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Figure 1. We present, RANA, an approach for learning dynamic and relightable full-body avatars from monocular RGB videos. A training
frame of the person is shown in the first column. RANA can synthesize images of the person under novel poses, viewpoints, and lighting
environments. In the insets, we show the synthesized albedo image, the normal map, and the target HDRI light map.

Abstract

We propose RANA, a relightable and articulated neural
avatar for the photorealistic synthesis of humans under
arbitrary viewpoints, body poses, and lighting. We only
require a short video clip of the person to create the avatar
and assume no knowledge about the lighting environment.
We present a novel framework to model humans while
disentangling their geometry, texture, and also lighting
environment from monocular RGB videos. To simplify
this otherwise ill-posed task we first estimate the coarse
geometry and texture of the person via SMPL+D model
fitting and then learn an articulated neural representation
for photorealistic image generation. RANA first generates
the normal and albedo maps of the person in any given

*equal contribution. The work was partially done during AC’s internship
at NVIDIA.

target body pose and then uses spherical harmonics
lighting to generate the shaded image in the target lighting
environment. We also propose to pretrain RANA using
synthetic images and demonstrate that it leads to better
disentanglement between geometry and texture while also
improving robustness to novel body poses. Finally, we also
present a new photorealistic synthetic dataset, Relighting
Humans, to quantitatively evaluate the performance of the
proposed approach.

1. Introduction

Articulated neural avatars of humans have numerous ap-
plications across telepresence, animation, and visual con-
tent creation. To enable the widespread adoption of these
neural avatars, they should be easy to generate and animate
under novel poses and viewpoints, able to render in photo-
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realistic image quality, and easy to relight in novel envi-
ronments. Existing methods commonly aim to learn such
neural avatars using monocular videos [38–40, 46, 50, 58].
While this allows photo-realistic image quality and anima-
tion, the synthesized images are always limited to the light-
ing environment of the training video. Other works directly
tackle relighting of human avatars but do not provide con-
trol over the body pose [19,34]. Moreover, these approaches
often require multiview images recorded in a Light Stage for
training, which is limited to controlled settings only. Some
recent methods aim to relight RGB videos of a dynamic hu-
man but do not provide control over body pose [13].

In this work, we present the Relightable Articulated Neu-
ral Avatar (RANA) method, which allows photo-realistic
animation of people under any novel body pose, viewpoint,
and lighting environment. To create an avatar, we only re-
quire a short monocular video clip of the person in uncon-
strained environment, clothing, and body pose. During in-
ference, we only require the target novel body pose and the
target novel lighting information.

Learning relightable neural avatars of dynamics humans
from monocular RGB videos recorded in unknown environ-
ments is a challenging problem. First, it requires model-
ing the complex human body articulations and geometry.
Second, in order to allow relighting under novel environ-
ments, the texture, geometry, and illumination information
have to be disentangled, which is an ill-posed problem to
solve from RGB videos [8]. To address these challenges,
we first extract canonical, coarse geometry and texture in-
formation from the training frames using a statistical human
shape model SMPL+D [5,30, 33]. We then propose a novel
convolutional neural network that is trained on synthetic
data to remove the shading information from the coarse tex-
ture. We augment the coarse geometry and texture with
learnable latent features and pass them to our proposed neu-
ral avatar framework, which generates refined normal and
albedo maps of the person under the target body pose us-
ing two separate convolutional networks. Given the normal
map, albedo map, and lighting information, we generate the
final shaded image using spherical harmonics (SH) light-
ing [41]. During training, since the environment lighting
is unknown, we jointly optimize it together with the per-
son’s appearance and propose novel regularization terms
to prevent the leaking of lighting into the albedo texture.
We also propose to pre-train the avatar using photo-realistic
synthetic data with ground-truth albedo and normal maps.
During pretraining, we simultaneously train a single avatar
model for multiple subjects while having separate neural
features for each subject. This not only improves the gener-
alizability of the neural avatar to novel body poses but also
learns to decouple the texture and geometry information.
For a new subject, we only learn a new set of neural fea-
tures and fine-tune the avatar model to capture fine-grained

person-specific details. In our experiments, the avatar for a
novel subject can be learned within 15k training iterations.

To the best of our knowledge, RANA is the first method
to enable relightable and articulated neural avatars. Hence,
in order to quantitatively evaluate the performance of our
method, we also propose a novel photo-realistic synthetic
dataset, Relighting Humans (RH), with ground truth albedo,
normals, and lighting information. The Relighting Humans
dataset allows for simultaneous evaluation of the perfor-
mance in terms of novel pose and novel light synthesis. We
also perform a qualitative evaluation of RANA on the Peo-
ple Snapshot dataset [5] to compare with other baselines.

