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Abstract

Rendering global illumination effects for dynamic scenes

at interactive frame rates is a computationally challeng-

ing task. Much of the computation time needed is spent

during visibility queries between individual scene elements,

and it is almost illusive to update this information at real-

time even for moderately complex scenes. In this paper, we

propose a global illumination approach for dynamic scenes

that runs at near-real-time frame rates on a single PC. Our

method is inspired by the principles of hierarchical radios-

ity and tackles the visibility problem by implicitly evaluat-

ing mutual visibility while constructing a hierarchical link

structure between scene elements. By means of the same ef-

ficient and easy-to-implement framework, we are able to re-

produce a large variety of complex lighting effects for mod-

erately sized scenes, such as interreflections, environment

map lighting as well as area light sources.

1 Introduction

In order to render a scene photo-realistically many lo-

cal and global illumination effects have to be faithfully re-

produced. Today, real-time rendering of local illumina-

tion effects is state-of-the-art and used in many computer

games and interactive environments. Unfortunately, scenes

rendered in this way often have an artificial look as they

lack more sophisticated appearance details such as inter-

reflections. Global illumination computation adds this ad-

ditional bit of realism by taking into account not only light

that comes directly from the light source but also indirectly

through reflection from other surfaces. However, the simu-

lation of global illumination effects is very complex and up

to now it has been illusive to render full global illumination

solutions in real-time on a single PC. The problem’s com-

plexity originates from the fact that during lighting simula-

tion every scene element interacts with many others. Fur-

thermore, visibility between scene elements has to be pre-

computed, as light can only travel between mutually visible

points in the scene. This expensive-to-compute information

is used in all traditional rendering algorithms [4, 22, 17, 35].

Figure 1. Teapot with indirect lighting (3878

vertices).

Figure 2. Flying dragon (deformable model,
2670 vertices).

In this paper, we propose a novel algorithm to ren-

der global-illumination effects at interactive frame rates

on a single PC. The core of our method is a hierarchi-

cal radiosity-like link structure describing the light trans-

port between individual scene elements. To overcome the

computational bottleneck of having to compute visibility

information explicitly at each frame, we propose the con-

cept of implicit visibility. By this means, we are able to

quickly derive visibility between scene elements implicitly

from the hierarchical link structure while it is being built.

We propose methods to efficiently construct this link struc-

ture and show that the final global illumination solution can



be quickly computed on the GPU (Figure 1). Our method

can reproduce interreflections under environment map light-

ing as well as area light sources at interactive frame rates —

even for dynamic scenes with deformable objects. Inter-

activity is achieved by sparsely sampling visibility, which

makes our method most suited for diffuse or low-glossy

scenes under large area lighting.

The paper proceeds with a review of relevant related

work in Sect. 2. Thereafter, Sect. 3 describes how we re-

formulate and solve the rendering equation to accommodate

the concept of implicit visibility. Sect. 4 describes in detail

the construction and administration of our hierarchical link

structure, and explains how to efficiently map these con-

cepts onto the GPU. We demonstrate the high visual quality

of our results in Sect. 5 and conclude in Sect. 6 with an out-

look to future work.

2 Related Work

In the following we review existing techniques and con-

trast them with our new method.

Radiosity Radiosity [4] is a finite element method to com-

pute a global illumination solution, where links between

mutually visible finite elements are created and radiosity is

propagated along those links until a steady state is reached.

This computation is generally not real-time, even with im-

provements such as hierarchical radiosity [12]. There exist

approaches to handle and make use of temporal coherence

in dynamic scenes; a global illumination solution is incre-

mentally updated by shooting negative light to compensate

for changes in lighting or geometry [3, 11, 28]. However,

updating the link structure is difficult, since visibility needs

to be taken into account.

Ray-Tracing The most common method to compute a

global illumination solution is the use of ray tracing. Rays

of light are followed through the scene until all their en-

ergy is deposited in the scene (or a certain recursion depth

is reached) [39, 31]. Variants of the original ray-tracing ap-

proach include path tracing and photon mapping [22, 17].

