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Figure 1: We start with a stream of RGBD images from a Kinect camera, and use SLAM to reconstruct the scene. (a) shows the input RGB
image and reconstructed normals. In this DESK scene, we insert a virtual rubik’s cube, a newspaper, and a coffee mug, as shown in (b) where
environment illumination (both direct and 1-bounce indirect) are computed using Monte Carlo (MC) path tracing followed by filtering. The full
system runs at 5.7 fps. We show comparisons of our result with unfiltered MC with equal samples, which is very noisy, and reference, which
takes 60× longer to render.

Abstract
Physically correct rendering of environment illumination has been a long-standing challenge in interactive graph-
ics, since Monte-Carlo ray-tracing requires thousands of rays per pixel. We propose accurate filtering of a noisy
Monte-Carlo image using Fourier analysis. Our novel analysis extends previous works by showing that the shape
of illumination spectra is not always a line or wedge, as in previous approximations, but rather an ellipsoid. Our
primary contribution is an axis-aligned filtering scheme that preserves the frequency content of the illumination.
We also propose a novel application of our technique to mixed reality scenes, in which virtual objects are inserted
into a real video stream so as to become indistinguishable from the real objects. The virtual objects must be shaded
with the real lighting conditions, and the mutual illumination between real and virtual objects must also be de-
termined. For this, we demonstrate a novel two-mode path tracing approach that allows ray-tracing a scene with
image-based real geometry and mesh-based virtual geometry. Finally, we are able to de-noise a sparsely sampled
image and render physically correct mixed reality scenes at over 5 fps on the GPU.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Ray-tracing—

1. Introduction

Environment illumination is an important effect in
physically-based as well as real-time rendering, where a sur-
face receives illumination from light sources located at in-
finity, i.e. from every direction. In the past, various approx-
imate techniques for environment lighting have been pro-

posed, such as spherical harmonics and precomputed radi-
ance transfer. Monte Carlo (MC) ray tracing is the phys-
ically accurate technique for rendering photo-realistic im-
agery with environment illumination. However, the number
of rays needed to produce a visually pleasing noise-free im-
age can be large, resulting in hours to render a single image.
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We observe that, on smooth surfaces, shading from en-
vironment illumination is often slowly varying, and hence
one approach for fast rendering is to exploit the smoothness
by appropriately filtering a sparsely-sampled Monte Carlo
result (see Fig. 1). We extend the axis-aligned filtering al-
gorithm of Mehta et al. [MWR12, MWRD13], previously
limited respectively to area light direct illumination and in-
direct illumination only, to filter environment illumination
(direct and indirect) adaptively in screen-space. The filtering
scheme is fast and in screen-space, and at the same time does
not overblur the shading.

In Sec. 6, we analyze the illumination, and resulting im-
age shading in the Fourier domain. While previous work
[DHS∗05] has conducted such a frequency analysis, we pro-
vide new insights into the shape of spatio-angular radiance
spectra. The 2D (flatland) light fields of incident illumination
and visibility have different slopes. We show that convolu-
tion of the corresponding spectra in Fourier space, is an ori-
ented ellipsoid, unlike previous double-wedge models (see
Fig. 3). By understanding the nature of this spectrum, we
derive an axis-aligned filter and compute the spatial shad-
ing bandwidth, for both diffuse and glossy cases. Using our
Fourier analysis and bandwidth prediction, we derive Gaus-
sian image space filters (Sec. 7) for environment map direct
lighting. In addition, we make two minor changes to previ-
ous axis-aligned filtering methods – (i) Temporal filtering, to
use the result of the previous frame as an input to our filter,
which helps reduce noise and (ii) Anti-aliasing for primary
visibility with 4 samples per pixel.

We demonstrate our technique applied to rendering mixed
reality (MR). The fundamental objective of MR applica-
tions for immersive visual experiences is seamlessly over-
laying virtual models into a real scene. The synthesis has
two main challenges: (1) stable tracking of cameras (pose
estimation) that provides a proper placement of virtual ob-
jects in a real scene, and (2) plausible rendering and post
processing of the mixed scenes. For the first challenge, there
are many existing techniques that can be leveraged. In this
paper, we use dense simultaneous localization and mapping
(SLAM) algorithms [NLD11, IKH∗11] that provide the es-
timated 6DOF camera pose, as well as scene geometry in
the form of per-pixel positions and normals. For the second
challenge, many approaches use either rasterization with a
dynamic but noisy real-world mesh obtained directly from a
depth camera [KTMW12], or Monte Carlo ray-trace a fixed
pre-defined real-world mesh [KK13b]. We provide a two-
mode path-tracing method that uses a denoised real-world
vertex map obtained from the SLAM stage. As described
in Sec. 5, a fast GPU ray-tracer is used for the virtual ge-
ometry, while real geometry is intersected with rays traced
in screen space. Finally, we use our filtering scheme on a 16
samples/pixel noisy MC result to remove noise. This gives us
the quality of a purely path-traced result at interactive rates
of 5 frames/second. Note, we assume all real surfaces are
diffuse, while virtual objects can be diffuse or glossy. The
environment lighting is obtained by photographing a mir-
rored ball.

2. Previous Work

Environment Illumination: The most popular approach
for real-time rendering with environment lighting is to use
spherical harmonics [RH01] with pre-computed ambient
occlusion, or more generally, precomputed radiance trans-
fer [SKS02]. This approach is limited to low-frequency
lighting, and requires pre-computation that does not support
dynamic MR.

Rendering in MR: A pioneering work in light trans-
port for MR was presented by Fournier et al. [FGR93],
based on radiosity. It was later extended using image based
lighting derived from a light probe [Deb98]. Gibson and
Murta [GM00] present a hardware-rendering approach
using pre-computed basis radiance-maps and shadow maps.
Cossairt et al. [CNR08] synthesize inter-reflections without
knowing scene geometry, using a controlled set-up to cap-
ture and re-project a 4D radiance light field. Recently, some
work has adapted more modern techniques for MR, such
as differential instant radiosity [KTMW12] using imperfect
shadow mapping, and delta voxel cone-tracing [Fra14].
While they show fast impressive results, they are not
physically accurate.

