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Fig. 1. The proposed display architecture. Our prototype uses a monochromatic LCD to attenuate a low-resolution color backlight generated by an LED array.

Our two-frame factorization defines the color image as a pair of products of a low resolution color backlight with a high-resolution monochrome modulator.

The final image (top right, simulated) is integrated through temporal (our prototype) or spatial multiplexing. Image courtesy of Derrick Coetzee.

Increasing resolution and dynamic range of digital color displays is challeng-

ing with designs confined by cost and power specifications. This necessitates

modern displays to trade-off spatial and temporal resolution for color repro-

duction capability. In this work we explore the idea of joint hardware and

algorithm design to balance such trade-offs. We introduce a system that uses

content-adaptive and compressive factorizations to reproduce colors. Each

target frame is factorized into two products of high-resolution monochro-

matic and low-resolution color images, which then get integrated through

temporal or spatial multiplexing. As our framework minimizes the error

in colorimetric space, the perceived color rendition is high, and thanks to

GPU acceleration, the results are generated in real-time. We evaluate our

system with a LCD prototype that uses LED backlight array and temporal

multiplexing to reproduce color images. Our approach enables high effec-

tive resolution and dynamic range without increasing power consumption.

We also demonstrate low-cost extensions to hyperspectral and light-field

imaging, which are possible due to compressive nature of our system.
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1 INTRODUCTION

Modern display design revolves around two sets of conflicting goals.

On the one hand, there is a strong drive towards higher spatial

resolution, dynamic range and color fidelity. This is evident in cur-

rent high-definition television sets which reproduce images at 4K

resolution (3840x2160) with high contrast and maximum brightness

exceeding 500cd/m2
. On the other hand, displays need to be energy

efficient, low-cost and long-lasting. Systematic updates to display

digital interfaces, such as VESA DisplayPort (DP), provide insight

into trade-offs the industry made to satisfy the above goals. One

example is Digital Stream Compression (DSC) in DP1.4. To reduce

cost and power consumption of bandwidth intensive 8K (7680x4320)

displays, VESA introduced a mandatory lossy compression directly

in the display link. Lossy compression degrades the image qual-

ity and addresses only the transmission part of the problem: after

decompression the actual data bandwidth required to drive the hard-

ware electronics – writing the exact value of every pixel every frame

– is still huge.

Most of the existing display technologies compromise some of

the above goals to excel in others. The LCD design, for example,

with its simple construction – a combination of a uniform backlight

and a color filter array – yields low-cost at the expense of reduced

spatial resolution and light efficiency. About two thirds of the light

is absorbed by the color filters alone, which for HDR displays trans-

lates to a waste of hundreds of Watts. Alternative display designs

have been proposed, but they all come with their own trade-offs.

Field-sequential color displays are more power-efficient, but require

very fast driving rates [Mori et al. 1999] which increases their cost

and complexity. More recent OLED displays cannot produce high

luminosity without risking early burn-out [Tsujimura 2012].
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In this work, we explore the idea of joint design of display algo-

rithms and optical hardware in order to balance their performance,

energy efficiency and costs. Inspired by recent advances in the

computational display community [Masia et al. 2013], e.g. HDR

Displays [Seetzen et al. 2004], Cascaded Displays [Heide et al. 2014],

Tensor Displays [Wetzstein et al. 2012], and Multi-primary pro-

jectors [Kauvar et al. 2015], we propose a perceptually-motivated

factorization that decomposes the target image into two pairs of low-

resolution chromatic and high-resolution achromatic images (see

Fig. 1). More importantly, the proposed decomposition combined

with off-the-shelf display hardware shows promise for possible real-

world applications and strikes a balance between hardware com-

plexity and performance. In particular, our technical contributions

are the following:

• We show that natural images can be efficiently factorized

into a pair of modulations of low-resolution color backlight

and high-resolution monochromatic attenuation.

• We develop a content-adaptive two-frame factorization

framework that supports multiple compression schemes

and non-linear error metrics.

• We implement the framework on the GPU and demonstrate

that the linear factorization runs in real-time, while the

highly non-linear perceptual variant is 2-3 orders of mag-

nitude faster than the previous work.

• We construct a low-cost LCD display prototype using off-

the-shelf components. The display design supports multi-

spectral reproduction on a flat-panel form factor. The mono-

chromatic modulator increases light efficiency and allows

for lower display power consumption. Additionally, we

show extensions to light-field and high dynamic range dis-

play applications.

2 RELATED WORK

All color displays use a limited set of primary colors (primaries)
to reproduce a full-color image. The most common approaches

rely on the principles of additive color mixtures [Silverstein 2005],

where colors are a result of optical super-position or spatial- and/or

temporal- multiplexing of three primaries. Systems based on opti-

cal superposition produce the highest image quality, but their size,

relative complexity and high cost inhibit widespread use. Cost and

complexity can be reduced by interleaving primary color samples

spatially [Bayer 1976; Schroeder 1948], which, due to the low-pass

characteristics of our visual system, combine in the retina to form a

full-color percept. This idea defined all modern CRT/LCD/OLED dis-

plays, and while elegant, comes with a significant trade-off – using

pixels for color synthesis reduces spatial resolution. Moreover, due

to varying eye sensitivity to color primaries, the color pixel mosaic

produces a fixed-noise pattern, which is particularly disturbing in

applications requiring high pixel density, such as head-mounted

displays (HMD). Field-sequential color (FSC) displays [Frankenstein

and von Jaworski 1904; Polumordvinov 1899] mix primaries in time

and therefore avoid artifacts inherent to spatial interleaving. How-

ever, showing color frames sequentially introduces new problems.

Because individual frames have significantly different luminance val-

ues and our visual system is sensitive to luminance change over time,

displaying those frames at speeds below critical flicker frequency

produces visible flicker [Simonson and Brozek 1952]. Another prob-

lem occurs when the viewer’s retina is in motion with respect to the

display. The time-varying color components do not project onto the

same locations in the retina, which for high-contrast features results

in color break-up or rainbow artifacts. To prevent those, RGB FSC

displays need to run at 360–480 frames-per-second, which imposes

high bandwidth requirements and complicates the hardware design.

Displays using two color primaries. In 1906, George Albert Smith

invented amotion picture process,Kinemacolor, that used a projector
equipped with red and green rotating color filters. This prototypical

field-sequential display was capable of color reproduction, but due to

severe color break-up artifacts (projection at 32FPS) and poor image

quality, the system enjoyed limited commercial success [Kindem

1981]. Several decades later Land [1959] rediscovered the potential

of the approach in his famous two-color projection experiments,

that produced a full range of color appearances despite not having

the three primaries required by conventional colorimetric theory.

