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ABSTRACT
This paper presents a novel framework to combine multi-
ple layers and modalities of deep neural networks for video
classification. We first propose a multilayer strategy to si-
multaneously capture a variety of levels of abstraction and
invariance in a network, where the convolutional and fully
connected layers are effectively represented by our proposed
feature aggregation methods. We further introduce a mul-
timodal scheme that includes four highly complementary
modalities to extract diverse static and dynamic cues at
multiple temporal scales. In particular, for modeling the
long-term temporal information, we propose a new struc-
ture, FC-RNN, to effectively transform pre-trained fully con-
nected layers into recurrent layers. A robust boosting model
is then introduced to optimize the fusion of multiple lay-
ers and modalities in a unified way. In the extensive ex-
periments, we achieve state-of-the-art results on two public
benchmark datasets: UCF101 and HMDB51.

CCS Concepts
•Information systems→Multimedia and multimodal
retrieval; •Computing methodologies → Video sum-
marization;

Keywords
Video Classification; Deep Neural Networks; Boosting; Fu-
sion; CNN; RNN;

1. INTRODUCTION
Content-based video classification is fundamental to in-

telligent video analytics including automatic categorizing,
searching, indexing, segmentation, and retrieval of videos. It
has been applied to a wide range of real-word applications,
for instance, surveillance event detection [49], semantic in-
dexing [1], gesture control [11], and so forth. It is a challeng-
ing task to recognize unconstrained videos because 1) an ap-
propriate video representation can be task-dependent, e.g.,
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coarse (“swim” vs. “run”) or fine-grained (“walk” vs. “run”)
categorizations; 2) there may be multiple streams of infor-
mation that need to be taken into account, such as actions,
objects, scenes, etc.; 3) there are large intra-class variations,
which arise from diverse viewpoints, occlusions and back-
grounds. As the core information of videos, visual cues pro-
vide the most significant information for video classification.
Most traditional methods rely on the bag-of-visual-words
(BOV) representation which consists of computing and ag-
gregating visual features [13]. A variety of local and global
visual features have been proposed, for instance, GIST [31]
and SIFT [27] can be used to capture static information
in spatial frames, while STIP [23] and improved dense tra-
jectories (iDT) [44] are widely employed to compute both
appearance and motion cues in videos.

There is a growing trend to learn robust feature represen-
tations with deep neural networks for various tasks such as
image classification [20], object detection [35], natural lan-
guage processing [40], and speech recognition [6]. As one of
the most successful network architectures, the recent surge
of convolutional neural networks (CNN) has given rise to
a number of methods to employ CNN for video classifica-
tion. Karparthy et al. [19] made the first attempt to use
a buffer of video frames as input to networks, however, the
results were inferior to those of the best hand-engineered
features [44]. Tran et al. [42] proposed C3D using 3D-CNN
over short video clips to learn appearance and micro-motion
features simultaneously. However, these methods focus on
short or mid-term information as feature representations are
learned in short-time windows. This is insufficient for video
classification since complex events are better described by
leveraging the temporal evolution of short-term contents.
In order to capture long-term temporal clues in videos, re-
current neural networks (RNN) were applied to explicitly
model videos as an ordered sequence of frames [8, 29].

CNN-based video classification algorithms typically make
predictions using the softmax scores or, alternatively, they
use the last fully connected layer as a feature representation
[36, 42], because CNN hierarchically compute abstract and
invariant representations of the inputs. However, leveraging
information across multiple levels in a network has proven
beneficial for several tasks such as natural scene recognition
[48], object segmentation [26] and optical flow computation
[10]. This is somewhat expected since convolutional lay-
ers retain spatial information as opposed to fully connected
layers. For video classification, we argue that appropriate
levels of abstraction and invariance in CNN for video repre-
sentation are also task- and class-dependent. For example,



Figure 1: An overview of the proposed multilayer and multimodal fusion framework for video classification.
We use four modalities to extract highly complementary information across multiple temporal scales. For
each single modality, discriminative representations are computed for convolutional and fully connected layers.
We employ an effective boosting model to fuse the multiple layers and modalities. Box colors are encoded
according to different networks: 2D-CNN and 3D-CNN with and without RNN. We propose FC-RNN to
model long-term temporal information rather than using the standard RNN structure.

distinguishing “soccer game” and “basketball game” requires
high-level representations to model global scene statistics.
However, classification of “playing guitar” and “playing vio-
lin”demands fine-scale features to capture subtle appearance
and motion features. Therefore, leveraging the multilayer
abstractions is expected to simplify video classification.