All algorithms have in common that rays or photons need

to be intersected with the geometry to find the closest hit

points. This is a rather costly operation and has long pre-

vented ray-tracing approaches from being interactive Re-

cently, algorithms have been proposed for interactive global

illumination using ray tracing [38, 36]. However, a cluster

of 24 PCs was required to achieve interactivity.

GPU-Based Approximate Global Illumination The first

approaches to use graphics hardware for global illumination

were limited to direct illumination with environment maps

[14, 20]. I.e., incident illumination could be more complex

than simple point sources, however, no indirect illumination

was supported. The first approaches to perform near-real-

time, indirect illumination on GPUs was limited to static

micro-geometry [13].

A coarse approximation of full global illumination can

be achieved with ambient occlusion [41], which simply

dims incident lighting according to the average visibility at

a point. A technique to support ambient occlusion for dy-

namic models re-used the idea of negative light [2].

The photon tracing technique by Keller [21] regards pho-

tons stored at hit points in the scene as secondary light

sources. Interactive frame rates can be achieved with this

technique but banding artifacts are likely to appear. GPU

implementations for radiosity, photon mapping and radi-

ance caching exist as well [5, 29, 23, 10]. Unfortunately,

expensive visibility computation prohibits real-time perfor-

mance of these GPU-based global illumination methods.

One-bounce indirect illumination can be rendered at

real-time rates, if no visibility is taken into account [6, 7].

However, this allows light to bleed through surfaces, creat-

ing unrealistic results. Several bounces of indirect illumi-

nation [27] can be taken into account by iteratively collect-

ing incident lighting. However, real-time rates can only be

achieved with very coarse lighting approximations.

Dachsbacher et al. [8] concurrently developed a real-

time global illumination method that handles visibility by

transferring anti-radiance. While this bears many simi-

larities to our algorithm, our implicit visibility handling is

slightly more flexible, as we impose no restrictions on the

dynamics of the scene, but is also slightly more expensive.

Precomputed Radiance Transfer PRT permits real-time

rendering of limited global illumination effects on static ob-

jects, such as shadows and diffuse/glossy interreflections

[32, 26, 25]. The global illumination solution is simply pa-

rameterized by the incident lighting, which is assumed to be

represented by means of basis functions, such as spherical

harmonics [32] or wavelets [26]. PRT exploits the limitation

to static objects by precomputing all the visibility queries

and baking them into the parameterized solution.

Dynamic or deformable objects are inherently difficult

for PRT techniques, since the visibility cannot be precom-

puted anymore. Direct illumination on deformable, low-

polygonal models can be rendered with a PRT-like tech-

nique [19, 30], however interreflections cannot be repro-

duced in this setting. Similarly, limited dynamic scenes

with moving rigid objects can be handled [40, 34], but also

without taking indirect illumination into account. Recent

work [24, 16] extends these ideas to render interreflections

of dynamic rigid objects. Handling deformable models re-

mains a challenge.

In this paper, we present a full global illumination algo-

rithm that circumvents expensive visibility queries by eval-

uating visibility implicitly during construction of a hierar-

chical link structure. This rapid visibility approximation



enables rendering of moderately complex, dynamic scenes

with deformable models at near real-time frame rates on a

single PC. In contrast to previous methods, our approach

can handle environment map lighting as well as area light

sources.

3 Global Illumination using Implicit

Visibility

In the following, we derive the theoretical fundamentals

of fast interactive global illumination based on implicit visi-

bility. We start with the rendering equation [18] and rewrite

it in such a way that a global illumination solution can be

computed in a way similar to early non-diffuse radiosity

methods [15]. In contrast to radiosity methods, however, we

compute visibility implicitly while building the link struc-

ture. The rendering equation can be written as follows:

L(x→ ωo) = Le(x→ ωo)+ (1)∫

Ω+
x

fr(x, ω′

i ↔ ω′

o) · L(x← ωi) · (nx · ωi)dωi,

where x is a point in the scene, Le is the emitted light, fr is

the BRDF, nx is the normal at x, ωi and ωo are the global

light and viewing directions, and ω′

i and ω′

o are light and

view in local coordinates.