Instead of superimposing red, green and blue projections of the

image, he suggests to only combine red and green channels, but

with green projected as white light. The result, while not as saturated

as the three-color projection, is colorful and apparently contains the

(missing) blue. This phenomena can be explained by simultaneous

contrast and chromatic adaptation; its strength depends on the

image content, but can go up if memory color is applied [Fairchild

2013].

Content-adaptive color primaries. The dependency between color-

reproduction quality and input data suggests selecting color pri-

maries on a per-frame basis. The resulting color gamut encompasses

the input data tightly, which improves the color reproduction qual-

ity [Bergquist and Wennstam 2006]. As primaries approach each

other in terms of brightness/energy, color break-up artifacts are

attenuated, but not eliminated [Ou-Yang and Huang 2007]. Interest-

ingly, decreasing the number of adaptive primaries to two reduces

the temporal artifacts further while producing a modest degradation

in color reproduction quality. This is because color distribution of

natural images [Pouli et al. 2010] has low rank and often forms a

set of color lines [Omer and Werman 2004] that can be represented

with two dimensional projections. Such projections are coarse ap-

proximations of the color in the entire image, but become more

accurate when computed locally [Fattal 2014; Liu et al. 2010; Tai

et al. 2008]. Similarly, Cheng et al. [2009] combine two-field sequen-

tial display with local RGB LED backlight to reduce color break-up

and projection rates. Their decomposition, similar to ours, computes

two backlight and two modulation frames. However, our primaries

are fully content-adaptive, while theirs adapt only to local bright-

ness with color hue limited to R+B(magenta) and G+B(cyan). This

approach does not guarantee full-color reproduction, and leads to

large reconstruction errors in the missing blue channel.

Multi-primary and hyperspectral displays. In recent years, there

has been a growing interest in multi-primary and hyperspectral dis-

plays [Teragawa et al. 2012]. Ajito et al.[2000] show that a 6-primary

projection can greatly expand the color gamut. Multiple projection

systems [Mohan et al. 2008; Rice et al. 2012, 2007] take it a step
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further and accurately reproduce hyperspectral content. However,

most require a combination of Digital-Mirror-Device (DMD) and

wavelength decoupling device, which implies large form factor and

high power consumption. Similar to Kauvar et al.[2015], our dis-

play is content adaptive and supports multispectral content, but

can be implemented in a thin and lightweight form factor using

off-the-shelf consumer LCDs.

Hybrid spatio-temporal color synthesis. The work by Silverstein

[2005] shows that combining spatial and temporal multiplexing

yields an attractive in-between solution. They propose a two-field

sequential display with a uniform backlight switchable between

yellow and blue. Illuminated with yellow light, the cyan/magenta

checkerboard modulation layer produces red and green checker-

board frames, while blue backlight yields a uniform blue frame.

Collectively they get integrated into a full-color image. This de-

composition also reduces perceived color break-up as the red-green

frame contains both high luminance and high contrast components

and alternates in time with low luminance blue frame. While an im-

provement over classic spatial color synthesis displays, their design

has lower spatial resolution and optical throughput when compared

to a regular FSC display. More recently, Langendijk [2007] proposed

a similar approach, but with a different set of wide-band per-pixel

filters (green and magenta interleaved horizontally) and switch-

able uniform backlight (yellow and cyan). Combined with temporal

synthesis, their configuration effectively produces four per pixel

primaries and outperforms spatial synthesis displays in terms of

brightness and resolution.

Power saving display pipelines. Power efficient displays are par-

ticularly important in a context of mobile devices. The improve-

ments to LED and OLED materials [Forrest 2003] and dimming

backlight circuitry [Narra and Zinger 2004] led to huge savings in

power consumption. Recent work increase these further with gaze

aware dimming [Moshnyaga and Morikawa 2005], content-adaptive

local dimming [Seetzen et al. 2004] or global dimming with con-

current brightness and contrast scaling [Cheng et al. 2004]. The

content-based power optimizations are further explored by salience

preserving dimming [Chen et al. 2014], color remapping [Chen

et al. 2016; Chuang et al. 2009], and extensions to power-optimizing

rendering [Wang et al. 2016].

GPU texture compression. Reconstruction of an image from two

high-frequency modulations of low-frequency color images is com-

mon to many existing GPU texture compression methods. DXTC

[Iourcha et al. 1999], for example, allows for a lossy compression

of up to 6:1. The reduced memory/bandwidth requirements enable

the use of higher resolution textures in the same memory budget,

and largely mitigates the drop in color/texture quality. Because our

decomposition algorithm can produce data compatible with the

above encoding scheme, the output modulation layers can also be

stored at lower precision to reduce bandwidth requirements. This

allows us to transmit at higher resolutions or higher frame rates

without increasing the nominal bandwidth. Notably, in contrast to

texture compression methods, which require extra digital logic and

hardware support for image decoding, our images are decoded in

“analog” domain – partially by the display hardware and partially

by the human visual system.

In summary, we propose a display design based on FSC technology

and content-adaptive selection of local color primaries. In contrast

to prior work, we maintain all the advantages of FSC displays while

addressing problems inherent to this technology – high refresh rate

and bandwidth requirements.

3 COLOR FACTORIZATION

The emissive spectral distribution of a RGB color display is given

by the irradiance:

e(x , λ) =
3∑

k=1

ik (x)fk (λ), (1)

where the image i contains 3 channels k , each multiplied with its

corresponding spectral distribution color light source fk . To model

the perceived image for a human eye, under the “standard” observer

model, the International Commission on Illumination CIE 1931 stan-

dard defines the perceived image ixyz as a projection onto the 3

color-matching spectral basis functionsψ x̄ȳz̄ (λ):

ixyz (x) =

∫
e(x , λ)ψ x̄ȳz̄ (λ)dλ

=

3∑
k=1

ik (x)

∫
fk (λ)ψ

x̄ȳz̄ (λ)dλ. (2)

Discretizing Equation 2, we can further factorize image I ∈N×3

of N pixels into a more flexible representation using mixed color

primaries and its corresponding modulations:

Ixyz = IrдbFΨ = M̃P̃FΨ, (3)

where the matrix Ψ ∈L×3
encodes the spectral color matching func-

tion ψ x̄ȳz̄ (λ) at L discrete wavelengths, the original spectral dis-

tribution of the three (RGB) light sources F ∈3×L
are blended by

the primary-mixing matrix P̃ ∈3×3
such that the multiplication P̃F

forms new bases for the mixed-primary displays, and the modula-

tion matrix M̃ ∈N×3
represents the new coordinates of the pixels

on the new mixed-primary axes. While an identity primary-mixing

matrix P̃ gives a standard RGB space, it not necessarily the most effi-

cient representation for a natural image: its pixels are not scattered

uniformly in the RGB cube, but rather form a collection of color
lines [Fattal 2014; Omer and Werman 2004] that can be efficiently

represented via low-rank planar projection in RGB color-space.