Our contributions can be summarized as follows:

• We present, RANA, a novel framework for learning
relightable articulated neural avatars from short uncon-
strained monocular videos. The proposed approach is
very easy to train and does not require any knowledge
about the environment of the training video.

• Our proposed approach can synthesize photorealis-
tic images of humans under any arbitrary body pose,
viewpoint, and lighting. It can also be used for relight-
ing videos of dynamic humans.

• We present a new photo-realistic synthetic dataset for
quantitative evaluation and to further the research in
this direction.

2. Related work
Mesh Based Human Avatars. These methods represent
human avatars using a rigged mesh and an associated tex-
ture map. Earlier methods captured human avatars using
multi-view cameras [10, 45] or with the help of depth sen-
sors [9, 63]. However, their adoption remained limited
due to the constrained hardware requirements. The recent
works, therefore, focus on creating the avatars from monoc-
ular videos [4, 5] or images [6, 20, 22, 30, 56]. The meth-
ods [4, 5, 30] use body model fitting to capture the humans,
while more recent methods use data-driven implicit func-
tions combined with pixel-aligned features [42] for human
reconstruction [6, 22, 56, 63]. The main limitation of these
methods is that the shading information is baked into the
texture, therefore, the avatars cannot be rendered with novel
lights. PHORUM [6] is the only exception, however, it cre-
ates the avatar from a single image and relies on data-driven
priors to hallucinate the occluded regions of the person.
Hence, the generated images may not be the true represen-
tation of the person. In contrast, our approach uses video
data to capture a detailed human representation, while also
allowing the rendering of the person in novel lighting.

Neural Human Avatars. More recent methods learn a
neural representation of the person and use neural ren-
derers [49] to directly generate photorealistic images in
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✓ NeuralBody [39], HumanNeRF [54]
✓ ✓ AnimatableNeRf [38], NeuMan [26]
✓ ✓ ✓ ANR [40], TNA [44], StylePeople [18]
✓ ✓ Relighting4D [13]
✓ ✓ ✓ ✓ RANA (Ours)

Table 1. Comparison of some of the representative methods for
neural human avatar creation. Ours (RANA) is the only method
that allows novel view, pose and light synthesis.

the target body pose and viewpoints [7, 11, 16, 21, 51, 55].
These methods are generally classified into 2D or 3D neu-
ral rendering based methods [49]. The 3D neural ren-
dering methods represent the person using neural radi-
ance fields [35] and render the target images using vol-
ume rendering [26, 38, 39, 50, 54]. The 2D neural render-
ing methods, on the other hand, use CNNs to render the im-
ages [18,40,58,62]. One limitation of the 3D neural rending
methods is that the avatar has to be created from scratch for
each person. In contrast, the 2D based methods offer some
generalizability by sharing the neural renderer across mul-
tiple subjects [40]. Our method falls into the 2D neural ren-
dering paradigm as we use CNNs to generate the albedo and
normal images of the person. In particular, we take inspi-
ration from ANR [40] for designing our framework. Tab. 1
compares existing neural avatar creation methods. Ours is
the only method that allows synthesis under novel poses,
viewpoints, and lighting, while also being generalizable.

Human Relighting. Relighting of human images has been
studied extensively in the literature [14,25,27,29,31,43,47,
48, 53, 61, 64]. However, these methods cannot render re-
lighted images in novel body poses and viewpoints. Some
recent methods allow relighting from novel views but pro-
vide no control over the body pose [13, 19, 36, 57]. Our
approach, in contrast, provides full control over the body
pose, viewpoint, and lighting.

3. Method
Our goal is to learn a relightable articulated neural avatar,

RANA, that can synthesize photorealistic images of the
person under any target body pose, viewpoint, and light-
ing. To create the avatar, we use a small video sequence
I={If}Ff=1 with F video frames and assume no knowledge
about the lighting environment and body poses present in
the video. We parameterize RANA using the SMPL [33]
body model to control the animation and use Spherical Har-
monics (SH) [41] lighting to model the lighting. During
inference, we only need the target body pose and target
lighting information in the form of SH coefficients and do
not require any exemplar images for groundtruth. Learning
RANA from a monocular video requires capturing the ge-

ometry and appearance of the dynamic human while also
disentangling the shading information. In order to tackle
this ill-posed problem, we first capture the coarse geome-
try using the SMPL+D fits (Sec. 3.1). We use the coarse
geometry to extract a coarse texture map from the training
images which is converted to an albedo texture map using a
convolutional network (Sec. 3.2). We then propose RANA
that generates the refined albedo and normal maps. The re-
fined normal maps are used to obtain the shading map us-
ing SH lighting which is combined with the refined albedo
map to obtain the final image in the target body pose and
light (Sec. 3.3). An overview of our method can be seen in
Fig. 2. In the following, we describe each of these modules
in greater detail.