Similar to [15] we discretize the sphere into Nbin small

spherical bins, each of which has a solid angle Ωbini
. This

allows us to rewrite the rendering equation as:

L(x→ ωo) = Le(x→ ωo) +

Nbin∑
i=1

Ki(x, ωo), (2)

with

Ki(x, ωo) =

∫

Ωbini

fr(x, ωi ↔ ωo) · L(x← ωi.) · (nx · ωi)dωi

We now rewrite the Ki as an integral over all surface ele-

ments y inside Ωbini
instead of solid angles:

Ki(x, ωo) =
∫

y∈Ωbini

fr(x, ωi ↔ ωo) · L(x← ωi)·

V (x, y)(nx · ωi) ·
(ny·−ωi)

r2 dAy ,

(3)

where V is the binary visibility between two points.

It is now possible to make several simplifying assump-

tions to speed up the computation. First, we assume that

for each element inside a bin the outgoing radiance is con-

stant across its extent. Furthermore, we assume that the size

of each element is very small, such that the cosine between

the integration direction and the normal is essentially con-

stant. Finally, we assume that surface elements are either

completely visible or completely occluded. This allows us

to rewrite Equation (3) as:

Ki(x, ωo) ≈
#y ∈Ωbini∑

j=1

fr(x, ωi,j ↔ ωo) · L(x← ωi,j)·

V (x, yj)(nx · ωi,j)
(nyj

·−ωi,j)

r2 Ayj
,

(4)

where ωi,j is the direction to the surface yj . Note that, we

only evaluate the binary visibility once (between x and the

surface element’s center) and turn the original integral into

a sum over surface elements.

We make the final assumption that a surface element al-

ways covers the extent of a spherical bin Ωbini
completely.

This means that only the closest element needs to be con-

sidered and Equation (4) becomes:

Ki(ωo, x) ≈ fr(x, ωi,s ↔ ωo) · L(x← ωi,s) ·

(nx · ωi,s) ·
(nys ·−ωi,s)

r2 · Ays
,

(5)

where ys is the closest surface element.

We use this formulation to render a global illumination

solution by means of a radiosity-like algorithm. The dis-

cretization into bins allows us to borrow the idea of shadow

mapping. We create a (hierarchical) link structure between

scene elements, where we store links in the discretized bins

at each element, as opposed to a simple list of links used

for standard radiosity algorithms. When creating the link

structure, each bin will only store the shortest link, i.e.,

the link connecting to the closest surface element. Using

this scheme, the visibility information will be implicitly re-

trieved from the link structure. This can be seen as a variant

of omni-directional shadow mapping [1]; for each point x

we discretize visibility for its upper hemisphere (Figure 3e).

3.1 Conceptual Overview

Conceptually, our algorithm is very similar to standard

radiosity. We create links between scene elements and light

sources, and transfer energy between them until the solu-

tion is converged (or a certain number of iterations has been

reached).

In contrast to standard radiosity, we do not store a simple

list of links at each scene element, but structure the links

by storing them in bins. A non-hierarchical version of our

algorithm would simply try to connect all scene elements

with each other. Whenever a link is about to be created,

its respective bin is queried and checked if there already

exists a link and if that link is shorter or longer than the

new link. In case the new link is shorter, it replaces the old

one; if not, the old one remains. After all links have been

created, normal shooting or gathering iterations can be run

to transfer energy. Similar to Immel et al. [15], this allows

for diffuse as well as glossy direct and indirect illumination.



Of course, this basic algorithm is inefficient as a non-

hierarchical link structure grows quadratically in the num-

ber of scene elements. In the following, we therefore de-

velop a hierarchical version of this algorithm, which enables

us to obtain near-real-time frame rates for dynamic scenes

on a single PC.

4 Hierarchical Implicit Visibility

Our method is visualized in Figure 3 and pseudo-code

can be found in Algorithm 1. In a preprocessing step, we

create a geometric hierarchy for each object. This geomet-

ric hierarchy is only computed once and is then re-used at

run-time to construct the hierarchical link structure, which

is the data structure for computing the actual global illumi-

nation solution. At run-time, we first update the data asso-

ciated with the surface elements (positions, etc.), as they

might have changed from the last frame. We then con-

struct the hierarchical link structure using implicit visibility

as indicated before. After construction, the hierarchical link

structure needs to be refined in a second pass to propagate

the implicit visibility information to all levels. The propa-

gation of energy is very similar to standard radiosity. We

will detail our method in the following.

