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1 Proofs

Proposition 1. Suppose there exists E∗1 , E∗2 , G∗1, G∗2 such that: 1) E∗1 = (G∗1)−1

and E∗2 = (G∗2)−1, and 2) p(x1→2) = p(x2) and p(x2→1) = p(x1). Then E∗1 , E∗2 ,
G∗1, G∗2 minimizes L(E1, E2, G1, G2) = max

D1,D2

L(E1, E2, G1, G2, D1, D2) (Eq. (5)).

Proof.

L(E1, E2, G1, G2) = max
D1,D2

L(E1, E2, G1, G2, D1, D2) = max
D1

Lx1

GAN + max
D2

Lx2

GAN

+λx(Lx1
recon + Lx2

recon) + λc(Lc1
recon + Lc2

recon) + λs(Ls1
recon + Ls2

recon)

As shown in Goodfellow et al. [1], max
D2

Lx2

GAN = 2 · JSD(p(x2)|p(x1→2)) − log 4

which has a global minimum when p(x2) = p(x1→2). Also, the bidirectional
reconstruction loss terms are minimized when Ei and Gi are inverses. Thus the
total loss is minimized under the two stated conditions.

In the following, we will assume the networks have sufficient capacity and the
optimality is reachable as in prior works [1, 2]. That is E1 → E∗1 , E2 → E∗2 ,
G1 → G∗1, and G2 → G∗2.

Proposition 2. When optimality is reached, we have:

p(c1) = p(c2), p(s1) = q(s1), p(s2) = q(s2)

Proof. Let z1 denote the latent code, which is the concatenation of c1 and s1.
We denote the encoded latent distribution by pE(z1), which is defined by z1 =
E1(x1) and x1 sampled from the data distribution p(x1). We denote the latent
distribution at generation time by p(z1), which is obtained by s1 ∼ q(s1) and
c1 ∼ p(c2). The generated image distribution pG(x1) = p(x2→1) is defined by
x1 = G1(z1) and z1 sampled from p(z1). According to the change of variable
formula for probability density functions:

pG(x1) = |∂G
−1
1 (x1)

∂x1
|p(G−11 (x1))

pE(z1) = |∂E
−1
1 (z1)

∂z1
|p(E−11 (z1))
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According to Proposition 1, we have pG(x1) = p(x1) and E1 = G−11 when
optimality is reached. Thus:

pE(z1) = |∂E
−1
1 (z1)

∂z1
|p(E−11 (z1))

= |∂E
−1
1 (z1)

∂z1
|pG(E−11 (z1))

= |∂E
−1
1 (z1)

∂z1
||∂G

−1
1 (E−11 (z1))

∂E−11 (z1)
|p(G−11 (E−11 (z1)))

= |∂E
−1
1 (z1)

∂z1
||∂G

−1
1 (G1(z1))

∂E−11 (z1)
|p(G−11 (G1(z1)))

= |∂E
−1
1 (z1)

∂z1
|| ∂z1

∂E−11 (z1)
|p(G−11 (G1(z1)))

= p(z1)

Similarly we have pE(z2) = p(z2), which together prove the original proposition.
From another perspective, we note that Lc2

recon,Ls1
recon,L

x1

GAN coincide with the
objective of a WAE [3] or AAE [4] in the latent space, which pushes the encoded
latent distribution towards the latent distribution at generation time.

Proposition 3. When optimality is reached, we have p(x1, x1→2) = p(x2→1, x2).

Proof. For the ease of notation we denote the joint distribution p(x1, x1→2)
by p1→2(x1, x2) and p(x2→1, x2) by p2→1(x1, x2). Both densities are zero when
Ec

1(x1) 6= Ec
2(x2). When Ec

1(x1) = Ec
2(x2), we have:

p1→2(x1, x2) = pG(x2|Ec
1(x1))p(x1)

= |∂E
s
2(x2)

x2
|q(Es

2(x2))p(x1)

= p(x2|Ec
1(x1))pG(x1)

= p2→1(x1, x2)

Proposition 4. Denote h1 = (x1, s2) ∈ H1 and h2 = (x2, s1) ∈ H2. h1, h2 are
points in the joint spaces of image and style. Our model defines a deterministic
mapping F1→2 from H1 to H2 (and vice versa) by F1→2(h1) = F1→2(x1, s2) ,
(G2(Ec

1(x1), s2), Es
1(x1)). When optimality is achieved, we have F1→2 = F−12→1.