Our approach is based purely on ray-tracing. Closest
to our approach are differential progressive path tracing
[KK13b] and differential irradiance caching [KK13a], which
compute direct and indirect illumination using path-tracing.
Both methods use pre-determined real-world mesh geome-
try. Differential progressive path-tracing uses only one sam-
ple/pixel/frame on the combined scene geometry. Since they
do not filter their result, only a very noisy image is achiev-
able in real-time. The user must wait without camera mo-
tion for the image to become noise-free. We overcome this
limitation through the use of fast yet accurate filtering, and
fast accumulation of 16 samples per pixel per frame. Fur-
ther, we use screen-space ray-tracing for real objects. Meth-
ods like Kán and Kaufmann [KK12] demonstrate reflections,
refractions and caustics through the use of differential pho-
ton mapping, which improves the realism. We can handle
reflections and refractions, but we did not implement caus-
tics, which would require photon mapping. We use pure ray-
tracing and focus on low- to mid-frequency shading.

To improve the realism of inserted virtual objects, many
works focus on post-processing techniques to match color
palette and noise between pixels belonging to real and
virtual objects. Our goal in this paper is primarily to provide
a photorealistic rendering system for MR scenes. We do not
focus on tracking/reconstruction quality, lighting estimation,
and post-processing techniques.

Screen-space Ray-tracing (SSRT): We introduce a
hybrid ray-tracing scheme that uses screen-space rays
to find intersections with real geometry represented as a
vertex map. Mark et al. [MMB97] use depth information to
re-render an image from a nearby viewpoint. This idea can
be extended to screen-space ray-tracing, where rays traverse
pixels and test depth for intersection – a technique that has
been used for local specular reflections [SKS11,MMNL14].
We use SSRT to compute direct and indirect illumination
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as well. Like many previous works, the real-world mesh
is represented as a dynamically updated vertex map of the
current frame. Hence, real objects not visible in the current
frame do not affect the shading of virtual objects. One
could potentially use the global volumetric signed-distance
function maintained by the SLAM back-end for ray-tracing;
however, this would be extremely slow.

Fourier Analysis and Axis-aligned Filtering: We are in-
spired by Chai et al. [CTCS00] and Durand et al. [DHS∗05],
who introduce the basic Fourier theory for space-angle and
pixel-light light fields. The latter work, Fourier Analysis
of Light Transport (FLT), models light-surface interactions
atomically, and derives the Fourier equivalent for each
interaction. Their Fourier spectra are parallelograms, while
we show that the spectra can actually have an ellipsoidal
shape; our bandwidths are more accurate. More recently,
Belcour et al. [BSS∗13] model the shading spectrum as a
Gaussian covariance matrix that is the product of matrices
for each atomic interaction, that is expensive and slow to
compute. We use an end-to-end geometric approach that
directly gives the object space bandwidth and is fast to
compute. Bagher et al. [BSS∗12] use bandwidth prediction
to shade different materials under environment lighting via
heirarchical shading, but do not consider occlusion.

Egan et al. [EDR11] show that the Fourier spectrum for
ambient occlusion in a position-angle space is a double
wedge, and demonstrate a sheared filter that tightly fits the
spectrum. They demonstrate good results for low-frequency
environment lighting with 32 samples/pixel, although they
do not take the interaction of BRDF and visibility into
account, and their filter is offline. The recent axis-aligned
filtering approach of Mehta et al. [MWR12, MWRD13]
derives a filter aligned with the axes, that reduces to a
Gaussian filter with appropriate spatial bandwidth in image
space. These works are respectively useful only for area
light soft shadows and indirect illumination. We extend this
approach to handle environment lighting, which requires
a different curvature-dependent parametrization, since the
light sources are at infinity. While these previous works
treat the spectrum to be strictly a double-wedge, our spectra
are not restricted to this model.The axis-aligned filter size
is no longer dependent on only the BRDF or the lighting
bandlimit, but combines the effect of both terms in a
non-trivial way.

Denoising Monte-Carlo Images: Image filtering is a
popular approach to remove noise in MC images, because
of its simplicity and efficiency. Geometric information such
as normals, textures, and depths, can play an important role
for predicting noise in rendered images. The state of the
art in this domain includes [KS13] (AMLD) that gives a
noise estimation metric to locally identify the amount of
noise in different parts of the image, with adaptive sampling
and filtering using standard denoising techniques. Other
approaches include use of Stein’s unbiased risk estimator
(SURE, [LWC12]), ray histogram fusion [DMB∗14] and
adaptive local regression [MCY14]. These approaches sup-
port general rendering effects, but have a high reconstruction
overheads in seconds, and are offline. Recently, [TSPP14]

(Fast-ANN) have shown approximate-nearest-neighbor col-
laborative filtering for general images at real-time speeds.
We compare results to AMLD and Fast-ANN.

3. Differential Rendering

Our MR rendering system is based on the differential ren-
dering method of Debevec [Deb98]. The idea is to estimate
the pixel color considering only real objects, and consider-
ing both real and virtual objects, and add the difference to the
raw camera image. Let LR be the (per-pixel, outgoing) radi-
ance due to real objects only, and LRV be the radiance due to
both real and virtual objects (including indirect illumination
between them). Then, differential rendering composites the
final image per the equation:

Lfinal = (1−M) ·LRV +M · (LRV −LR +Lcam) (1)

Here, M is the fraction of the pixel covered by real objects,
and Lcam is the input radiance image.

Calculating the radiances LR and LRV implicitly requires
knowledge of the real-object BRDF and texture. Under the
assumption that all surfaces are diffuse, only the real-object
RGB texture (albedo) kR is unknown. We show that eqn. 1
can be written purely in terms of irradiances, without the
need to explicitly estimate kR.