Algorithm 1 – Main Algorithm

1: CreateSurfels(): Create surface elements based on the

input geometry information (vertex, face, etc).

2: CreateGeometricHierarchy(): Create hierarchical geo-

metric structure for each object.

3: for each frame do

4: UpdateElements(): Update the geometry information

for initial geometric hierarchy.

5: CreateHierarchicalLinks(): Create hierarchical links

between elements.

6: RefineHierarchicalLinks(): Refine links (top-down,

remove unnecessary links).

7: PushdownLinks(): Push all links to leaf node.

8: for each light bounce do

9: ComputeIlluminateLeafNodes(): Gather incident

energy from links and compute illumination re-

sults in leaf nodes.

10: PullupEnergy(): Pull up the indirect lighting en-

ergy from leaf nodes.

11: end for

12: end for

4.1 Geometric Hierarchy Preprocessing

In order to facilitate illumination computations, we rep-

resent our objects using a hierarchy of surface elements. A

surface element is an oriented disk with a position, normal

and area. The surface elements at the finest scale are based

on the vertices of the input model(s) (Figure 3b). We chose

discs centered around vertices as they can be easily com-

puted for any type of mesh. The position and normal in-

formation of each surface element is known from the input

model. Similar to [2], its area is computed as one-third of

the total area of all triangles sharing this vertex.

To speed up the run-time process, we precompute a ge-

ometric hierarchy of the surface elements, which is then re-

used at run-time. Similar to other radiosity methods, we

want to cluster the surface elements in a way such they are

adjacent and oriented similarly. Different methods exist to

achieve this goal [9, 33]. However, our models are allowed

to deform at run-time preventing an optimal precomputed

solution. We adopt the simple technique by Bunnel [2] and

use UV texture space segments (typically provided by the

artist to enable texturing) as the coarsest cluster unit (see

Figure 3a for an example).

For each UV segment, we create one hierarchical quad-

tree representing a spatial disc hierarchy for all vertices in

the segment. The root node of the tree is a surface element

approximating the whole UV segment, the leaf nodes are

the discs corresponding to single vertices. Each surface el-

ement in the tree can have up to four smaller child surface

elements on the next lower level (Figure 3b and c). For

each surface-element in the hierarchy, we store its position

(average position of all its child surface elements), the over-

all surface area, as well as the average normal direction.

The hierarchical structure is only computed once. However,

the average position as well as normal is re-computed every

frame in order to support dynamic models. The area of most

elements varies very little during animation, therefore, the

area does not have to be recalculated for each frame. Please

note, that the terms node, surface element and disc are used

interchangeably.

4.2 Creating the Hierarchical Link Structure

For each frame, we recompute a hierarchical link struc-

ture, which is used to perform light propagation but also im-

plicitly determines visibility. This subsection details how

this structure is created and refined (corresponds to steps

4–7 in Algorithm 1).

4.2.1 Update Elements of Geometric Hierarchy

Our method allows objects to move around and even de-

form. Therefore, the stored geometric information needs

to be updated accordingly while preserving the hierarchy.

At each frame, we therefore update position and normal of

each surface element. The data of each parent node is up-

dated based on its children. Note that the hierarchy itself

remains untouched. This process is similar to updating a

bounding volume hierarchy in ray-tracing [37].



Figure 3. (a) Color-coded surface segments representing the coarsest approximation level of the ge-

ometric hierarchy. (b) Four surface elements of the finest level of the hierarchy and the correspond-
ing element on the next coarser level (c). (d) Each surface element features (visibility/radiance) links

to many other surface elements. (e) The sphere of directions for each element is discretized into

cube-map bins, each one of them storing the shortest link to another disc.