3.1. Coarse Geometry Estimation

Given the training frames, we first estimate the coarse
geometry of the person including the clothing and hair de-
tails. For this, we employ the SMPL+D [4, 30] variant of
the SMPL body model [33]. SMPL is a linear function
M(θ, β) that takes the body pose θ ∈ R72 and shape param-
eters β ∈ R10 as input and produces a triangulated mesh
M ∈ RV×3 with V=6890 vertices. SMPL only captures
the undressed shape of the body and ignores the clothing
and hair details. For this, SMPL+D adds a set of 3D offsets
D ∈ RV×3 to SMPL to capture the additional geometric
details, i.e., M(θ, β,D) ∈ RV×3 can also model clothed
humans. We refer the readers to [4, 30] for a detailed de-
scription of SMPL+D.

For fitting SMPL+D to training images, we first estimate
the parameters of SMPL using an off-the-shelf method SM-
PLify3D [23]. Since the person in the video remains the
same, we optimize a single β for the entire video. We then
fix the pose {θ}Ff=1 and shape β parameters and optimize
for the offsets D using the following objective:

D = argmin
D′

F∑
f=1

L(M(θf , β,D
′)) = LSil+Lsmooth. (1)

Here the term LSil is the silhouette loss. We obtain the sil-
houette of SMPL+D vertices Sf for frame f using a differ-
entiable renderer [32] while the target silhouette Ŝt is ob-
tained using a person segmentation model [12]. We define
the LSil loss as

LSil =
1

F

F∑
f=1

|Sf − Ŝf |. (2)

The term Lsmooth is a laplacian smoothing term to encour-
age the smooth surface of the mesh:

Lsmooth =
1

F

F∑
f=1

||LMf ||, (3)
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Figure 2. Overview of the proposed approach. (a) shows some training frames. (b) We estimate the coarse geometry of the person using the
SMPL+D body model. (c) The SMPL+D fits are used to extract a UV texture map, which we process using TextureNet to obtain a coarse
albedo texture map. (d) Given a target body pose, we rasterize person-specific neural features, coarse albedo, and coarse normals from
SMPL+D to the target body pose and pass them to NormalNet and AlbedoNet to obtain refined normal and albedo maps, respectively. We
then use the normal map and spherical harmonics lighting to obtain the shading image, which is multiplied with refined albedo to produce
the shaded image. AlbedoNet also generates a binary mask, which we use to overlay the shaded image onto the background.

where L is the mesh Laplacian operator Note that we opti-
mize a single set of D for the entire video, hence it does not
model any pose-dependent geometric deformations. Some
examples of SMPL+D can be seen in Fig. 2b.

3.2. Coarse Albedo Estimation

Given the SMPL+D fits for the training frames, we es-
timate an albedo texture map TA of the person in the UV
space of SMPL. We follow [5] and first extract a partial tex-
ture map for each frame by back-projecting the image colors
of all visible vertices to the UV space. The final texture map
TI is then generated by calculating the median color value
of most orthogonal texels from all frames. Depending on
the available body poses in the training video, the obtained
texture map can be noisy, and still have missing regions,
e.g., hand regions are often very noisy as no hand tracking
is performed during SMPL fitting. Also, to ensure plausi-
ble relighting, the unknown shading from the texture map
has to be removed, which is a challenging problem since
decomposing shading and albedo is an ill-posed problem.

To address these problems, we propose TextureNet,
GTex (Fig. 2c), which takes a noisy texture map TI with
unknown lighting as input and produces a clean albedo tex-
ture map as output, i.e., TA = GTex(TI). One main chal-
lenge for training such a model is the availability of training
pairs of noisy/shaded and albedo texture maps. We generate

these pairs using 400 rigged characters from the Render-
People dataset [2]. Since each character in RenderPeople
has different UV coordinates, we follow [30] and register
the characters with SMPL to obtain ground-truth UV maps
in consistent SMPL UV coordinates. For noisy pairs, we
generate images with random poses and lighting and ex-
tract texture maps like any other video mentioned above.
We train GTex using the following losses:

LTex = Lpixel + LVGG + LGAN. (4)

Here Lpixel is the L1 loss between the predicted and ground-
truth albedo texture maps, LVGG is L1 difference be-
tween their VGG features, and LGAN is a typical GAN
loss [17, 37]. More details about data generation and train-
ing of GTex are provided in Sec. A.1. Some examples of
estimated albedo maps can be seen in Fig. 3.