We separate all outgoing radiances into a product of irra-
diance E and texture k. The first term in eqn. 1 corresponds
to the contribution of a virtual object, so we replace LRV with
kV ERV where kV is known virtual object texture and ERV is
the pixel irradiance considering both real and virtual objects.
The second term corresponds to the contribution of real ob-
jects, and we write LRV −LR = kR(ERV −ER). Like previous
works, the estimate of kR is kR = Lcam/ER. Substituting this
into eqn. 1, we get:

Lfinal = (1−M) · kV ERV +M · (kR(ERV −ER)+Lcam)

= (1−M) · kV ERV +M ·
(

Lcam

ER
(ERV −ER)+Lcam

)
Simplifying,

Lfinal = (1−M) · kV ERV +M ·
(

ERV

ER
Lcam

)
. (2)

Thus, we have eliminated the unknown kR completely.
Our task now is to estimate ER and ERV .

Glossy Virtual Objects: Above, we consider only diffuse
real and virtual objects, so that the radiance can be factored
into texture and irradiance. However, we can easily handle
glossy virtual objects. In the glossy case, the LRV in the
first term of eqn. 1 would be split into a spatial texture and
outgoing radiance that depends on viewing angle. We may
represent this outgoing radiance with the same symbol ERV ,
without changing the resulting analysis. We follow this con-
vention for glossy virtual objects throughout the paper for
simplicity. In Sec. 6.3, our theory treats glossy BRDFs rig-
orously.
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Figure 2: An abstract flowchart of our MR system. Stored in-
put/output variables are enclosed in blue boxes, and computational
steps are enclosed in white boxes. We start with dense SLAM to es-
timate camera pose and scene geometry from depth, followed by
sparse Monte Carlo sampling to compute noisy estimates of four ir-
radiance values (Refer to Sec. 4 for more details). We then filter the
irradiances using our theory, also using the values from the previ-
ous frame for further noise reduction. The filtered values are then
used to composite the final image, as explained in Sec. 3.

4. Overview

Figure 2 shows an overview of our MR system. Our sys-
tem can be abstracted into four distinct stages; each stage is
briefly explained below.

We take the RGBD stream from a Kinect camera and use
the depth data to estimate camera pose and scene geometry.
To realistically render virtual objects, the scene lighting in
the form of an environment map must be known. We obtain
the environment map from an image of a reflective metallic
ball, using a camera looking down from above (the environ-
ment map may not be changed except for simple rotations).
The entire pre-processing is done once for a single scene;
each of the following stages runs per-frame at interactive
speed.

1. Dense SLAM: The first step is camera tracking
and scene reconstruction, to estimate per-pixel world-
coordinates, normals as well as camera pose (rota-
tion+translation), from the depth images. We use InfiniTAM
[PKC∗14], an open-source implementation of GPU-based
voxel-hashing Kinect fusion [NZIS13]. It is fast, running at
about 50 fps, and provides high quality scene reconstruction.
Reconstructed normals for each scene are shown in the cor-
responding figures. While we can support dynamic geome-
try, both real and virtual, the SLAM backend is not robust
to dynamic real objects. So, we only demonstrate dynamic
virtual objects.

2. Sampling: We use two Monte Carlo path-tracing
passes to estimate per pixel illumination without and with
virtual objects. Each is the sum of direct illumination from
an environment light source and 1-bounce indirect illumina-
tion, i.e., ER = Edir

R +E ind
R , and ERV = Edir

RV +E ind
RV . Thus, we

compute four independent components: Edir|ind
R|RV . The sam-

pling algorithm is described in Sec. 5, with detailed pseudo-
code in the supplementary material.

3. Filtering: Obviously, the Monte Carlo sampled result
is very noisy, and hence in the next stage, we filter each of
the four irradiances using physically-based filters. The filter
bandwidths are derived using Fourier analysis in Sec. 6. To
reduce noise further, we also save the unfiltered irradiances
from the previous frame, and use them as additional inputs
to our filter. Details of this temporal filtering are discussed
in Sec. 7.

4. Compositing: The last step involves compositing the
final MR image, using the filtered values ER and ERV and
the input RGB image, according to eqn. 2.

5. Two-mode Sampling Algorithm

In this section, we discuss our sampling algorithm (step 2
in the overview above). We aim to compute the pixel color
using physically-based Monte Carlo sampling. The input is
the camera position, per-pixel real object world positions and
normals, and virtual object geometry as a triangle mesh. The
output of the algorithm is per-pixel out-going illumination,
namely Edir

R , E ind
R , Edir

RV , and E ind
RV , as explained in Sec. 3.

Previous works achieve this by tracing two kinds of rays:
one that intersects only real geometry, and one that inter-
sects both real and virtual geometry. Path-tracing using these
two ray types is described in Kán and Kaufmann [KK13b],
but our method is slightly different. For the virtual geometry
we use meshes, since most virtual models are mesh-based,
and the NVIDIA OptiX [PBD∗10] ray-tracer is very suitable
to intersect mesh geometry. However, we do not assume a
known mesh model of the real world, and using a mesh-
based ray-tracer for real geometry (per-frame vertex map)
is wasteful. A screen-space ray-tracer (SSRT) computes the
same result much faster, by traversing the vertex map start-
ing from the origin pixel, and returns the world position
of the intersection. We use a hierarchical traversal method
adapted from [TIS08]. Since only the current frame is used,
off-screen real objects will not affect the shading; the effects
of this limitation are quite subtle for diffuse scenes. This can
be addressed by using SSRT on a higher field-of-view vertex
map rendered in the SLAM stage, at the cost of performance.

5.1. Algorithm

We propose a two-mode path-tracer that traces OptiX rays
to intersect only virtual geometry, and screen-space rays to
intersect only real geometry. Our sampling algorithm is ex-
plained in detail in the supplemental document.