Proof.

F2→1(F1→2(x1, s2)) , F2→1(G2(Ec
1(x1), s2), Es

1(x1)) (1)

, (G1(Ec
2(G2(Ec

1(x1), s2)), Es
1(x1)), Es

2(G2(Ec
1(x1), s2)))

(2)

= (G1(Ec
2(G2(Ec

1(x1), s2)), Es
1(x1)), s2) (3)

= (G1(Ec
1(x1), Es

1(x1)), s2) (4)

= (x1, s2) (5)
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And we can prove F1→2(F2→1(x2, s1)) = (x2, s1) in a similar manner. To be more
specific, (3) is implied by the style reconstruction loss Ls

recon, (4) is implied by the
content reconstruction loss Lc

recon, and (5) is implied by the image reconstruction
loss Lx

recon. As a result, style-augmented cycle consistency is implicitly implied
by the proposed bidirectional reconstruction loss.

Proposition 5 (Cycle consistency implies deterministic translations).
Let p(x1) and p(x2) denote the data distributions. pG(x1|x2) and pG(x2|x1) are
two conditionals defined by generators in the CycleGAN work [5]. Given

1. matched marginals:

p(x1) =

∫
pG(x1|x2)p(x2) dx2, p(x1) =

∫
pG(x2|x1)p(x1) dx1,

2. cycle consistency:

Ex∗
1∼p(x1),x2∼pG(x2|x∗

1)
[pG(x1|x2)] = δ(x1 − x∗1),

Ex∗
2∼p(x2),x1∼pG(x1|x∗

2)
[pG(x2|x1)] = δ(x2 − x∗2)

then pG(x1|x2) and pG(x2|x1) collapse to deterministic delta functions.

Proof. Let x∗1 be a sample from p(x1). x′2, x′′2 are two samples from pG(x2|x∗1).
Due to cycle consistency in X1 → X2 → X1, we have pG(x1|x′2) = pG(x1|x′′2) =
δ(x1 − x∗1). Also, x′2 ∈ X2 and x′′2 ∈ X2 because of matched marginals. Due
to cycle consistency in X2 → X1 → X2, we have pG(x2|x∗1) = δ(x2 − x′2) =
δ(x2 − x′′2). Thus pG(x2|x1) collapses to a delta function, similar for pG(x1|x2).
This proposition shows that cycle consistency [5] is too strong a constraint for
multimodal image translation.

2 Training Details

2.1 Hyperparameters

We use the Adam optimizer [6] with β1 = 0.5, β2 = 0.999, and an initial learning
rate of 0.0001. The learning rate is decreased by half every 100, 000 iterations.
In all experiments, we use a batch size of 1 and set the loss weights to λx = 10,
λc = 1, λs = 1. We use the domain-invariant perceptual loss with weight 1 in
the street scene and Yosemite datasets. We choose the dimension of the style
code to be 8 across all datasets. Random mirroring is applied during training.

2.2 Network Architectures

Let c7s1-k denote a 7 × 7 convolutional block with k filters and stride 1. dk
denotes a 4 × 4 convolutional block with k filters and stride 2. Rk denotes a
residual block that contains two 3 × 3 convolutional blocks. uk denotes a 2×
nearest-neighbor upsampling layer followed by a 5× 5 convolutional block with
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k filters and stride 1. GAP denotes a global average pooling layer. fck denotes a
fully connected layer with k filters. We apply Instance Normalization [7] to the
content encoder and Adaptive Instance Normalization [8] to the decoder. We
use ReLU activations in the generator and Leaky ReLU with slope 0.2 in the
discriminator. We use multi-scale discriminators with 3 scales.

– Generator architecture

• Content encoder: c7s1-64, d128, d256, R256, R256, R256, R256

• Style encoder: c7s1-64, d128, d256, d256, d256, GAP, fc8

• Decoder: R256, R256, R256, R256, u128, u64, c7s1-3

– Discriminator architecture: d64, d128, d256, d512

3 Additional Results

3.1 User studies

We additionally performed a user study to evaluate diversity. We presented users
two pool of translations, one from our method and another from a compared
method. Each pool contains 9 random translations. We then ask the users which
pool is more diverse. As shown in Table 1, users find our method to generate
more diverse translations than other methods.