3.3. Relightable Articulated Neural Avatar

The coarse albedo texture and geometry obtained so far
lack photo-realism and fine-grained details of the person.
First, the topology of SMPL+D is fixed and cannot fully
capture the fine geometric details, for example, loose cloth-
ing or long hairs. Second, the TextureNet can confuse the
texture of the person with shading and may remove some
texture details while estimating the albedo texture map. In
this section, we present RANA which utilizes the coarse
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Figure 3. Examples of estimated albedo maps from noisy/shaded maps using our proposed TextureNet (Sec. 3.2). The first row shows
some examples from the PeopleSnapshot dataset, while the second row shows examples from our proposed RelightingHuman dataset.

geometry and albedo map and generates photo-realistic im-
ages of the person. We parametrize RANA using the SMPL
body model and SH lighting [5]. Specifically, RANA takes
the target body pose θ and the target lighting in the form of
second-order spherical harmonics coefficients E ∈ R9×3 as
input and synthesizes the target image Iθ,E as:

Iθ,E = RANA(θ,E,K), (5)

where K corresponds to the intrinsic parameters of the tar-
get camera viewpoint. One main challenge in learning
such a neural avatar from a short RGB video is to main-
tain the disentanglement of geometry, albedo, and lighting,
as any learnable parameters can overfit the training frames
disregarding plausible disentanglement. Hence, we design
RANA such that a plausible disentanglement is encouraged
during training. Specifically, RANA consists of two convo-
lutional neural networks NormalNet, GN, and AlbedoNet,
GA, each responsible for generating the normal map IθN ∈
Rh×w×3, and albedo map, IθA ∈ Rh×w×3, of the person
in the body pose θ, respectively. It also consists of a set
of subject-specific latent neural features Z ∈ R256×256×16

in UV coordinates to augment the details available in the
coarse albedo map and geometry.

More specifically, given the target body pose θ, we first
generate the SMPL+D mesh Mθ = M(θ, β,D), where the
shape parameters β and clothing offsets D are the ones ob-
tained in Sec. 3.1. We then use Mθ to differentiably raster-
ize [32] the latent features Z and coarse albedo texture TA

to obtain a features image IθZ and coarse albedo image ĪθA
in the target body pose. We also rasterize a coarse normal
image ĪθN and a UV image Iθuv using the normals and UV
coordinates of Mθ, respectively. The refined normal image
IθN and refined albedo image IθA are then obtained as

IθN = GN (IθZ , Ī
θ
N , γ(Iθuv)), (6)

IθA, S
θ = GA(I

θ
Z , Ī

θ
A, γ(I

θ
uv)), (7)

where Sθ is the person mask in the target pose and γ
corresponds to the positional encoding of the UV coordi-
nates [35]. Given the lighting E, we obtain the shading
image Iθ,ES using the normal map IθN and SH lighting [41].
Under the usual assumptions of Lambertian material, dis-
tant lighting, and no cast shadows, the final shaded image
Iθ,E is then obtained as

Iθ,E = IθA · Iθ,ES . (8)

An overview of RANA can be seen in Fig. 2d. Since
the lighting environment of the training video is unknown,
we also optimize the second order SH coefficients E ∈
R9×3 [41] of the training video during training. Note that
none of the learnable parameters in RANA depend on the
lighting information. Hence, if the disentanglement of nor-
mals, albedo, and lighting during training is correct, we
can simply replace E during inference with any other novel
lighting environment to obtain relit images. We train RANA
with the following objective:

L = Lpixel + Lface + Lmask + LVGG + LGAN (9)

+ Lalbedo
reg + Lnormal

reg . (10)

Here Lpixel is the L1 difference between the generated im-
age Iθ,E and the ground-truth training frame, Lface is the
L1 difference between their face regions to assign a higher
weight to face, and Lmask is the binary-cross-entropy loss
between the estimated mask Sθ using GA and the pseudo-
ground-truth mask obtained using a person segmentation
model [12]. The term LVGG is the L1 difference between
the VGG features of generated and ground-truth images,
and LGAN is the commonly used GAN loss [17, 37]. The
term Lalbedo

reg is the albedo regularization term that prevents
the light information from leaking into the albedo image:

Lalbedo
reg = ||σ(IθA, k)− σ(ĪθA, k)||2. (11)
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Here IθA is the albedo image obtained using GA, ĪθA is the
coarse albedo image, and σ is the Gaussian smoothing oper-
ator with a kernel size k=51. Lalbedo

reg encourages the overall
color information in IθA to be close to ĪθA while disregarding
the texture information. Similarly, Lnormal

reg is the normal
regularization loss which prevents the normal image IθN to
move very far from the coarse normal image ĪθN :

Lalbedo
reg = |Sθ

smplI
θ
N − Sθ

smplĪ
θ
N |, (12)

where Sθ
smpl is the rasterized mask of SMPL+D mesh. It

ensures that the regularization is applied only on the pixels
where SMPL+D normals are valid. Note that no ground-
truth supervision is provided to GA and GN . They are
mostly learned via the image reconstruction losses, while
the disentanglement of normals and albedo is ensured via
the novel design of RANA and regularization losses.

3.3.1 Pre-training using synthetic data

While we design RANA such that it generalizes well to
novel body poses, the networks GA and GN may still overfit
to the body poses available in the training video, in particu-
lar, when the coarse geometry and albedo are noisy. A sig-
nificant advantage of RANA is that it can be trained simul-
taneously for multiple subjects, i.e., we use different neu-
ral features Z for each subject while sharing the networks
GA and GN . This not only allows the model to see diverse
body poses during pre-training but also helps in learning
to disentangle normals and albedo. Hence, we propose to
pretrain GA and GN on synthetic data. For this, we use
400 rigged characters from the RenderPeople dataset. We
generated 150 albedo and normal images for each subject
under random body poses and pretrain both networks us-
ing ground-truth albedo and normal images. We use the L1

loss for both terms. For a new subject, we learn the neural
features Z from scratch and only fine-tune GA. During our
experiments, we found that fine-tuning GN is not required
if the model is pretrained (see Sec. 4.3).

4. Experiments
In this section, we evaluate the performance of RANA

using two different datasets. We perform an ablation study
to validate our design choices and also compare our method
with state-of-the-art and other baselines.

4.1. Datasets

Relighting Human Dataset. We propose a new photore-
alistic synthetic dataset to quantitatively evaluate the perfor-
mance of our method. We use 49 rigged characters from the
RenderPeople dataset [2] to generate photo-realistic images
for each subject. We use HDRI maps from PolyHaven [1] to
illuminate the characters and use the CMU motion capture

dataset [3] to pose the characters. In contrast to our pro-
posed method that uses image-based lighting, we use full
Path Tracing to generate the dataset. Hence, it is the clos-
est setting to an in-the-wild video, and any future work that
uses a more sophisticated lighting model can be evaluated
on this dataset. For a fair evaluation, we ensure that none
of the characters is used during the training in Sec 3.2 and
Sec 3.3. All testing images come with a ground-truth albedo
map, a normal map, a segmentation mask, and light infor-
mation. For our experiments, we evaluate on all 49 charac-
ters and learn a separate RANA model for each subject. We
develop two different protocols for evaluation:
a) Novel Pose and Light Synthesis. This protocol evalu-
ates the quality in terms of novel pose and light synthesis.
We generate 100 training images for each subject rotating
360◦ with A-pose in front of the camera with fixed lighting.
For testing, we generate 150 frames for each subject with
random body pose and random light in each frame.
b) Novel Light Synthesis. This protocol evaluates the re-
lighting ability of the methods. We generate 150 frames
for train and test sets. The train set is generated with fixed
lighting and random body poses. The body poses in the test
set are exactly the same as the train sets, but each frame is
generated using a different light source.

People Snapshot Dataset. [5]. This dataset consists of real
videos of characters rotating in front of the camera. We use
this dataset for qualitative evaluation.

4.2. Metrics

We report several metrics to evaluate the quality of syn-
thesized images as well as the disentanglement of normal
and albedo images. For synthesized images and albedo
maps, we use Learned Perceptual Patch Similarity (LPIPS
↓) [60], Deep Image Structure and Texture Similarity
(DISTS ↓) [15], Structural Similarity Index (SSIM ↑) [52]
and Peak Signal-to-Noise Ratio (PSNR ↑). For normals, we
compute the error in degrees (◦).