First, we compute 4 primary samples per pixel (spp) for
anti-aliasing, and we determine whether a real or a virtual
object is visible at the current sample and update the mask M
(see Sec. 3). Next, we compute 4 secondary samples for each
of the 4 primary samples, so we compute a total of 16 spp
for each of direct and indirect illumination. For direct illu-
mination, we importance sample the environment map (see
Sec. 5.2), as this gives the least amount of noise for very
little overhead. For indirect illumination, we sample the co-
sine hemisphere for diffuse surfaces (real and virtual) and a
Phong lobe for glossy surfaces (virtual only).

In the sampling step, we also save the (average) world
location, normal, virtual texture kV . We also record the min-
imum hit distance for direct and indirect illumination; these
are required for filtering. Since texture is multiplied with ir-
radiance after filtering, we approximate ⟨k ·E⟩ ≈ ⟨k⟩ · ⟨E⟩,
where ⟨⟩ denotes the mean of the quantity at a pixel. This
approximation works on most pixels except on silhouettes,
where the error is usually small.
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5.2. Importance sampling the environment map

Traditional importance sampling involves pre-computing a
cumulative distribution function (CDF) of the 2D environ-
ment map and then generating samples at each pixel by find-
ing the inverse CDF for a uniform stratified random sample.
However, performing 16 such look-ups per-frame per-pixel
is slow, so instead we pre-compute a large number of im-
portance samples (4096) and store them to a buffer. Then,
at each pixel we perform 16 random stratified look-ups into
the buffer. This is somewhat analogous to a virtual-point-
light approach, except we use a very large number of lights
and sample randomly. In the supplemental material, we show
that the difference between our pre-computed importance
sampling strategy vs. ground truth is negligible. Complex
importance sampling strategies such as [ARBJ03] are more
effective at importance sampling and could also be used.

6. Fourier Analysis for Environment Lighting

So far, we have computed the quantities Edir
R , etc. as per the

flowchart in Fig. 2, from our sampling phase above (stage 2).
However, since we only use 16 samples per pixel, the results
are noisy, and accurate rendering requires filtering (stage 3).
We now discuss our filtering theory, that computes the re-
quired bandwidths; Sec. 7 discusses the actual filtering given
these bandwidths.

Our main contribution is the Fourier analysis of direct il-
lumination from an environment map, considering occluders
and visibility. We first perform a 2D Fourier analysis of the
shading in a position-angle space, and then show that the
shading is bandlimited by the BRDF in the angular dimen-
sion. The resulting axis-aligned filter provides a simple spa-
tial bandwidth for the shading. In practice, the pre-integrated
noisy per-pixel irradiance can be filtered using a Gaussian
kernel of variance inversely related to the bandwidth, with-
out altering the underlying signal.

6.1. Diffuse without visibility

As in previous works, we perform our analysis in flatland
(2D). As explained in Sec. 6.4, the 2D results provide a
bound on the 3D result, even though there is no simple ana-
lytic formula for 3D. We begin with the simplest case. Pa-
rameterize a diffuse receiver surface of curvature κ by x
along a tangent plane defined at the origin x = 0. Note that κ
is defined as the change in the normal angle (relative to the
origin normal) per unit change in x; it is assumed positive but
the analysis extends easily for negative curvatures. Consider
the set-up shown in Fig. 3(a). Let the environment illumina-
tion be Le(·), with angles to the right of the normal being
positive and to the left being negative. The illumination is
assumed to have an angular bandwidth of Be (i.e., 99% en-
ergy of ||L̂e(Ωθ )||2 lies in |Ωθ | < Be). We now analyze the
1D surface irradiance given by the reflection equation in flat-
land:

E(x) =
∫ π/2

−π/2
Li(x,θ)cosθ dθ =

∫
Li(x,θ) f (θ)dθ . (3)

We have re-written the equation with a clamped cosine func-
tion f (θ) = cosθ for θ ∈ [−π/2,π/2] and 0 otherwise. The

Fourier transform of eqn. 3 is straightforward,

Ê(Ωx) =
∫

L̂i(Ωx,Ωθ ) f̂ (Ωθ )dΩθ (4)

The incoming direction θ at x corresponds to the direction
θ +κx at the origin. Then,

Li(x,θ) = Le(θ +κx). (5)

The 2D Fourier power spectrum of Li is a single line through
the origin , with slope κ−1 (see [CTCS00]). This line is ban-
dlimited in the angular dimension by f̂ . Let this bandlimit
be B f . Then, as shown in Fig. 3(b), the bandwidth of Ê is
Bx = κ · min

{
Be,B f

}
. In most interesting cases, we have

Be > B f , so that

Bx = κB f . (6)

This simple result (also derived in [DHS∗05]) shows that
higher curvature produces higher shading frequency. We
now build upon this simple analysis to extend the result to
include visibility and glossy BRDFs.

6.2. Diffuse with visibility

We now refine the above result by including an infinite oc-
cluder at depth z, as shown in Fig. 3(c). The occluder block-
ing angle θb for a point at a small x > 0 on the curved
surface can be written in terms of the angle at the origin
θocc = θb(0):

θb(x)≈ tan−1
(

z tanθocc − x
z+κx2

)
−κx

≈ tan−1
(

tanθocc −
x
z

)
−κx

≈θocc − x
cos2 θocc

z
−κx

(7)

In the second step, we ignore the offset κx2 of the point be-
low the plane of parametrization, since it is quadratic in x. In
the last step we use Taylor approximation to expand the arc-
tan: tan−1(α + x) ≈ tan−1 α + x/(1+α2) for x << 1. This
is similar to [RMB07]. Thus, for small curvature and small
displacement x, we get θb(x) = θocc −λx where

λ = κ + cos2 θocc/z (8)

Finally, note that the visibility at x is

V (x,θ) = H(θ −θb(x)), (9)

where H(·) is a step function that takes value 0 when its
argument is positive and 1 otherwise. Hence, the irradiance
including visibility can be written as:

E(x) =
∫

Li(x,θ)V (x,θ) f (θ)dθ

=
∫

Le(θ +κx)H(θ −θocc +λx) f (θ)dθ .
(10)

To find the spatial bandwidth of E(x), we find the Fourier
transform (full derivation is provided in the supplemental
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Figure 3: (a) Geometry for diffuse flatland case without considering visibility, (b) Power spectrum of Li and axis-aligned filter. In (c) we show
the flatland geometry with an occluder at depth z and (d) shows the power spectrum Ĝ, defined in eqn. 11, which is the product of the two
sheared Gaussians (shaded blue), and has an ellipsoidal shape (shaded red); Bx is our conservative estimate of its bandwidth.
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Figure 4: Verification of eqn. 13 for the simple flatland setup of Fig. 3(c) with κ = 0.5 and one occluder at θocc = 0 and z = 2, using a Gaussian-
sinusoid product for illumination. (a) shows the product Li ×V (x,θ) for this setup. (b) shows the power spectrum ||Ĝ||2 of (a). In (c) we show
the 1D power spectra of Le and f , showing bandlimits Be = 3 and B f = 1. (d) shows the 1D power spectrum Ê of the surface irradiance. Eqn.
13 gives Bx = 2.5, while numerically the bandwidth of Ê is B∗

x = 1.9, thus showing that our estimate is conservative and reasonably tight. The
FLT estimate in this case is Bx = 1.0, causing significant energy loss.

document):

Ê(Ωx) =
1

λ −κ

∫
L̂e

(
−Ωx −λΩθ

λ −κ

)
Ĥ
(

Ωx −κΩθ
λ −κ

)
e j(...) f̂ (Ωθ )dΩθ

=
∫

Ĝ(Ωx,Ωθ ) f̂ (Ωθ )dΩθ

(11)

The phase term e j(...) due to the θocc offset in H is ignored
for brevity; we are only concerned with the magnitude of the
integrand. Both terms L̂e and Ĥ are 1-D functions sheared in
2-D along lines of slopes λ−1 and κ−1, respectively. Since
the respective 1-D functions are both low-pass (i.e. 99% en-
ergy lies in a small frequency range), the product Ĝ is shaped
roughly like an ellipsoid. This is shown in Fig. 3(d). The
shape of the spectrum is no longer a simple line for a sin-
gle depth occluder.

From eqn. 11, G is bandlimited in Ωθ by the bandwidth
of f , i.e. B f . Since L̂e has the smaller slope is λ−1, the
worst case spatial bandwidth of Ê is that of this term. Part
of the bandwidth is from the center line, specifically B f λ .
The bandwidth has an additional component due to the non-
zero spread of the L̂e term in eqn. 11. Since the one-sided
width of L̂e(Ω) is Be, the width of this term is Be(λ − κ).
Thus, our conservative estimate of the spatial bandwidth of

Ê is

Bx = B f λ +Be(λ −κ) (12)

This bandwidth is the sum of what one would get consider-
ing only visibility (first term), and the extra bandwidth due
to the lighting (second term). However, it is not simply the
sum of bandwidths due to illumination and visibility when
considered separately, as one may have expected from the
form of eqn. 10. Using the definition of λ (eqn. 8), we can
re-write the filter width as:

Bx = κB f +(cos2 θocc/z)(B f +Be) (13)

We verified that our predicted bandwidth holds for many
flatland cases. One such set up is shown in Fig. 4. Ob-
serve the shape of the spectrum Ĝ. The predicted bandwidth
slightly overestimates the true bandwidth.

The case with multiple occluders at different depths can-
not be solved analytically; we find the most conservative
bound by considering the closest occluder (smallest z). How-
ever, in this case, the spectrum is not a well-defined double-
wedge as in previous works.

6.3. Glossy BRDF

We will now derive the bandwidth for shading on a curved
glossy surface in flatland. Visibility is not considered, since
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(a) (b)

Figure 5: (a) Flatland geometry for shading with glossy BRDF. (b)
The shading spectrum is the product of the two sheared Gaussians
(shaded blue), and has an ellipsoidal shape (shaded red); Bx is our
conservative estimate of its bandwidth.

it introduces an intractable triple product, but we intuitively
add the effect of visibility at the end. As before, the surface
is lit with a 1D environment illumination Le relative to the
origin, and the camera is at an angle θcam from the origin.
The camera is assumed distant compared to the scale of sur-
face being considered. The setup is shown in Fig. 5(a). The
surface BRDF is assumed rotationally invariant, that is, only
the difference of the incoming and outgoing angles deter-
mines the BRDF value. Numerically, ρ(θi,θo) = ρ(θi+θo),
where the + sign is due to angles being measured relative to
the normal. Then, the radiance reflected to the camera is

L0(x,θcam) =

∫ π/2

−π/2
Li(x,θ)ρ(θ ,θo)cosθ dθ

=
∫

Le(θ +κx)ρ(θcam +θ −κx) f (θ)dθ
(14)

This equation is similar to eqn. 10, except that the slopes of
the two terms have opposite signs. The Fourier transform has
the same form, with minor differences:

L̂o(Ωx,θcam) =
1

2κ

∫
L̂e

(
Ωx +κΩθ

2κ

)
ρ̂
(

Ωx −κΩθ
2κ

)
e j(...)

f̂ (Ωθ )dΩθ
(15)

As before, the phase term e j(...) is ignored for brevity. The
terms L̂e and ρ̂ are low-pass, and sheared along lines of
slopes −κ−1 and κ−1, respectively. Their product is visual-
ized in Fig. 5(b). Thus, the conservative bandwidth estimate
for L̂o is

Bx = κB f +2κ min
{

Be,Bρ
}

= κ
(
B f +2Bρ

) (16)

Here Bρ is the angular bandwidth of the BRDF ρ(·). Com-
paring to eqn. 13, we see that the angular bandlimit has ef-
fectively increased from B f to B f +2Bρ . Thus, we can mod-
ify eqn. 13 to include the effect of a visibility discontinuity
and rewrite the generalized bandwidth as

Bx = κ
(
B f +2Bρ

)
+(cos2 θocc/z)

(
B f +2Bρ +Be

)
(17)

We provide a numerican evaluation of this bandwidth esti-
mate in the supplemental material, similar to Fig. 4.