We run a user study to compare the image quality generated by different
methods to ground truth images. At each time, users are shown the input image,
the ground truth image and an output image from an algorithm. They are then
asked to select the image that looks more realistic, given unlimited time. Table 2
shows the comparison results. We find that images generated from our method
are more realistic than those from unsupervised baselines (UNIT, CycleGAN),
and on par with results from the supervised BicycleGAN.

Table 1. Results of the user study on diversity evaluation. The number is the percent-
age each method is preferred over MUNIT.

edges → shoes edges → handbags

UNIT 1.1% 2.0%

CycleGAN 2.6% 4.9%

CycleGAN* with noise 2.4% 2.6%

MUNIT w/o Lx
recon 19.0% 31.8%

MUNIT w/o Lc
recon 36.5% 28.3%

MUNIT w/o Ls
recon 8.4% 11.6%

MUNIT 50.0% 50%

BicycleGAN 36.3% 36.8%
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Table 2. Results of the user study on quality evaluation. The number is the percentage
each method is preferred over real images.

edges → shoes edges → handbags

UNIT 16.4% 9.2%

CycleGAN 13.6% 13.4%

MUNIT 20.2% 21.0%

BicycleGAN 24.6% 16.6%

(a) Image pairs from the same scene. (b) Image pairs from the same domain.

Fig. 1. Example image pairs.

0 5000 10000 15000 20000
Distance

0

100

200

300

400

# 
pa

irs

Without IN
same domain
same scene

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Distance

0

100

200

300

400

500

# 
pa

irs

With IN
same domain
same scene

Fig. 2. Histograms of the VGG feature distance. Left: distance computed without using
IN. Right: distance computed after IN. Blue: distance between image pairs from the
same domain (but different scenes). Green: distance between image pairs from the same
scene (but different domains).

3.2 Domain-invariant Perceptual Loss

We conduct an experiment to verify if applying IN before computing the feature
distance can indeed make the distance more domain-invariant. We experiment
on the day↔ dataset used by Isola et al. [9] and originally proposed by Laffont et
al. [10]. We randomly sample two sets of image pairs: 1) images from the same
domain (both day or both night) but different scenes, 2) images from the same
scene but different domains. Fig. 1 shows examples from the two sets of image
pairs. We then compute the VGG feature (relu4 3) distance between each image
pair, with IN either applied or not before computing the distance. In Fig. 2, we
show histograms of the distance computed either with or without IN, and from
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Content Style Ours Gatys et al. Chen et al. AdaIN WCT

Fig. 3. Comparison with style transfer methods.

image pairs either of the same domain or the same scene. Without applying IN
before computing the distance, the distribution of feature distance is similar for
both sets of image pairs. With IN enabled, however, image pairs from the same
scene have clearly smaller distance, even they come from different domains. The
results suggest that applying IN before computing the distance makes the feature
distance much more domain-invariant.

3.3 Qualitative Comparisons on Style Transfer

In Fig. 3, we compare our method with classical style transfer algorithms includ-
ing Gatys et al. [11], Chen et al. [12], AdaIN [8], and WCT [13]. Our method
produces style transfer results that are significantly more faithful than existing
works. Also, our results appear to be much more realistic, since our method learns
the distribution of target domain images using GANs. While CycleGAN [5] and
other image-to-image translation methods can also learn the image distribution,
they are not able to perform example guided style transfer since they do not
learn a disentangled representation of content and style.

3.4 Failure Cases

Our method often fails when the content of the input image significantly deviates
from the content distribution of the target domain. For example, when a jaguar
opens its mouth wide, it is difficult to transfer it into house cats since very
few house cats are in this pose (Fig. 4 (a)). While our algorithm can handle
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Input Sample translations

(a) big cats → house cats

Input Sample translations

(b) dogs → house cats

Input Sample translations

(c) Yosemite summer → winter

(d) Yosemite winter → summer

Fig. 4. Failure cases.

shape transformations in some cases, it could still fail when the required shape
transformations are too large (Fig. 4 (b)). Also, it is challenging to remove
flowers during Yosemite summer → winter (Fig. 4 (c)), and to remove large
areas of snow during Yosemite winter → summer (Fig. 4 (d)). In addition, we
find that our method does not preserve the image background during animal
image translation, since it considers the background as part of the style. Using
object masks as in Liang et al. [14] might resolve this problem.
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