Content-adaptive global low-rank approximation. Finding a content-
dependent primary-mixing matrix P instead of using the RGB pri-

mary matrix P̃ to capture the intrinsic image statistics allows for a

more succinct representation of the color lines, and can potentially

reduce the required data bandwidth and hardware cost. Principal

Component Analysis (PCA) [Johnson et al. 2010] provides a formal

tool to analyze the color variations between pixels: the principal

components represent the primary-mixing axes with decreasing

color variances. This gives us an elegant way of removing the pri-

maries that contribute little to the color reproduction. Mathemat-

ically, we can fit, with minimal errors, the color pixels and lines

embedded in a plane in RGB space by factorizing the data matrix
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Irдb into a low-rank approximation such that the new modulation

M ∈N×2
and the new primary-mixing P ∈2×3

minimize the error

with respect to the displayed image:

arg min

M,P
∥Ixyz −MPΦ∥2

subject to 0 ≤ Mi,k , Pk, j ≤ 1,
(4)

where Φ = FΨ is the RGB-to-XYZ transform, and the non-negativity

constraint enforces physically realizable pixel states. To enable trans-

formations to other linear and non-linear color-spaces, we define

the residual in CIEXYZ as opposed to display native RGB color-

space. This step is optional and since the transformation is linear

and strictly positive, it does not impact the quality of our results.

Non-negative Matrix Factorization (NMF) [Berry et al. 2006] is com-

monly applied to computational displays; solutions can be efficiently

found via an iterative solver [Blondel et al. 2008].

While the two mixed-primary axes found in Equation 4 span a

best-fitting 2D plane to the majority of the 3D color pixels, there

are certain regions that are difficult to fit and that are hard to ignore

for a human observer, as shown in Figure 5, second column from

the right.

Locally low-rank approximation. While natural images might not

be globally low-rank, the reflectance and light transport imply that a

locally low-rank approximation is possible [Mahajan et al. 2007]; an

example can be found in the supplement, Sec.A. Since the chromatic

spatial sensitivity bandwidth is also much lower than that in the

luminance channel [Mullen 1985], we split the image into smaller

blocks and replace the global backlight with a low-resolution color

backlight array, and the fitting result is greatly enhanced by solving

the NMF locally.

We achieve local fitting by dividing the image of resolution N into

B blocks where B << N and growing the corresponding primary-

mixing matrix B-times taller such that P ∈2B×3
. The local factor-

ization problem can still be formulated in a similar and consistent

manner:

arg min

M,P
∥Ixyz −MΠPΦ∥2

subject to 0 ≤ Mi,k , Pk, j ≤ 1,
(5)

where the binary permutation matrix Π ∈2×2B
reorders the modula-

tion M into a repeated block-diagonal structure such that each block

multiplies its corresponding local mixed-primaries P; the locally

factorized solution is shown in Figure 1.

3.1 Hardware and Perceptual Consideration

Realizing the operations described in the previous section involves

computing a low resolution image shown on an array of RGB color

backlights, with each individual backlight modulated by a local

grayscale modulation pattern. The multiplication of the mixed-

primary backlight array and the achromaticmodulation layer, shown

in Figure 1, constitutes a frame (one rank); to achieve a high fidelity

approximation, it requires adding up two frames through spatial

superposition or temporal multiplexing.

Physical artifacts. The temporal multiplexing scheme requires

that both the backlight and the modulation layer refresh at high

speeds. Although the LED backlight is capable of updating at 120Hz

(a) Over-Drive (b) Microsaccade

Fig. 2. Prototype problems due to transmissive modulations. (a) Photograph
of nonlinear color blending due to over-driving liquid crystals. (b) Sharp
block boundaries perceived during microsaccade.

almost instantly, using an LCD as the transmissive modulation

layer presents challenges: the refresh rate is limited by the physical

inertia of liquid crystals as they twist [Käläntär et al. 2006]. Voltage

overdrive is commonly used to accelerate the refresh rate, but it also

introduces nonlinear intensity responses [Ruckmongathan 2014].

The nonlinearity produces discontinuity artifacts between adjacent

blocks, as shown in Figure 2(a): In areas of uniform color, only the

first mixed-primary basis is needed to represent the area’s color,

and the second primary is free to be any color and is likely to vary

between neighboring blocks. The different nonlinear mappings of

the liquid crystal between blocks then result in different temporal

summations of the frames that cause discontinuities.

One solution used in most high speed or 3D-vision displays to

solve the nonlinear intensity change is through temporal impulse,

a.k.a. low-persistence [Klompenhouwer 2006], usually in the form

of a short backlight flash or an active shutter. The backlight or the

shutter is turned off until the LC molecules are settled, and the duty

cycle or the persistence is usually turned on for less than 50% of the

8ms for a 120Hz display. Although low-persistence solves the above

artifacts as perceived by a static camera, we find it introduces new

artifacts disturbing to a human observer.

Perceptual artifacts. The human eye constantly performs small

and involuntary eye movements, known as microsaccades, to avoid

overcharging the same retinal cones or to prevent retinal images

from adaptation fading [Martinez-Conde et al. 2013]. However, dur-

ing a microsaccade or smooth pursuit, temporal multiplexing can

update the frames and pixels near block boundaries will add to

its neighboring blocks. While the effect can sometimes be used to

enhance resolution [Berthouzoz and Fattal 2012; Didyk et al. 2010],

an incorrect integration can also generate grid artifacts around the

block boundaries [Pan et al. 2005], as shown in Figure 2(b).