6.4. Extension to 3D

The flatland results above can be extended to 3D. Directions
in 3D can be parameterized in spherical coordinates (θ ,ϕ);
however, there is no simple linear form in terms of curva-
ture in 3D which makes the analysis tedious. However, we
can restrict to a fixed ϕ – along the direction of maximum
curvature – and perform our analysis. The resulting band-
width is a conservative bound for the true bandwidth con-
sidering the full hemisphere of directions, since the normal
angle θ changes most rapidly along the maximum curvature
direction. In practice, computing the maximum curvature per
pixel is difficult, and we instead determine screen-space cur-
vatures κX ,κY , which bound the bandwidth along the image
X ,Y axes. The filter size is the reciprocal of the bandwidth.

In Fig. 6, using a purely virtual and untextured scene un-
der an outdoor environment map (direct illumination only),
we show that our flatland analysis works well in 3D using
screen space curvatures. In (b), we show the mean of X and
Y filter size. Note how the filter size depends on curvature,
BRDF and occluder distance.

6.5. Indirect Illumination

The above analysis derives filter bandwidths for the direct il-
lumination terms Edir

R ,Edir
RV . We must also filter the sparsely-

sampled noisy indirect illumination terms, E ind
R ,E ind

RV . For in-
direct illumination, we use the axis-aligned filter derived in
Mehta et al. [MWRD13]. For any configuration of reflectors
at a minimum distance zmin from the receiver, with BRDF
bandlimit Bh, the bandwidth formula is:

Bind
x = Bh/zmin (18)

For the diffuse case, Bh ≈ 2.8. For a Phong BRDF with ex-
ponent m, Bh ≈ 4.27+0.15m [MWRD13].

6.6. Discussion

We discuss the novelty of and compare our contributions
against previous works. We first emphasize that [MWR12]
which treats area lights at finite distances and [MWRD13]
which treats indirect illumination from nearby reflectors,
are both not applicable to environment lighting. Bagher et
al. [BSS∗12] do not separate texture and illumination; they
compute bandwidths numerically for glossy BRDFs and dis-
tant lighting, and their shading bandwidth is obtained by
matrix multiplication. They do not consider visibility at all,
which is a crucial contributor to shading bandwidth. An im-
portant difference from FLT [DHS∗05] is the consideration
of the source illumination bandwidth. They combine the ef-
fect of visibility and BRDF without doing a full derivation;
their eqn. 21 gives the following bandwidth in object space
(ignoring the scaling of d/(n ·v))

BFLT
x = (2κ + z−1)Bρ , (19)
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Our Method, 0.12 sec

Env. map

Filter size Input MC

0.09 sec

Reference

5.5 sec

Our Method

0.13 sec

FLT

0.21 sec

AMLD

48 sec

Fast ANN

0.25 sec

Our Method, 0.12 sec

Env. map

Filter size Input MC

0.08 sec

Reference

5.1 sec

Our Method

0.12 sec

FLT

0.20 sec

AMLD

35 sec

Fast ANN

0.24 sec

Figure 6: We demonstrate our filtering method on two purely virtual untextured scenes, with a diffuse and a phong (exponent 64) object on
a diffuse plane. We show our result with an input of 16 spp (using temporal filtering, Sec. 7), that runs at about 8 fps (resolution 720×720).
We also show the environment map used, and warm-to-cool filter size (inverse bandwidth). In the insets, we compare to unfiltered 16 spp MC
input, reference with 1024 spp (60× slower). We also compare to three other methods with 32 spp input: FLT [DHS∗05] which blurs shadows,
AMLD [KS13] which is offline and blurs geometric edges, and Fast ANN [TSPP14], which is only 2× slower than ours, but produces artifacts.
All methods work well on glossy objects (bottom row insets) since the noise is small.

Comparing to our bandwidth, eqn. 17, the FLT approach ig-
nores the Be term, which arises from our exact evaluation of
the convolution of illumination and visibility, and the ellip-
soidal shape of the spectrum. Thus, FLT underestimates the
shading bandwidth of high frequency lighting with nearby
occluders, resulting in blurring high frequency shading ef-
fects when used for filtering.

7. Practical Filtering

We now discuss how the bandwidths derived above can be
used to filter noisy irradiances. Before the filtering stage, we
run a CUDA kernel to compute per-pixel screen-space cur-
vatures κX ,κY as

κX (x,y) =
angle(n(x,y),n(x+1,y))
||p(x,y)−p(x+1,y)||

(20)

where n is the normal and p is the world position. The sam-
pling pass stores the minimum occluder distances for direct
(we ignore occluders which block samples with intensity
below a threshold of 0.1) and indirect illumination. Then,
filter bandwidths along each axis, BX ,BY are computed –
using eqn. 17 for direct illumination and 18 for indirect
illumination (BX = BY for indirect). Be is taken to be the
99% energy bandwidth of the 2D Fourier spectrum of the
environment map in lat-long coordinates.

A naive implementation of a 2D Gaussian filter of ra-
dius R has Θ(R2) complexity. Analogous to previous

axis-aligned filtering papers, the filter is separable into two
stages, aligned along the image X and Y axes, reducing
the complexity to Θ(R). We now provide the formulae for
the 2-step separated filter. Let E(x,y) denote a raw noisy
irradiance value at the pixel (x,y), and Ē denote the filtered
value. Then,

EX (x,y) =
∑|i|<R wxy(x+ i,y)E(x+ i,y)

∑|i|<R wxy(x+ i,y)
(21)

EX denotes the intermediate value resulting from filtering
only in the X-direction. The filtered result is given as:

Ē(x,y) =
∑| j|<R wxy(x,y+ j)EX (x,y+ j)

∑| j|<R wxy(x,y+ j)
. (22)

The filter kernel is a Gaussian:

wxy(x+ i,y) = exp(−2B̄2
X ||p(x,y)−p(x+ i,y)||2) (23)

Since the bandwidth estimates are also noisy, we use the
average square bandwidth of the source and target pixel
B̄2

X = 0.5(B2
X (x,y) + B2

X (x + i,y)). Similarly, wxy(x,y + j)
uses the bandwidth BY .