4.3. Ablation study

We evaluate different design choices of RANA in Tab. 2
and Fig 4. We use protocol-a of the Relighting Humans
dataset for all experiments. We first report the results of the
final model which includes all loss terms in (15) and pre-
training using synthetic data (Sec. 3.3.1). The full model
achieves an LPIPS score of 0.217 for image synthesis and
0.219 for albedo map reconstruction. If we remove the
loss term Lalbedo

reg from (15), the LPIPS scores for im-
age and albedo map reconstruction increase to 0.249 and
0.264, respectively. Note that the error for albedo maps
increases significantly while the error for normal maps re-
mains roughly the same. This indicates that without Lalbedo

reg

the light information leaks into the albedo image. An exam-
ple of this behavior can also be seen in Fig 4c (w/o Lalbedo

reg ).
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(a) Ground Truth (b) Full Model (c) w/o Lalbedo
reg (d) w/o coarse geo. & tex. (e) w/o pre-training

Figure 4. Ablation Study. Impact of the different components of the proposed approach. Our full model yields the best results. Without
the Lalbedo

reg loss, the light information leaks into the albedo texture resulting in incorrect illumination. If we do not use coarse geometry
and albedo texture, the resulting model does not generalize well to novel body poses. Similarly, training the model from scratch, without
any pretraining on synthetic data, can result in an incorrect disentanglement of texture and geometry.

Method Image Normal Map Albedo Map
LPIPS ↓ FLIP ↓ SSIM ↑ PSNR ↑ Degree◦ ↓ LPIPS ↓ FLIP ↓ SSIM ↑ PSNR ↑

Full model 0.217 0.204 0.751 19.498 64.350 0.219 0.207 0.779 21.832
w/o Lalbedo 0.249 0.241 0.697 15.199 64.064 0.264 0.257 0.713 15.688
w/o coarse geo. & tex. 0.242 0.222 0.730 18.580 65.887 0.260 0.232 0.751 20.778
w/o pre-training 0.301 0.293 0.669 13.798 74.215 0.327 0.307 0.696 15.632

fine-tune GN 0.219 0.205 0.746 19.198 64.226 0.221 0.210 0.778 21.577

Table 2. Ablation study. We evaluate the impact of different components of the proposed method. See Fig. 4 for a qualitative comparison.

Next, we evaluate the impact of coarse geometry and
albedo texture on RANA. If we do not use coarse geometry
and albedo, LPIPS score increases to 0.242 as compared to
0.217 for the full model. The normal error also increases to
65.9◦ from 64.3◦. This is also evident from the qualitative
results shown in Fig 4d, indicating that coarse geometry and
albedo help in improved image synthesis quality, in particu-
lar when the target body pose is far from the training poses.
Next, we evaluate the impact of pretraining on synthetic
data. Without the pretraining, all error metrics increase sig-
nificantly. Specifically, the LPIPS score for image recon-
struction increases from 0.217 to 0.301, while the normal
error increases from 64.3◦ to 74.2◦. If we look at Fig 4e,
we can see that shading information leaks into both the nor-
mals and albedo maps. Hence, pretraining the networks
also help with the plausible disentanglement of geometry,
texture, and light. Thanks to the design of RANA, we can
pretrain on as many subjects as available, which is not pos-
sible with most of the state-of-the-art methods for human
synthesis [38,39,50]. Finally, As discussed in Sec 3.3.1, we
keep the network GN fixed during finetuning if RANA is
pretrained on synthetic data. In the last row of Tab. 2, we
evaluate the case when GN is also fine-tuned. We can see
that it has a negligible impact on the results.

4.4. Comparison with other methods

Since RANA is the first neural avatar method that allows
novel light and pose synthesis, we ourselves build some
baselines as follows:

SMPL+D: We rasterize the SMPL+D mesh normals and
albedo texture ( Sec. 3.1 & Sec. 3.2) in the target body pose
and use SH lighting to generate the shaded images.
ANR [40]+RH [27]: We train an ANR [40] model which
synthesizes images in the lighting of the training video. We
then pass the generated images to the single-image human
relighting method [27] to obtain the relighted images for the
target light. We use the publicly available source code and
models of [27].
Relighting4D [13] is a state-of-the-art human video relight-
ing method. We use the publicly available source code and
train it on our dataset.

The results are summarized in Tab. 3 and Fig 5. We
do not report results of Relighting4D [13] for protocol-a
since it cannot handle novel body poses as can be seen in
Fig 5 (column-5). For protocol-a, our method clearly out-
performs other baselines for final image synthesis results.
Surprisingly, the SMPL+D baseline yields better numbers
for albedo reconstruction, even though it provides overly
smooth albedo textures. Our qualitative investigation (see
Sec. A.4) suggests that the used image quality assessment
metrics penalize color differences more than missing tex-
ture details. For very bright scenes, RANA can still leak
some lighting information to the albedo texture resulting in
higher errors for albedo maps even though it provides sig-
nificantly better texture details than SMPL+D. This is evi-
dent from Fig. 5 and the final image synthesis results where
RANA significantly outperforms SMPL+D baseline.