Large saccadic eye movement yields another perceptual problem

with low-persistence displays. Extending the foveal vision, saccades

help the mapping of a broader 3D world: the brain needs to localize

and register features before and after saccade. Normally, during the

quick eye movement, motion blur and saccadic suppression raise

the detection threshold by the brain, so we become blind during

this period even though photons continue to land on the retina

[Bridgeman et al. 1975]. However, flashing or strobing of display

content during saccade allows high frequency differences between

frames to interfere with the registration process and causes visual

ACM Transactions on Graphics, Vol. 36, No. 4, Article 1. Publication date: July 2017.



Mixed-primary Factorization for Dual-frame Computational Displays • 1:5

instability [Melcher 2011]: after saccade, we unconsciously notice

movement of the image, even when it remains static.

3.2 Optimization with constraints

Constraining our optimization framework can address the above

problems. The physical artifacts are due to the unconstrained free

primary bases in flat areas; we found that regularizing the two

modulation frames to be similar whenever possible also encourages

the two primary frames to agree on the rank-1 basis.

Perceptual artifacts, on the other hand, require smoothing out

edges between neighboring blocks, which simultaneously reduces

visual instability artifacts and differences between neighboring local

color primaries.We empirically found having a Gaussian kernel with

standard deviation larger than the block size eliminates the percep-

tual artifacts in our prototypes. We insert a diffusing layer between

the light source and the modulation, and rewrite the new permuta-

tion matrix ΠN by including the (normalized Gaussian) diffusion

kernel N into Equation 5. The example result shown in Figure 1

is free from physical artifacts and visually stable. We improve the

optimization framework by including both backlight diffusion and

regularization of the modulation frames, and obtain the following:

arg min

M,P
∥Ixyz −MΠNPΦ∥2 + γ ∥(Mk1

−Mk2
)∥2

subject to 0 ≤ Mi,k , Pk, j ≤ 1,
(6)

where γ is a regularization constant to encourage the two modu-

lation frames Mk1
and Mk2

to be as similar as possible. Similar to

the factorization done by Heide et al.[2014], the solution to this

optimization can be obtained efficiently using the Alternating Least

Squares (ALS) iterative method: the update is given as follows:

Mi+1 ←
©«Mi +

R
(
ΠNPiΦ

)T
+ γ

(
Mi
k −Mi

¯k

)
ΠNPiΦ

(
ΠNPiΦ

)T ª®®¬+
Pi+1 ←

(
Pi +

(
MiΠN

)T RΦ−1(
MiΠN

)T MiΠN

)
+

, (7)

where R =
(
MiΠNPiΦ − Ixyz

)
is the reconstruction residual, and

(·)+ accepts solutions that are positive and smaller than one. Note

that explicitly evaluating the permutation matrix and solving the

update globally is expensive and impractical for real-time display

system. In Section 4, we show an efficient matrix-free solver that

can be implemented in GPU.

3.3 Optimizing for Multispectral Displays

Display development traditionally has been focused on higher reso-

lution and power efficiency. This has changed recently, with the rise

of interest in displaying multispectral data with wider color gamuts.

Packaging multiple color filters within a subpixel mosaic further

reduces spatial resolution and light, thus multispectral flat-planel

displays are rarely seen with more than 4 primaries (e.g., Sharp’s

Quattron
1
); temporal multiplexing schemes like projection systems

are more suitable to hyperspectral imagery, but require multiple

frames using fast DMD arrays or LCoS to temporally multiplex more

1
https://en.wikipedia.org/wiki/Quattron

than three frames; the optical design makes it harder to apply to

flat-panel displays.

By using locally mixed primaries with a multispectral LED ar-

ray, multispectral images can be shown with minimal change to the

aforementioned architecture.We just need to replace theϕ−1
in Eq. 7

with its Moore-Penrose pseudoinverse ϕ+ to properly back-project

from CIEXYZ to hyperspectral primaries. While minimizing the L2

error norm in Equation 6 yields satisfactory results in CIEXYZ space,

human perception is neither linear nor uniform in the spectral space

of radiometrically linear light sources, especially when consider-

ing wide color gamuts. We further extend the local factorization

framework with perceptual metrics.

3.4 Perceptual Optimization

Human color perception is nonlinear in the trichromatic signal

space: Hering’s Opponent theory suggests that the signal received by

the LMS cones is translated into luminance and opposing red-green

and blue-yellow channels in the later stages of vision [Baumann

1992]. While there are perceptually uniform standards to model

this behavior, more advanced metrics account for chromatic con-

trast sensitivity function at different spatial frequencies (S-CIELab

[Zhang and Wandell 1997]), Crispening effect (CIEDE2000 [Sharma

et al. 2005]), or Visual Masking [Ferwerda et al. 1997]. Although

these metrics are powerful predictors of human perception, their

formulations make them difficult to be included in an optimizer. We

found the distance metrics in CIELab and in IPT space [Fairchild

and Johnson 2004] produce satisfactory results and are easy to im-

plement.

Directly solving the nonlinearly transformed Equation 6 in CIELab

or IPT space is not straightforward, as the NMF is already itself non-

linear. We employ a simple decomposition technique by splitting

the optimization into subproblems [Boyd et al. 2011] with the help

of an intermediate variable T = MΠNPΦ and a scaled dual variable

U:

T← arg min

T
∥ILab − Θ(T)∥2 +

ρ

2

∥T −MΠNPΦ + U∥2

M, P← arg min

M,P
ρ∥Ixyz −MΠNPΦ∥2 + γ ∥M1 −M2∥

2+

ρ

2

∥T −MΠNPΦ + U∥2

U← U + (T −MΠNPΦ). (8)

Although the subproblems are still nontrivial, they can be lin-

earized using theGauss-Newtonmethod and alternating least squares,

and we leave the derivation based on Alternating Direction Method

of Multipliers (ADMM) to the supplement, Sec.C. Then, the final

algorithm is highly parallel and can be implemented on the GPU;

we will describe the details in Section 4.

4 IMPLEMENTATION

We implement the temporal multiplexing scheme with an LCD

and an LED array, as shown in Figure 1 and Figure 3 with the

individual frame shown. We also implement an optical spatial su-

perposition as a projector using two monochromatic Spatial Light

Modulators(SLMs) and two low resolution color LCDs; the projector

prototype is detailed in the supplement, Sec.B.
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Fig. 3. Prototypes implementing the temporal multiplexing scheme, on the

left, using a LCD panel and an array of color LED backlights. On the right,

we show two temporal multiplexing frames.