Temporal filtering: Since we only use 16 samples per
pixel, the result from the sampling stage is very noisy, and
the filtering can still leave some residual noise in temporal
sequences, leading to distracting flickering. Hence, we do
temporal filtering where the filter also extends to the previ-
ous frame. This scheme is physically accurate, assuming the
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illumination does not change (at a given world location) be-
tween two consecutive frames – which is a good assumption
in most situations except rapid geometry or light source mo-
tion. Let E ′ be the irradiance value from the previous frame,
and (x′,y′) be the pixel in the previous frame with the closest
world location to pixel (x,y), i.e., p(x,y) ≈ p′(x′,y′). First,
filter along X :

E ′
X (x,y) =

∑|i|<R w′
xy(x

′+ i,y′)E ′(x′+ i,y′)

∑|i|<R w′
xy(x′+ i,y′)

(24)

The weights are modified to

w′
xy(x

′+ i,y′) = exp(−2B̄2
X ||p(x,y)−p′(x′+ i,y′)||2) (25)

Note that the center of the kernel is offset to (x′,y′), unlike
eqn. 23. To see why this is important, imagine that there is
camera motion between the two frames only along Y . Then,
if the filter were to be centered at (x,y), there may be no
pixel x+ i where ||p(x,y)−p′(x+ i,y)|| is small resulting in
few or no useful values of E ′ and artifacts in the final result.

We can now combine the results of eqns. 21 and 24,
and filter along the Y -axis to produce the final filtered value:

Ē(x,y) =

 ∑
| j|<R

wxy(x,y+ j)EX (x,y+ j)+

w′
xy(x

′,y′+ j)E ′
X (x

′,y′+ j)


∑| j|<R wxy(x,y+ j)+w′

xy(x′,y′+ j)
. (26)

8. Results

We show four mixed reality scenes with environment map
direct and indirect illumination, all rendered at the Kinect
camera’s VGA (640×480) resolution. Our results include
a variety of real-life scenarios augmented with diffuse as
well as glossy virtual objects that blend in seamlessly. The
accompanying video shows animations and screen captures
demonstrating temporal stability. Our images and video are
rendered on an Intel Core i7, 3.60GHz desktop with a single
NVIDIA Titan GPU, using CUDA v6.5 and OptiX v3.5.

In Fig.1, we show a simple DESK scene about (1 meter)3

in size. A diffuse Rubik’s cube, coffee mug and newspaper
are inserted into the real image/video, and they blend in plau-
sibly. The insets show the 4 primary modes of interaction.
Direct illumination shadows cast from virtual to real objects
are shown in the left-most column 1, and from real to virtual
objects are shown in column 2. Similarly indirect illumina-
tion color bleeding from virtual to real objects is captured in
column 3, and virtual to real color bleeding is shown in col-
umn 4. In addition, corresponding insets from the unfiltered,
and converged reference images are also shown for compar-
ison. In Fig. 7, we show intermediate steps of our system
for the DESK scene, including each of the four irradiances
Edir

R , E ind
R , Edir

RV , E ind
RV , and their correspoding filter sizes, as

obtained from our theory.

Figure 8, FURNITURE, shows a larger scene of about (2
meter)3 size consisting of furniture and a plastic mannequin.
A diffuse sofa cushion and a wooden table, and a glossy

Scene SLAM Optix SSRT Filter Total FPS
DESK 22 85 44 24 175 5.7
FURNITURE 26 98 44 23 191 5.2
PLAYROOM 26 105 40 23 194 5.2
SHELF 27 110 41 25 203 4.9

Table 1: Detailed timings of our scenes (in milliseconds) rendered at
640×480. Our filtering overhead is small compared to the render-
ing time. We achieve interactive frame rates on a variety of complex
scenes.

(phong exponent 64, Bρ = 10) trashcan are inserted. The in-
sets show the 3 key regions of real-virtual interaction. Cor-
responding insets from the unfiltered image, and converged
reference image are also shown for comparison. All of our
scenes are captured in the same large room with a number of
area lights (with a different set of lights used for each scene);
the environment map for this scene is shown in (a). We used
Be = 4.

Figure 9 shows a kid’s PLAYROOM scene, of about (2
meter)3 size. We insert a diffuse doll, a toy robot and a stool
(on the right) which matches the real stool (on the left). The
insets show the parts of each virtual object. Corresponding
insets from the unfiltered image, and converged reference
image are also shown for comparison.

Figure 10, shows a multi-compartment SHELF scene
about 2 meters wide, with some real or virtual objects in
each compartment. We insert a diffuse gift box, a diffuse
book and a glossy (phong exponent 64) metal bowl. The
metal bowl reflects both the environment map and the local
geometry, and is not over-blurred. Corresponding insets
from the unfiltered image, and converged reference image
are also shown for comparison.

Timings: We provide timings for each stage of our
system in Table 1. Our overall speed is 5.7 fps for the
fastest and 4.9 fps for the slowest scenes. For the SLAM
step, compared to [PKC∗14], we use a higher number of
iterations for the ICP step for greater pose accuracy. We
use a fixed voxel size of (3 cm)3; the timings differ by
scene due to different voxel grid sizes. The sampling stage
is split into an Optix pass and a CUDA screen-space pass,
as explained in the supplemental document; each sub-stage
takes roughly equal time, and the entire stage accounts
for three-quarters of the computational cost. The filtering
stage, using a 30×30 neighborhood around each pixel, runs
under 25 msec (including temporal filtering), and is under
15% of the total cost. To reduce read/write overheads, we
store colors with 8 bits per channel and other quantities as
half-precision (16 bits) floats. The compositing stage takes
negligible time, and is hence not reported.

