreground objects per image as discussed in Sec. 3.3 of the
main paper.

Since the number of foreground objects is not known a
priori for these real-world images, it is not possible to cor-
rectly specify the number of foreground objects in the syn-
thesizer while synthesizing images with it. This makes it
difficult for S to disentangle foreground and background
regions and learn separable representations for them dur-
ing training with such data. Figure 2 presents images syn-
thesized by S trained on foreground images extracted from
the KITTI target image collection (Figure 1). Each row in
this figure contains images with a fixed input foreground
and background code. The horizontal translation value of
the foreground objects is varying across the columns. Fig-
ure 2 shows that, even when the input translation of the fore-
ground object varies, the image is constant throughout the
columns without translation of the foreground object. This
is because S is unable to disentangle the foreground and
background regions and hence providing a different input



Layer Kernel Size stride Activation Normalization Output Dimension

2D-Conv (from RGB) 4× 4 1 LReLU - 256× 256× 8

2D-Conv 4× 4 2 LReLU SpectralNorm 128× 128× 16

2D-Conv 4× 4 2 LReLU SpectralNorm 64× 64× 32

2D-Conv 4× 4 2 LReLU SpectralNorm 32× 32× 64

2D-Conv 4× 4 2 LReLU SpectralNorm 16× 16× 128

2D-Conv 4× 4 2 LReLU SpectralNorm 8× 8× 256

2D-Conv 1× 1 1 LReLU - 8× 8× 256

Table 5: Architecture of foreground and background discriminators

translation value to the GAN for the foreground object does
not induce any changes in the generated images.

On the other hand, when S is trained using a source
dataset {Is} (where the number of objects per image is
known) and adapted to a target dataset (KITTI [2]) using
our approach, it is able to disentangle foreground and back-
ground representations. As a result, the pose of the fore-
ground object can be controlled by the input parameters as
shown in Figure. 3. This experiment shows that it is imper-
ative to have access to an image collection {Is} where the
number of foreground objects per image is known a priori to
be able to successfully train our controllable GAN network
S. In our case, we assume that we have access to an image
collection with one object per image.

5. Limitations

In this section, we present a qualitative analysis of the
objects detected by SSOD for images from the challenging
KITTI [2] dataset as discussed in Sec. 4.5 of the main paper.
These images contain objects with heavy occlusions, reflec-
tions and extreme lighting variations. In Figures 4, 5 we il-
lustrate the 2D bounding boxes predicted by SSOD in green
and the ground truth bounding boxes in blue. In all these im-
ages it can be seen that the cars are reliably detected under
moderate occlusions, lighting variations and reflections. On
the other hand, cars with extremely heavy occlusions where
only a small part of the car is visible are sometimes missed.
We observe that these are generally cases where cars are
parked along the side of the road and are heavily occluded
by each other. Such cases where there is heavy occlusion
are classified as ‘Hard’ in the KITTI [2] dataset. We believe
that this problem can be alleviated by specifically learning
to model the layout, occlusions of objects and context of
scenes in generated images to be similar to target data. For
example, cars could occlude each other in parked scenarios
or roads with heavy traffic. We consider this to be a future
goal to address.

References
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Mur-
ray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete War-
den, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
flow: A system for large-scale machine learning. In OSDI,
pages 265–283, 2016. 1

[2] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In CVPR, 2012. 1, 2, 4, 5, 6, 7

[3] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Wein-
berger, editors, NeurIPS, volume 27. Curran Associates, Inc.,
2014. 2

[4] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In ICCV,
2017. 1

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 1

[6] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, July 2017. 1

[7] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. In ICLR, 2018. 1

[8] Thu Nguyen-Phuoc, Christian Richardt, Long Mai, Yong-
Liang Yang, and Niloy Mitra. Blockgan: Learning 3d object-
aware scene representations from unlabelled images. In
NeurIPS, 2020. 1

[9] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with re-
gion proposal networks. In NeurIPS, 2015. 1

[10] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Ba-
tra. Grad-cam: Visual explanations from deep networks via
gradient-based localization. In ICCV, Oct 2017. 2, 3, 5

[11] Yuxin Wu et al. Tensorpack. 2016. 1



Figure 1: Sample image from target data (KITTI). The figure shows sample images from KITTI [2] data obtained for
training the synthesis network S . They are obtained by using Grad-CAM [10] on the original KITTI images and finding
regions where there is a high confidence response for the classes ‘Vehicle’, ‘Car’, ‘Wagon’, ‘Van’. It can be seen that each
image contains a random number of multiple objects and not necessarily a single object.

Figure 2: Images synthesized from S trained on the target image collection from KITTI (Figure 1). Each row in this
figure contains images with a fixed input foreground and background code. The input horizontal translation of the foreground
objects is varying across the columns. It can be seen that even when the input translation of the foreground object varies, the
image is constant across the columns. This is because S is unable to disentangle the foreground and background regions and
hence translating the foreground object does not induce any changes in the generated images.

Figure 3: Images synthesized from S trained on source image collection. The input horizontal translation of the foreground
object is varying from left to right. The object is translating along the horizontal axis according to the input translation, while
the background remains constant. This is because on being trained with the source image collection S is able to disentangle
the foreground and background representations.

[12] Linjie Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang.
A large-scale car dataset for fine-grained categorization and
verification. In CVPR, 2015. 2



Figure 4: Visualization of object detections by SSOD on the KITTI [2] dataset. Green boxes show SSOD’s predictions
and Blue boxes show ground truth annotations. It can be seen that most of the cars with none to moderate occlusions are
reliably detected. Cars with extremely heavy occlusions where only a small part of the car can be seen are sometimes missed.



Figure 5: Visualization of object detections by SSOD on the KITTI [2] dataset. Green boxes show SSOD’s predictions
and blue boxes show ground truth annotations. It can be seen that most of the cars with none to moderate occlusions are
reliably detected. Cars with extremely heavy occlusions where only a small part of the car can be seen are sometimes missed.