Hardware prototype. We use an ASUS VG236H LCD display run-

ning at 120Hz with a corrected display-gamma (= 2.45), showing

grayscale images as the modulation layer. The backlights are four

32×32 RGB LEDmatrices with 4mm pitch (Adafruit Product ID 607),

they also refresh at 120Hz and are driven by four Arduino MEGA

boards, which provide 4 bits Pulse Width Modulation in each color

channel. With the Arduino controller, we are able to lower the duty

cycle of the backlight persistence to 46%, and the LEDs are refreshed

with vertical scanning allowing enough front modulation LCD set-

tlement. The pixels-to-block ratio between the LCD modulation and

the LED backlight is 15
2

: 1. The spacing between the modulation

layer and the backlight is 11mm, and the diffusion is achieved by

stacking 4 Edmund Optics 120 Grit Ground Glass Diffusers; we mea-

sured a Gaussian diffusion kernel with 5.3mm standard deviation

(20 pixels on the modulation layer). The final display area is about

14 inches diagonally with a resolution of 960× 960 with a measured

dynamic range of 3100:1. On the left of Figure 3 is the backlight

module behind the LCD panel, and the inset shows the diffusing

layers.

Computer system. The system is driven by a PC running on an

Intel core-i7 3.4GHz CPUwith 16GB of RAM. The displays are driven

by an NVIDIA Quadro K6000 graphics card; we use the 3D-vision

stereo signal to synchronize vertical refresh of the modulation and

backlight.

GPU implementation of the optimization. Optimizing the factor-

ization problem involves solving two subproblems in Equation 8:

The first step solves for the intermediate variable T, and then fac-

torizes it into the modulations M and the mixed-primaries P. The
two subproblems are implemented on the GPU using CUDA.

Although the first subproblem is nonlinear in both CIELab and

IPT space, it can be linearized using the Gauss-Newton iterative

method, as shown in Algorithm 1. For each pixel j , we simply apply

a 3-by-3 per-pixel transform to the residual vector rj . The transform
is derived from the Jacobian Jtj to the first subproblem, and we show

Algorithm 1 Perceptual Optimization in GPU

1: procedure Gauss-Newton Iteration

2: rj ←
(
iLabj − Θ(tj )

)
+

ρ
2

(
tj − ir ecj + uj

)
3: tj ← tj − (JTtj Jtj )

−1Jtj rj
4: end procedure
5: procedure Modulation Update(Pixel j)

6: rkj ← ρ
(
ir ecj − ixyzj

)
+

ρ
2

(
ir ecj − tj + uj

)
7: wk

j ← Φ
(∑

n∈NeiдhborLEDs(j)N
n, j
σ pkn

)
8: mk

j ←
(
mk
j −

(
rkj

T
wk
j + γ (m

k
j −m

¯k
j )

)
/

(
wk
j
T

wk
j

))
+

9: end procedure
10: procedure Mixed-Primary Update(Backlight n)
11: for all j ∈ Cover (n) do
12: rkj ← ρ

(
ir ecj − ixyzj

)
+

ρ
2

(
ir ecj − tj + uj

)
13: wk

j ← N
n, j
σ mk

j
14: end for

15: pkn ←
(
pkn −

∑
j

(
Φ−1

(
wk
j rkj

)
/ρ

(
wk
j

)
2

))
+

16: end procedure
17: procedure Augmented NMF Iteration

18: Modulation Update(M0)

19: Mixed-Primary Update(P0)

20: Modulation Update(M1)

21: Mixed-Primary Update(P1)

22: end procedure
23: procedure ADMM Iteration

24: repeat
25: Gauss-Newton Iteration

26: until T converges or iteration criteria is met

27: repeat
28: Augmented NMF Iteration

29: until M and P converge or iteration criteria is met

30: end procedure

25.68% 29.40% 20.63% 14.60% 6.35% 3%

0% 20% 40% 60% 80% 100%

Simulate Backlight Diffusion
3.2ms(80.9μsx40),line 7

Mixed-Primary Update
3.7ms(92.6μsx40),line 11-15

Modula�on Update
2.6ms(65μsx40),line 6,8

Build Reconstruc�on
1.8ms(23μsx80),line 18,19

GaussNewton Update
0.8ms(160μsx5),line 1-3

RGB2XYZ
0.4ms(21μsx20),line 7 (ф)

Fig. 4. Performance break down of one ADMM iteration, which takes

12.5ms; the individual operation time, kernel time, and invocation counts

are also given. The dominant cost comes from the direct diffusion process

(line 7, dark blue) and the inverse diffusion for residual aggregation (line

11-13, red) in the Primary Update; they together account for 55% of the

time; the overall performance is 2-3 orders of magnitude faster than prior

work.

the analytical solution to the inversion (JTtj Jtj )
−1

in the supplement,

Sec.C.1.

The second subproblem in the optimization is an augmented

NMF that can be solved in a manner similar to the update rules

in Equation 7. However, the local block-permutation matrix with

Gaussian kernel ΠN is expensive to build. To enable an efficient
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GPU implementation, the local block NMF is cast into matrix-free

per-pixel kernel updates. The following Modulation Update and

Mix-Primary Update kernels in Algorithm 1 states the procedures

to complete one iteration of the NMF. In the modulation update, the

summation of the weighting wk
j accounts for the 49 neighboring

backlights, and can be precomputed as a diffused backlight image

in another independent kernel pass. The diffusionN
n, j
σ is a normal-

ized Gaussian with the distance measured from the center of the

backlight n to the pixel j . In the mixed-primary update, a particular

backlight pkn requires summing the residual over all pixels j under
the LED’s coverage, which can be thousands per backlight unit.

Instead, we distribute the coverage computation to more threads,

and sum them up through standard parallel reduction on the GPU.

For video and time-critical applications, we typically run 20 to 50

iterations of the NMF algorithm, which takes 0.59ms per iteration

on a NVIDIA Titan X GPU, and we use the results from the previous

frame as warm-start to achieve realtime performance and temporal

coherence, as shown in the supplementary video. To accelerate the

computation, we implement separable kernel filtering and prefix

sum on GPU, achievingO(N ) complexity for a 2D image of N pixels;

the performance of using our more complex backlight system is

still 650 times faster than that of the implementation by Kauvar et

al.[2015].

For static image requiring high color fidelity, as shown in our

result Figure 5, we use the perceptual ADMM optimization. The

choices of the constants ρ and γ need to be consistent with respect

to the scale in CIELab or IPT space. For our CIEXYZ optimizer, we

choose ρ = 1.5 × 10
5
and γ = 0.25 × 10

4
. For IPT, we choose ρ = 25.