4.2.2 Initial Hierarchical Link Structure

After the geometric information has been updated, we can

proceed and build the hierarchical link structure. As stated

before, we base the link creation on the precomputed geo-

metric hierarchies. We start by linking all top level nodes

of the geometric hierarchies. Whenever a link between two

nodes (called A and B in the following) is about to be cre-

ated, we perform the following checks:

• If the solid angle of B as seen from A’s position is

bigger than the solid angle of the link’s respective bin,

then the B-node should be subdivided, i.e., we try to

link A to B’s children (going down the geometric hi-

erarchy). The same check is performed for A as seen

from B.

• If there is already a link that has a shorter distance,

which is determined by checking the link stored in the

respective bin, no link will be created.

In all other cases, we create a link between the two surface

elements A and B and store it in the respective bins of A

and B.

As can be seen, there are two main metrics to determine

whether two nodes can be connected. First, the solid angle

determines whether the two surface elements are too big

to be connected and should be subdivided. If the surface

elements are bigger than a bin, it might happen that bins

don’t get filled with links, even though there is an element

in that direction. This would prevent the implicit visibility

to be evaluated correctly. Therefore, we go further down

in the hierarchy. Second, the length of the link is used to

determine if the other surface element is visible at all.

Discretization We chose the cube-map parameterization

to discretize the sphere of directions. In other words, a bin

corresponds to a texel in the cube-map. The main advantage

of a cube-map lies in the efficient mapping of a direction to

a bin.

4.2.3 Refining the Hierarchical Link Structure

During the creation of the hierarchical link structure, it is

possible that a surface element and its child nodes contain

different links in the same bin/direction because the order

in which links are created is arbitrary. This is illustrated in

Figure 4. The link creation process first happens to con-

nect surface elements A and B. Then, in the next step, A

and C are connected but since they are closer together, the

links are created further down in the hierarchy (A and C are

(b)

A

B

C

(a)

A

B

C

Figure 4. Linking problem: In (a), the ele-
ments A and B are connected with a single

link. In the next step, the algorithm tries to

connect A and C. Since they are close by,
both A and C get subdivided and links are

created further down in the hierarchy. Now

there are inconsistent links at different levels
in the hierarchy: A is still linked to B, even

though there are shorter links further down

in the hierarchy between A and C.



Figure 5. Refining hierarchical links: Differ-

ent colors refer to different bins, and the
length of each arrow represents the link’s

length. We traverse the tree breadth-first, and

compare the links of parent and child nodes.
If there is a shorter link in a node further

down in the hierarchy, we remove the parent-
node’s link and push it to the siblings of the

node. If there is a longer link, it is removed.

subdivided). The original link between A and B remains

however, as the new shorter link is created further down in

the hierarchy and does not remove the original link.

The purpose of refining the hierarchical links is to delete

those incorrect (and redundant) links. To this end, we tra-

verse the tree(s) in a breadth-first manner. During traversal,

we compare the links in the bins of all parent-nodes and the

links in the bins of the currently visited node. If, for a given

bin, the current node contains a shorter link than a parent

node, the parent-node’s link is removed and pushed to the

siblings of the current node (if they don’t contain shorter

links). If the parent node contains a shorter link, the child-

node’s link is simply removed. This refinement removes

any incorrect links. Note that the refinement of links can

be done in a single traversal of the tree by keeping track of

which bins have links further up in the hierarchy.

4.2.4 Push-Down of Links

Our goal is to implement the illumination computation on

the GPU. Unfortunately, GPUs only support very limited

scatter operations, i.e., data cannot be written to arbitrary

positions but usually only to the current raster position. The

push part of the push-pull used by hierarchical radiosity al-

gorithms [4] requires a scatter operation, as data is written

to all the child nodes of a parent node.

We avoid this scatter operation and enable an efficient

GPU implementation by pushing down links from all the in-

terior nodes of our hierarchy to the leaf nodes. More specif-

ically, the previously bidirectional links between two nodes

are split into two unidirectional links through which energy

is received at each node. All the receiving ends of the links

are then pushed down the hierarchy to the leaf nodes. This

step can be combined with the link refinement from the pre-

vious subsection.

4.3 Illumination Computation

Global illumination is computed in a similar manner to

hierarchical radiosity. Energy is transferred between nodes

along links. We chose a gathering approach, i.e., at each

node, we gather all the energy from all incident links. The

incident light is then convolved with the BRDF and con-

verted to outgoing radiance. In case of diffuse BRDFs, the

outgoing radiance is constant for all outgoing directions and

we just store a single RGB triple. In case of glossy reflec-

tions, we augment our bin structure and store the outgoing

radiance per direction in it.