For protocol-b, RANA outperforms Relighting4D [13]
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Protocol-A Protocol-B

Reference RANA (Ours) ANR [40]+RH [27] SMPL+D Relighting4D [13] RANA (Ours) Relighting4D [13]
Figure 5. Comparison with the baselines and state-of-the-art methods. Column 1 shows a reference frame with the target body pose and
lighting in the insets. In the absence of true reference images, for the Snapshot dataset (rows 1-2), we show training frames for reference.
Columns 2-5 compare different methods for protocol-a, while columns 6-7 provide a comparison for protocol-b.

Method Image Normal Map Albedo Map
LPIPS ↓ DISTS ↓ SSIM ↑ PSNR ↑ Degree◦ ↓ LPIPS ↓ DISTS ↓ SSIM ↑ PSNR ↑

Protocol (a): Novel Pose and Light Synthesis

Ours 0.217 0.204 0.751 19.498 64.350 0.219 0.207 0.779 21.832
SMPL+D 0.265 0.225 0.751 19.678 64.121 0.216 0.182 0.811 22.623
ANR [40] + RH [28] 0.275 0.416 0.664 17.495 N.A. 0.266 0.429 0.656 14.804

Protocol (b): Novel Light Synthesis

Ours 0.173 0.171 0.842 22.338 62.823 0.200 0.179 0.865 24.721
Relighting4D [13] 0.192 0.342 0.654 21.080 65.099 0.263 0.374 0.593 20.014

Table 3. Comparison with the baselines and state-of-the-art methods. See Fig. 5 for qualitative comparison.

across all metrics. Some qualitative comparisons can be
seen in Fig. 5 (columns 6-7), where RANA clearly yields
better image relighting results. Note that each model
for Religthing4D [13] requires 260k iterations for training
whereas RANA models are trained only for 15k iterations,
thanks to our novel design that allows pre-training on syn-
thetic data, allowing quick fine-tuning for new subjects. In
contrast, Relighting4D [13] by design cannot be pretrained
easily on multiple subjects. Finally, we provide additional
qualitative results in the supplementary video.

5. Conclusion and Future Work
We presented RANA which is a novel framework for

learning relightable and articulated neural avatars of hu-

mans. We demonstrated that RANA can model humans
from unconstrained RGB videos while also disentangling
their geometry, albedo texture, and environmental lighting.
We showed that it can generate photorealistic images of
people under any novel body pose, viewpoints, and light-
ing. RANA can be trained simultaneously for multiple peo-
ple and we showed that pretraining it on multiple (400) syn-
thetic characters significantly improves the image synthesis
quality. We also proposed a new photorealistic synthetic
dataset to quantitatively evaluate the performance of our
proposed method, and believe that it will prove to be very
useful to further the research in this direction.

The most pressing limitation of RANA is the assumption
of Lambertian surface, no cast shadows, and image-based
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lighting. In the future, we hope to incorporate more sophis-
ticated physically-based rendering in our framework which
will hopefully result in better image quality and normal
maps with more details. Moreover, RANA does not explic-
itly model motion-dependent clothing deformations. Mod-
eling clothing deformations from a short video clip would
be interesting future work.

A. Appendix

We provide the implementation details of our proposed
approach in Sec. A.1 and Sec. A.2. We also provide more
details about our proposed Relighting Humans dataset in
Sec. A.3. Finally, we provide qualitative results to compare
RANA with SMPL+D baseline for albedo texture map es-
timation in Sec. A.4. The qualitative results augment our
comments regarding Tab. 3.

A.1. Implementation details of TextureNet

We use a vanilla U-Net architecture for TextureNet. It
takes a noisy/shaded UV texture map with a resolution of
512×512 as input and produces the abledo texture with the
same resolution as output. We also concatenate a 2D ten-
sor of UV coordinates with the input texture map to provide
part-specific information to TextureNet. We train the net-
work using Adam optimizer with a batch size of 8 and a
learning rate of 1e−4 with cosine annealing and a minimum
learning rate of 1e−5. To avoid overfitting during training,
we perform random noise augmentation to the input tex-
ture maps including coarse dropout, gaussian noise, random
brightness, and MixUp (β = 0.4) [59]. As mentioned in the
paper we train the model with the following loss function:

LTex =Lpixel(TA, T̂A)+

λVGGLVGG(TA, T̂A)+

λGANLGAN(TA),

where TA and T̂A are the predicted and ground-truth
albedo texture maps, respectively. Lpixel and LVGG corre-
spond to the L1 difference between ground-truth and pre-
dicted albedo texture maps and their VGG features, re-
spectively. We use VGG16 to calculate the VGG fea-
tures and use the features from relu 1 2, relu 2 2,
relu 3 3 and relu 4 3 layers. For LGAN we use the
PatchGAN discriminator [24]. We empirically set λVGG=1
and λGAN=10.