8.1. Comparisons

Figure 6 compares insets of our result with the result of filter-
ing with the bandwidth from FLT [DHS∗05] (see Sec 6.6).
Their bandwidth ignores the illumination bandlimit Be re-
sulting in over-blurred shadows.
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Figure 7: We show intermediate quantities in our filtering algorithm for the DESK scene of Fig. 1. Filter sizes are shown as color-coded
standard deviations of the world-space Gaussians, σ = 1/Bx, using the appropriate bandwidths Bx. The filter sizes in (a) are used to filter the
irradiance computed considering only real objects, i.e. Edir

R ,E ind
R using only real geometry; and the filtered results are shown in (b). Similarly,

irradiances considering the full real-virtual geometry, Edir
RV ,E

ind
RV are filtered using the filters in (c); the results are shown in (d). Observe how

addition of virtual objects affects nearby filter sizes due to the introduced occlusions. The final result, computed using eqn. 2, requires two
additional quantities – input radiance image Lcam, and the virtual object texture kV – shown in (e).

We also compare to a state-of-the-art Monte Carlo adap-
tive sampling and multi-level denoising algorithm, AMLD
[KS13], and Fast-ANN image denoising [TSPP14], each
with 32 spp input. AMLD is offline, with 10 sec filtering
overhead, and preserves harder shadow edges but blurs geo-
metric edges slightly since the method is not explicitly aware
of geometry. Our method also slightly blurs shadow edges
due to our bandlimited light assumption, but runs at real-time
(40 ms overhead). Fast-ANN is real-time with 80 ms filter-
ing overhead (2× of ours), but produces artifacts on smooth
untextured images since it relies on finding similar patches
using normals.

We do not compare against real-time but approximate MR
rendering methods (e.g., Knecht et al. [KTMW12]), since
their goal is not to produce physically-accurate renderings.
They also use different input (marker-based tracking or pre-
defined real meshes) which makes it difficult to produce
identical images. Delta voxel cone-tracing [Fra14] uses only
point light sources. In general, these methods produce biased
images (not physically accurate), or retain noise [KK13b].

8.2. Limitations and Future Work

We describe some limitations of our work that are excel-
lent avenues for future work. Our filtering-based approach
assumes that the environment illumination is band-limited,
and hence cannot handle high frequency components such
as small bright lights. Simply using a large Be will result
in small filter size leaving visible residual noise, while us-
ing a large filter size would result in over-blurring. As in
Nowrouzezahrai et al. [NGM∗11], this can be treated by sep-
arating out high frequency illumination into a small set of
point lights, then using our approach for the low frequency
component.

For our MR system, since we use SLAM with a coarse
noisy input depth, the reconstructed geometry is often not

perfectly aligned with the RGB image, which causes arti-
facts. Although our theory supports dynamic real objects, we
do not demonstrate it since our SLAM backend cannot han-
dle moving geometry robustly. All these issues can be mit-
igated using a more robust SLAM and higher accuracy in-
put depth. We assume that all real surfaces are diffuse, since
estimating the true BRDF even with a simple model is dif-
ficult at interactive speed. This can be addressed in future
work. Further, we do not handle caustics, since our method
is based on ray-tracing, and the filtering theory does not treat
specular to diffuse light transport.

9. Conclusion

We presented a novel Fourier analysis of environment illu-
mination, which shows that the local spatio-angular shading
spectrum is an ellipsoid, and leads to conservative object-
space bandwidths. We filter a sparsely sampled noisy Monte-
Carlo image to produce a noise-free and accurate result in
under 30 ms, with an interesting application to mixed real-
ity. We addressed the problem of ray-tracing both real and
virtual geometry using screen-space ray-tracing.

The benefit of our work is two-fold. Our filtering scheme
will prove useful in speeding up physically-based rendering
of environment lighting. Further, given the rapid advances
in mixed and augmented reality mobile technologies such as
Google Glass or Oculus Rift, we believe that our work opens
up the possibility of interactive mixed reality applications
with physically-based shading.
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Fast ANN for high-quality collaborative filtering. In High-
Performance Graphics (2014). 3, 8, 10

c⃝ The Eurographics Association 2015.



S. U. Mehta et al. / Filtering Environment Illumination for Interactive Physically-Based Rendering in Mixed Reality

(a) Input RGB, env. map (b) Our Method, 5.2 fps (c) Input MC (d) Our (e) Reference

Figure 8: For this FURNITURE scene, the input image is shown in (a) (top), along with the captured environment illumination (bottom). The
augmented image with a virtual cushion, wooden table and a glossy trashcan with physically correct illumination, is shown in (b). We compare
our result (16 spp, 0.19 sec) with unfiltered Monte Carlo (16 spp), which is very noisy, as well as reference (1024 spp, 12 sec) which is 60×
slower.

(a) Input RGB and normals (b) Our Method, 5.2 fps (c) Input MC (d) Our (e) Reference

Figure 9: The PLAYROOM scene with input image and 3D reconstruction are shown in (a). We insert a virtual doll, toy robot, and a stool (the
one on the right), with physically correct illumination, as shown in (b). We compare our result (16 spp, 0.19 sec) with unfiltered Monte Carlo
(16 spp), which is very noisy, as well as reference (1024 spp, 12 sec) which is 60× slower.

(a) Input RGB and normals (b) Our Method, 4.9 fps (c) Input MC (d) Our (e) Reference

Figure 10: The SHELF scene input image and 3D reconstruction are shown in (a). We insert a diffuse gift-box and a book, and a glossy bowl,
as shown in (b). We compare our result (16 spp, 0.20 sec) with unfiltered Monte Carlo (16 spp), which is very noisy, as well as reference (1024
spp, 13 sec) which is 60× slower.
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