As we have pushed down all receiver links to leaf nodes,

outgoing illumination is only computed at leaf nodes (no

other nodes can receive energy). Nonetheless, just like in

hierarchical radiosity, we need to pull up the outgoing en-

ergy to the parent nodes, which is achieved by traversing the

tree bottom-up and accumulating energies.

These two steps need to be iterated to account for indirect

illumination. This procedure can be easily implemented on

the CPU, but it unlocks its full potential only when imple-

mented on the GPU.

4.3.1 GPU implementation

We store our surface elements, i.e., positions and normals,

in two floating point textures. The hierarchical tree is stored

in a texture in a pointer-less manner based on node indices.

E.g., a full quadtree with 21 nodes and three hierarchy levels

has indices 1–16 for the leaf nodes, indices 17–20 for the

second level, and index 21 as the root node. Hence, the

index of a node is sufficient to compute the indices of child

and parent nodes. A third texture is used to store all the

links. In order to allow for fast construction of this texture,

we simply flatten the 6×N×N bin structure of each node

and store its content in the 2D domain (we actually store this

data split over several textures). A fourth texture contains

the outgoing (and unshot) energy for each node.

Computing the illumination is rather straightforward

given these textures. For each leaf node, we loop over all its

links and gather and sum the unshot energy from them. It is

then converted into outgoing radiance by multiplying with

the albedo of the node. After the energy has been gathered

at all leaf nodes, we need to perform the traditional push-up

operation. The pointer-less tree representation allows us to

do this very efficiently by traversing bottom-up through all

nodes of the tree. For each node, we accumulate the out-

going radiance weighted by the area ratio. These two steps

can be repeated to account for several bounces of indirect

illumination.



For final display, we convert the texture containing out-

going radiance into a vertex texture, which is used to set the

color at the vertices of the model.

Speedup The direct lighting computation can be sped up,

as there are generally few links to the light sources. Instead

of going through all bins, we create a special texture that

contains for each node: the number of light links and the

actual links (indices to nodes). Now, we only need to go

through those links to gather energy.

4.4 Light Sources

We support area light sources as well as environmental

lighting. Area light sources are geometry like any other ob-

ject, with the notable difference that their initial outgoing

radiance is set to be non-zero.

Environmental lighting could be handle the same way,

but allows for a simple optimization. Instead of creating ge-

ometry for the environment, we initially omit it completely

and create our hierarchy with objects only. We now use the

observation that any empty bin (in the leaf nodes) can see

the lighting environment and therefore receives light from

it. Our optimized direct lighting step (see above) checks for

this, and gathers light from the environment for any empty

bin.

5 Results

Our method enables interactive rendering of fully dy-

namic scenes with direct and indirect illumination. Figure 1

shows an example where a teapot reflects the colored pat-

tern of a ground plane. Also note the soft shadow cast by

the environmental lighting. This runs at interactive speeds

(around 7 FPS) on an NVIDIA 8800. Deformable objects,

as shown in Figure 2, can also be handled easily.

Figure 6. Shadow and indirect lighting effects

between objects (with (a) 5165 vertices and
(b) 4782 vertices).

Figure 6 demonstrates that our method can handle shad-

ows and indirect lighting effects between objects. Note in

(b) how there is a green sheen on the grey chess piece.

Discretization 6×8×8 6×12×12 6×16×16

Update Elements 12ms (6%) 12ms (8%) 12ms (11%)

Create Hierarchy 23ms (21%) 43ms (29%) 78ms (38%)

Refine & Push 30ms (29%) 35ms (24%) 60ms (30%)

Illumination 35ms (35%) 40ms (28%) 48ms (24%)

Total 112ms 148ms 218ms

Table 1. Timings for the monster (3378 ver-

tices, 1-bounce illumination, see Fig. 8).