A.2. Implementation details of RANA

Similar to TextureNet, we use vanilla U-Net for
AlbedoNet and NormalNet.

A.2.1 Pretraining.

For pretraining RANA, we use 400 characters from Ren-
derPeople and generate 150 samples in the random body
poses for each character. Each sample consists of a ground-
truth albedo map, a normal map, and the person segmenta-
tion mask. We then train AlbedoNet and NormalNet using
Adam optimizer with a batch size of 16 and learning rate of
1e−4 with cosine annealing and minimum learning rate of
1e−5. We optimize the following objective:

L = Lnormal + λaLalbedo + λmLmask

where,

Lnormal =Lpixel(I
θ
N , ÎθN )+

λVGGLVGG(I
θ
N , ÎθN )+

λGANLGAN(I
θ
N ),

Lalbedo =Lpixel(I
θ
A, Î

θ
A)+

λVGGLVGG(I
θ
A, Î

θ
A)+

λGANLGAN(I
θ
A),

and

Lmask = BCE(Sθ, Ŝθ).

Here IθN and ÎθN are the predicted and ground-truth normal
maps, IθA and ÎθA are the predicted and ground-truth albedo
maps, and Sθ and Ŝθ are the predicted and ground-truth
segmentation mask of the person. We empirically chose
λa=0.5, λm=10, λVGG=5, and λGAN=0.1. We train the
model at the resolution of 512×512 for 230 epochs.

A.2.2 Personalization.

Given the RGB video of a novel subject, we optimize the
latent features Z and lighting environment E of the video
from scratch and only fine-tune AlbedoNet (GA). We keep
GA fixed for the first 1000 iterations and only optimize Z
and E. This allows optimization of the latent features Z to
be compatible with the pretrained GA and GN . We then op-
timize GA, Z, and E jointly for a total of 15k iterations. As
mentioned in Sec. 3.3, we optimize the following objective

L = Lpixel + λfLface + λmLmask (13)
+ λVGGLVGG + λGANLGAN (14)

+ λa
regLalbedo

reg + λn
regLnormal

reg . (15)

We chose λf=1, λm=10, λVGG=5, λGAN=0.1, λa
reg=0.5

and λn
reg=0.25, For Lface, we project the nose keypoint of

SMPL body model on to the image and crop a 100×100
patch around the face to compute the loss. All other losses
are calculated on the 512×512 generated images as men-
tioned above.
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A.3. Relighting Human Dataset

We provide more details about our proposed Relighting
Humans dataset. The dataset consists of 49 subjects with
26 males and 23 female characters. The characters come in
all appearances, including long hair, loose clothing, jackets,
hats, head scarves, etc. Some example characters can be
seen in Fig. 6. Moreover, we also provide some examples of
training and testing sequences for protocol-a and protocol-b
in Fig. 7 and Fig. 8, respectively.

A.4. Qualitative comparison with SMPL+D base-
line

As reported in Tab. 3, SMPL+D baseline yields bet-
ter quantitative results than RANA even though it provides
overly smoothed texture details due to TextureNet confus-
ing shading and texture during albedo texture map estima-
tion. On the other hand, RANA recovers significantly bet-
ter texture details, but sometimes lighting can still leak into
albedo texture, especially for very bright or complex light-
ing environments. We found that the used evaluation met-
rics penalize color differences more than the texture details
as we show in Fig. 9. In any case, RANA provides signifi-
cantly better results for final image reconstruction as shown
in Tab. 3.
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GT Albedo Map RANA Albedo Map SMPL Albedo Map Reference Image

Figure 9. Qualitative comparison with SMPL+D baseline for albedo map reconstruction. We show the ground-truth albedo maps (column
1), reconstructed albedo maps by RANA (column 2), and the reconstructed albedo map by SMPL+D baseline (column 3). We also show a
reference training frame (column 4) which is used to create the avatar. We overlay the SSIM and LPIPS scores on the reconstructed albedo
maps. SMPL+D yields better quantitative metrics even though it generates overly smooth albedo maps. In contrast, RANA provides
significantly better texture details but sometimes the light information still leaks into the albedo textures. The SSIM and LPIPS metrics
seem to penalize more for color difference than missing texture details.
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