The ADMM algorithm takes 4 to 6 global iterations to achieve a

reasonable solution, and it slowly converges for another 15 to 17

ADMM iterations. Each ADMM iteration requires 5 iterations of

the Gauss-Newton solver and followed by 20 iterations of the NMF

solver. The time consumed by each ADMM iteration is 12.5ms with

its breakdown shown in Figure 4, and it takes 300ms in total to solve

for an image compared to several hours of computation in prior

work.

5 RESULTS AND EVALUATION

In Figure 5, we show our CIELab optimization results and pho-

tographs from the LCD display prototype, and compare against the

content-adaptive global two-primary display, as described in Sec-

tion 3, the Two-Field Scheme [Cheng et al. 2009], and the reference

image using Field-sequential Color, where P̃ is identity in Equation 3.

The selection covers a wide range of images, and more examples

can be found in the supplement, Sec.K.

The content-adaptive global two-primary method chooses the

two mixed-primaries as global backlights for the two frames. How-

ever, due to the lack of local adaptation, certain colors are missing, as

illustrated throughout. In contrast, the two-field scheme preserves

more local color details. While their scheme, just like ours, uses an

array of LED backlights, their decomposition method constrains

the hue of two-frame primaries to magenta/cyan variants, which

significantly degrades the fidelity of the blue channel. In the sup-

plementary material we show that our method, with fully adaptive

Metrics

Global

2-primary

Cheng

[2009]

Ours

Dining Hall

PSNR 34.53 19.12 37.77

HDRVDP2 99.25 92.18 99.75

SSIM 0.9978 0.9938 0.9990

∆E00 4.00 13.74 2.49

Cameleon

PSNR 23.58 21.00 33.58

HDRVDP2 90.65 93.72 99.13

SSIM 0.9978 0.9932 0.9976

∆E00 9.95 8.35 2.46

Painting

PSNR 34.58 17.77 34.01

HDRVDP2 98.96 95.64 99.64

SSIM 0.9966 0.9875 0.9973

∆E00 4.98 18.22 4.16

Parrot

PSNR 25.35 22.99 38.64

HDRVDP2 92.77 91.76 98.82

SSIM 0.9736 0.9951 0.9959

∆E00 7.24 7.82 1.11

Table 1. Quantitative image reproduction quality results.

selection of primaries and iterative optimization, further improves

on the results of the two-field scheme.

Although our algorithm generally produces pleasing results, we

notice errors when clutteredmulti-colored features aremuch smaller

than the backlight block size, which is a fundamental limitation of

any compressive type display. Nevertheless, the apparent recon-

struction errors are small, as indicated by the SSIM map. This is

because the modulation layer to a large extent preservers the detail

and luma changes, which our visual system is more sensitive to.

Color metrics and perceptual optimization. In Table 1, we compare

the LCD prototype results with common image error metrics like

Peak Signal-to-Noise Ratio (PSNR), perceptually-based metrics like

HDR-VDP2 [Mantiuk et al. 2011], Structural Similarity Index (SSIM)

[Wang et al. 2004], and perceptual color metric CIE ∆E00 [Sharma

et al. 2005]; in the supplement, Sec.K, we also expand our comparison

with Feature Similarity Index (FSIM) [Zhang et al. 2011], CIE ∆E76,

and Spatial-CIELab [Zhang and Wandell 1997]. With the perceptual

color metric CIE ∆E00, we found Georges Seurat’s painting has

particular high reconstruction error among all test examples: since

the painting uses dots with primary contrast colors to rearrange the

desired color, known as chromoluminarism.

While these numbers give a global evaluation of the image quality,

we find that the error maps give more visually meaningful informa-

tion to the high error region, as shown on the left-most column in

Figure 5.

In Figure 6, we compare the results obtained, in the same amount

of computation time, by optimizing in the linear sRGB and CIEXYZ,

and the perceptual CIELab and IPT spaces. While linear sRGB opti-

mizer generally works well, it is not as flexible as those transformed

through CIEXYZ, and does not supports multi-primary displays. We

observed that optimization in linear CIEXYZ space does not produce

image as rich in color as that in CIELab space. Finally, although the

IPT optimizer is easy to implement, it is not on par with the CIELab

optimizer.
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Field-sequential Color
Reference Image

Content-adaptive
Global Two-primary

Two-field Scheme
Cheng et al.[2009]
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Fig. 5. Simulated results and photograph from the LCD prototype, captured with Canon T3i and 18-135mm lens at ISO100/F11/2s with linear RAW output.

Quantitative results are shown in Table 1. Images courtesy of Jiamin Bai, Flickr user Kuhnmi, Georges Seurat, and Derrick Coetzee.
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CIEXYZ

CIELAB

Linear sRGB

IPT

Reference Image

36.23dB, 37.39dB,

36.19dB, 36.12dB,

ΔE00 = 2.52 ΔE00 = 2.40

ΔE00 = 2.38 ΔE00 = 2.51

Fig. 6. Comparing simulated results optimized in different color spaces.

Optimizations done in the linear spaces give higher PSNR, but the perceptual

optimizers give better ∆E00 values. Although the linear sRGB optimizer gives

good result, its framework in practice does not allow the matching of the

color filter spectrum in Eq. 2. Image courtesy of Jiamin Bai.

0 0.2 0.4 0.6 0.8
0

0.1

0.2
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0.7
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0.9

x

y

Global 2-primary

0 0.2 0.4 0.6 0.8
x

Cheng et al.[2009]

0 0.2 0.4 0.6 0.8
x

Our Method

Fig. 7. Comparing color gamut result. The pixels from the reference image

are plotted in blue dots. (Left) Since the global two-primary method uses

only two optimized mixed-primary colors, the reconstructed points are

concentrated along a line. (Center) The two-field scheme uses an array

of color LED backlights so their color gamut is much expanded. However,

without proper content adaptive optimization, their method has a problem

in reproducing yellow and incorrectly shifts toward blue/cyan. (Right) Our
method optimizes the use of the color backlights array so the gamut closely

agrees with the reference.