Figure 9 compares a reference image (a) computed with

path tracing to a result of our method (b). Despite all the ap-

proximations we make, as detailed in Section 3, the differ-

ences are minor. Our method produces slightly softer shad-

ows, which is less noticeable for a directional discretization

of 6×16×16. The differences become more prominent for

coarser discretizations and artifacts appear.

Figure 7 shows a teapot illuminated with an area source.

Overall, the shading compares well to the reference im-

age. However, discretization artifacts become obvious in

the shadow area. These artifacts can be reduced by either

increasing the number of bins or by using larger area lights.

Figure 8 shows a monster on a ground plane with di-

rect, one-bounce indirect, and two-bounce indirect light-

ing. Three levels of directional discretization are compared.

One-bounce lighting is sufficient for a pleasing result. A

coarse directional discretization produces slight artifacts,

but the speed gains are considerable. Table 1 details the time

spent on the different steps of our algorithm for this partic-

ular scene. The initial creation of the geometric hierarchy

takes about 72ms but is only done once in a preprocess.

Figure 10 compares a reference image (a) computed with

path tracing to our method (b). The differences are minor.

However, our method renders with several frames per sec-

ond. We also demonstrate that there is virtually no differ-

ence between our hierarchical (b) and a brute-force non-

hierarchical version (c). Coarsely tessellated objects can

cause light leakage, see (d) where the teapot only has 792

vertices (992 triangles).

Our GPU implementation also supports glossy direct il-

lumination, which we demonstrate in Figure 11. In order to

maintain interactive frame rates, we limit indirect illumina-

tion to diffuse interreflections in our GPU implementation

(even though the proposed method itself can handle glossy

interreflections). Our results compare favorably to the ref-

erence solution (Figure 11a).

We have found that our algorithm has roughly a com-

plexity of O(N log N), with N being the number of ver-

tices, which is similar to other hierarchical radiosity meth-

ods.



Figure 7. Discretization artifacts may become

visible under area lighting. However, increas-
ing the number of bins reduces artifacts.

5.1 Discussion

Despite the high-frame rate and the faithful reproduction

of global illumination effects as documented by the ground

truth comparisons, the proposed approximations and dis-

cretization may lead to visual artifacts. If only a coarse

cube-map discretization of the directional hemisphere is

used, block artifacts may be visible in the light simulation

(e.g., Figure 7 and 8). However, using 6× 12× 12 bins,

we achieve a good compromise between speed and visual

quality.

Additional inaccuracies may occur due to the uneven

distribution of solid angles across bins. Furthermore, al-

though the fixed world-space alignment of the bin cube-

maps across all geometric hierarchy levels enables fast com-

putation, differences in directional sampling for different

surface element orientations may lead to inaccuracies and

temporal aliasing when objects undergo deformations (see

accompanying video).

Moreover, rendering quality depends on the initial trian-

gulation of the models as we base our lighting simulation

on the models’ vertices. Starkly uneven triangulation may

therefore require re-meshing to prevent artifacts. If a model

is not tessellated finely enough, light leakage might occur,

as not every bin can be filled with a link for accurate occlu-

sions. However, for 6×16×16 or fewer bins and models of

about 5000 vertices, we have rarely encountered it.

Currently, we also trade rendering performance for accu-

racy and precompute the geometric hierarchy once, ignor-

ing the fact that an adaptation of the hierarchy according to

the deformation may be beneficial.

Despite these trade-offs and approximations, which are

necessary to obtain high performance, the good visual qual-

ity of our results shows that interactive full global illumina-

tion on a single PC is feasible.

6 Conclusions

We presented a new global illumination method that

builds on and extends the traditional hierarchical radiosity

approach by implicitly computing visibility. This new con-

cept circumvents time-consuming explicit visibility queries,

the main performance bottleneck in traditional approaches.

Our method allows for rendering of full global illumination

solutions for moderately complex and arbitrarily deforming

dynamic scenes at near-real-time frame rates on a single PC.

It faithfully reproduces a variety of complex lighting effects

including diffuse and glossy interreflections, and handles

scenes featuring environment map and area light sources.

As part of future work, we plan to investigate explicit

temporal coherence strategies to further improve animation

quality. Decoupling the tessellation of the mesh from shad-

ing computation is another interesting line of research.
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