Color gamut. Beyond comparing the numerical errors, we also

evaluate how effective the localized mixed-primary optimization

preserves the color gamut of the original image. On the left of

Figure 7, we show the pixels optimized using the content-adaptive

global two-primary method in red and the original color pixels in

blue. Since the global two mixed-primary frames represent two end

points, the color gamut is collapsed onto a narrow curve. The two-

field scheme [Cheng et al. 2009] (Fig. 7,center) uses an array of color

LED backlights, allowing many local curves to span the color gamut,

but these curves are not well optimized to fit the content, so the error

is large; our method (Fig. 7, right) optimizes the primary-mixing

backlights so that these individual local curves represent the original

colors well. Finally, our method also reconstructs colors well for

extreme cases like showing a color palette withwide color variations,

as seen in Figure 8, wherewe also evaluate the reconstruction quality

at different frequencies.

15 LEDs 7 LEDs 4 3

Reference Our Reconstruction ΔE     Error Map
Δ  Avg.  E76=2.7

 

0

1

2

3

4

5

6

7

8

9

10

76

Fig. 8. Reconstruction of the huewheel at different frequency and saturation

levels. We test the limit of chromatic reconstruction at 4 frequency bands:

2π , 4π , 8π , and 16π of the hue wheel. The first 2π portion uses 15 color

LEDs, and the reconstruction has low ∆E76 errors, as shown on the error

map. As the frequency goes to higher, the error ramps up quickly; more

details in the supplement, Sec.F.

Reference Spatial-temporal Hybrid Mixed−primary

Fig. 9. The simulated spatio-temporal hybrid approach reproduces the com-

plete color gamut by showing red and green colors in the first frame and

blue in the second frame. Since the reds and greens are spatially interleaved

(checkerboard), the maximum spatial resolution is not as high as in our

mixed-primary approach. Image courtesy of Flickr user kuhnmi.

Comparison with a spatio-temporal hybrid decomposition. Spatio-
temporal multiplexing provides an alternative to spatial and tem-

poral color synthesis that preserves color gamut well. In Fig. 9

we demonstrate the performance of [Silverstein 2005] against our

method. The hybrid approach has good color reproduction and bet-

ter spatial resolution when compared to the traditional RGB CFA

approach, but when compared to our method, the achieved image

resolution and light efficiency are still lower due to the use of the

cyan-magenta CFA.

Comparison with Adaptive Spectral Projection. Enabling hyper-

spectral displays is fundamentally challenging, as discussed in Sec-

tion 3.3. With temporal multiplexing, even three-frames displays

still requires proper content adaptation, as shown by the Adaptive

Spectral Projection (ASP) technique [Kauvar et al. 2015]. Here, we

use a two-frame LCD prototype with a multispectral LEDs (same

spectral distributions as those used by Kauvar et al.) array as the

backlight, and compare with their rank-2 (two-frames) results in

simulation in Figure 10. Note that the errors using ASP are signifi-

cantly higher with such low rank reconstruction, as compared to

ours; the errors will reduce drastically when more ranks become

available, as shown in the supplement, Sec.I.

5.1 Hardware Prototypes

Practical implementations are still subject to physical constraints

imposed by the underlying hardware. In the temporal multiplexing

LCD prototype, the speed of turning the liquid crystals has a great
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Reference ASP Rank−2 Our Method

ΔE76=42 ΔE76=2.98

ΔE76=12 ΔE76=1.43

Fig. 10. Comparing simulated Adaptive Spectral Projection (ASP) (middle)

with only rank-2 (two frames) reconstruction on a multispectral dataset to

our method (right), which has significantly lower perceptual error. As shown

in the supplement, Sec.I, ASP improves notably with a higher frame rate

budget. Dataset from Columbia University Multispectral Image Database.

impact on the color reproduction. The slower the liquid crystal turns

from a full white in one modulation frame to a full black in the other

frame, the less color saturation the display can achieve. The slow

turning also causes the hue shifting toward the primary in the first

frame for any mixed-primary display. In our case, it can be seen in

the Dining Hall scene that the central blue menu is not as saturated

in the photograph. The hue shift is particularly visible in the global

two-primary method with the first Dining Hall and the last Parrot

examples, and our smooth constraint in the optimization solves the

problem.

Low-persistence and and duty cycle. Lowering the persistence of

the temporal multiplexing is one way to improve the saturation

problem. However, shortening the duty cycle while maintaining the

bit-depth for the color backlights requires fast micro-controller or

FPGA: this is beyond the scope of the paper. Another problem with

the low duty cycle is visual instability. While increasing the diffusion

alleviates the perceptual artifact, the diffusion also damages the

image quality; addingmore backlights can solve the visual instability

problem if the modulation LCD panel has low speed.

Power efficiency, bandwidth, and compression. The advantage of
locally mixed-primary displays is great power efficiency, as shown

in Figure 11. In a color filter array mosaic display, the maximum

brightness throughput is only one third of the backlight. The opti-

mized color backlight allows better light efficiency without using

spatial color filters by directly showing local color variations in the

backlight. Note that our dual modulation approach allows optimiz-

ing for a more transparent modulation layer and reduced backlight

energy output without degrading image quality by adding a small

penalty term −ϵMk to Equation 6; our display in the example fig-

ure requires about 70% less lighting intensity and thus provides 3x

power saving to traditional LCD displays. We also compared with

methods using local dimming: HDR display [Seetzen et al. 2004]

Reference Traditional CFA-based LCD

14.5%
12.9%

7.6%

Transpaprency = 43.5%, Backlight Output = (38%R, 34%G, 19%B)
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ee

tz
en

 e
t a

l.[
20

04
]

(I
n 

F
S

C
 M

od
e)

O
ur

 M
et

ho
d

Transparency = 61.3%, Backlight Output = (21%R, 19%G, 14%B)

In
de

pe
nd

en
t

C
ha

nn
el

 O
pt

.

Fig. 11. Comparing the simulated light efficiency and energy requirement.

Using a Color Filter Array (top right) filters out 66% of the light per channel,

and a lot of energy is wasted. Seetzen et al.[2004] replace the backlight with

white LEDs array allowing local dimming, but CFA is still used and thus

inefficient in light (backlight output = 78% white). Modifying the operation

to run in 3-frame Field-Sequential Color without color filters (second row) or

optimizing individual frame (third row) allow significant power saving (3x-6x

from the original CFA mode) but introduces more color breakup. Our locally

mixed-primary display (bottom row) also allows more light to pass through

the modulation layer at reduced color breakup; the optimization can be

modified to allow more transparent modulations and decreased brightness

in the backlight by adding a small penalty term (ϵ = 0.0005), achieving

more than 3x power saving compared to the traditional CFA approach.

running in field-sequential color and in a modified mode that opti-

mizes each channel independently, as shown in Figure 11. The FSC

method generates same color backlight blobs by sharing the same

luminance, and the modified method optimizes better to individual

chromatic features; Both methods allow to save power (26% and 18%

respectively), but also both suffer from color breakup.

Another advantage using the mix-primary two frames display is

bandwidth saving throughout the display pipeline by an additional

32% since each pixel has only two intensity values instead of three

and the added bandwidth from the color backlight is small. The result

is also highly compressible; we compare with standard compression

algorithms like JPEG2000 in the supplement, Sec.H.
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Fig. 12. Effects of local patch size and diffusion width on the image quality.

While larger local patch damages the locally low-rank assumption, appro-

priate diffusion width has bigger impact: standard deviation close to the

pixels-to-backlight ratio gives good result; the ratio depends on the desired

design of bandwidth. The parameter of the LCD prototype is shown in the

red dot, and the projector prototype is the green dot.

5.2 Backlight Resolution and Diffusion

As discussed in Section 3.1, to remove the visual instability the

diffusion kernel has to be larger than the block size, or the pixels-to-

backlight ratio. One important observation from the parameter space

is: the lower the pixels-to-backlight ratio and the smaller the diffusion,
the better the image quality. Although our prototypes are similar

in their pixels-to-backlight ratios, their diffusion characteristics

differ significantly: kernel width is 120 pixels (σ = 20) in the LCD

prototype vs. 71 pixels (σ = 11.8) in the projector prototype. In

addition to the parameters used in our prototypes, we analyze the

parameter space spanned by the diffusion kernel size and the pixel-

to-backlight ratio for designing the hardware, and Figure 12 shows

the ∆E76 error of the Dining Hall example. There are two cases of

larger error for a given pixels-to-backlight ratio: a diffusion kernel

width smaller than or much larger than the backlight block size. To

obtain the best results, we need to ask the question: How small can
the diffusion kernel be if we want to avoid any quality loss? While

the obvious answer is to avoid being smaller than the block size, the

deciding factor is actually the underlying LCD technology and the

visual stability.

Diffusion and visual instability. In the section describing percep-

tual artifacts, we mentioned that the diffusion depends on the visual

stability, which is affected by the speed of the LCD technology and

the duty cycle of the backlight. In the LCD prototype, we fix the

duty cycle (because of the LCD hardware chosen) and evaluate this

quality empirically by adding diffusers. A more theoretical analysis

on the visual instability subject requires further investigation and

is beyond the scope of the paper.

6 EXTENSIONS

There are several interesting extensions to our display architecture,

e.g. GPU texture compression compatibility, a microlens-based light

field display, and an extended dynamic range display; details can be

found in the supplement, Sec.H, Sec.G, and Sec.J.

Our optimization and display architecture is largely compatible

with block-based GPU texture compression, e.g., DXTC [Iourcha

et al. 1999]. We can use existing DXTC GPU compressors to drive

our proposed display architecture, and have both increased spatial

resolution and reduced bandwidth. The display design is also suit-

able to autostereoscopic multiview displays or light field displays.

Such displays typically require spatial resolution much higher than

the perceived imagery. Although the embedded angular complexity

reduces the local color coherence, our algorithm can still produce

results faithfully. Finally, the dual modulation design can go beyond

standard 8-bit displays to extend the dynamic range. Similar to high-

dynamic-range display design by Seetzen et al. [2004], our prototype

puts the chroma in the much lower resolution LED backlight as op-

posed to the front modulation panel, and our display can still show

high dynamic range; limitations are discussed in the supplement,

Sec.J.

7 LIMITATIONS

While our optimization framework minimizes the perceived color

reconstruction error, the hardware design of the backlight resolu-

tion, the diffuser characteristics, and the underlying LCD technol-

ogy set the practical limit on the achievable quality. However, the

backlights resolution can be optimized with, e.g., color contrast

sensitivity function (∼ 11 cyles per degree [Mullen 1985]) given

particular viewing conditions. In our prototype, low-persistence

used to address the LCD overdrive can cause visual fatigue over

extended viewing periods. Although we significantly reduce the

requirements for multi-primary colors and improve the light effi-

ciency using just two frames, applications requiring highly accurate

colors will not benefit from our design, and the added computational

overhead can offset some benefit in power saving from the display.

Finally our color and dynamic range reproduction are limited in

sharp shadow/highlight transitions due to backlight diffusion and

the LED block size.

8 FUTURE WORK

The perceptual color distance metrics used by our optimizer are

pixel-wise and do not consider spatial processing aspects of human

visual system. Extending the model to consider the orientation and

spatial frequency [Fairchild and Johnson 2004; Mantiuk et al. 2011;

Zhang and Wandell 1997] of the input signal could possibly lead

to additional quality gains for complex image patterns. Similarly,

the HDR color reproduction can be improved with HDR-enabled

versions of CIELab and IPT[Fairchild and Chen 2011]. Unlike in typ-

ical HDR display implementations, our colors are produced in the

backlight layer. To maximize the image quality of such a setup, we

believe that luminance and chrominance contrast sensitivity func-

tions have to be considered jointly. The perception of low-persistent

displays requires further study and exploration; in our case, reduc-

ing unnecessary high frequencies by introducing strong diffusion in

the backlight solved the problem. While low-persistent technology

has been used for ultra-low motion blur displays [Fisekovic et al.

2001] or judder reduction in a VR/AR headmount [Abrash 2013],

the visual instability artifacts are hard to quantify without a for-

mal psychophysical study. Finally, optimizing locally compressive

images with more than three primaries to achieve a higher rank

approximation [Teragawa et al. 2012] is highly desirable, and our

framework is flexible enough to include it as well.
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9 CONCLUSION

Saving bandwidth, power and manufacturing costs while enabling

higher resolution and dynamic range remains a crucial objective for

the next generation displays. To this end, we propose an alternative

direction of building color displays based on content-adaptive selec-

tion of local color primaries. Our frame decomposition method is

well foundedmathematically, extensible, and the resulting frame rep-

resentation is naturally compressible and compatible with existing

texture compression formats. We maintain high color reproduction

quality and enable local gamut optimization, which improves dy-

namic range, brightness and power efficiency of the display. With

the proposed optimization framework, flexible GPU factorization,

and demonstrated LCD and projector prototypes, we hope to con-

tribute a practical technology that improves color displays. We

believe that our joint consideration of optics, computations, and

human perception is an important step towards more efficient and

extensible display architectures.
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