Although a significant progress in recent years has been
achieved in the development of feature learning by deep neu-
ral networks [15, 20, 37], it is clear that none of the fea-
tures have the same discriminative capability over all classes.
For example, videos of “wedding ceremony” are strongly as-
sociated with static scenes and objects, while “kissing” is
more related to dynamic motions. It is therefore widely
accepted to adaptively combine a set of complementary fea-
tures rather than using a single feature for all classes. Si-
monyan et al. [36] proposed the two-stream networks based
on 2D-CNN to explicitly incorporate motion information
from optical flow to complement the static per-frame in-
formation. Simple late fusion was adopted to combine the
softmax scores of two networks by either averaging or with
a linear classifier. This method has been widely utilized
for video analysis [8, 46] thanks to the two complementary
modalities and outstanding performance. Nevertheless, the
question of which robust modalities to exploit and how to
effectively perform multimodal fusion still remains open for
video classification.

In this paper, we propose a multilayer and multimodal
fusion framework of deep neural networks for video classi-
fication. The multilayer strategy can simultaneously cap-

ture a variety of levels of abstractions, thus is able to adapt
from coarse- to fine-grained categorizations. Instead of using
only two modalities as in the two-stream networks [36], we
propose to use four complementary modalities in our multi-
modal scheme, i.e., 2D-CNN on a single spatial (color) frame
and optical flow image as well as 3D-CNN on a short clip
of spatial (color) frames and optical flow images. They not
only effectively harness cues about static objects and dy-
namic motions in videos but also effectively exploit across
temporal scales. As for the fusion of multiple layers and
modalities, we adopt a powerful boosting model to learn
their optimal combination.

Fig. 1 illustrates the overview of our proposed multilayer
and multimodal fusion framework. Given an input video,
the four modalities are used to extract complementary in-
formation at short and mid-term temporal scales. Instead
of using the standard RNN structure, we propose FC-RNN
to model the long-term temporal evolution across a whole
video. FC-RNN takes advantage of pre-trained networks to
transform the pre-trained fully-connected (fc) layers into
recurrent layers. In the following, we use 2D-CNN-SF, 2D-
CNN-OF, 3D-CNN-SF, 3D-CNN-OF to indicate 2D-CNN
and 3D-CNN on spatial (color) frames and optical flow, re-
spectively. For each individual network, an improved Fisher
vector (iFV) is proposed to represent convolutional (conv)
layers and an explicit feature map is used to represent the fc
layers. We then employ a robust boosting model to learn the
optimal combination of multiple layers and modalities. The
main contributions of this paper are summarized as follows:



• We present a multilayer fusion strategy to capture mul-
tiple levels of abstraction and invariance in a single net-
work. We propose to use the iFV and explicit feature
maps to represent features of conv and fc layers.

• We introduce a multimodal fusion scheme to incorpo-
rate four highly complementary modalities to extract
static and dynamic cues from multiple temporal scales.
In particular, we propose FC-RNN to preserve the gen-
eralization properties of pre-trained networks.

• We adopt an effective boosting model for video classi-
fication by fusing multiple layers and modalities in an
optimal and unified way.

• In the extensive experiments, our method achieves su-
perior results on the well-known UCF101 and HMDB51
benchmarks.

2. RELATED WORK
Videos have been studied by the multimedia community

for decades. Over the years a variety of problems like mul-
timedia event recounting, surveillance event detection, ac-
tion search, and many more have been proposed. A large
family of these studies is about video classification. Con-
ventional video classification systems hinge on extraction of
local features, which have been largely advanced in both
detection and description. Local features can be densely
sampled or selected by maximizing specific saliency func-
tions. Laptev [23] proposed STIP to detect sparse space-
time interest points by extending the 2D Harris corner de-
tector into 3D. Wang et al. [44] introduced the improved
dense trajectories (iDT) to densely sample and track interest
points from multiple spatial scales, where each tracked in-
terest point generates a set of descriptors to represent shape
and motion. Many successful video classification systems use
iDT together with the motion boundary histogram (MBH)
descriptor, which comprises the gradient of horizontal and
vertical components of optical flow. It is widely recognized
as the state-of-the-art feature for video analysis.

After local feature extraction, a number of coding tech-
niques have been proposed for feature quantization, e.g.,
sparse coding [28] and locality-constrained linear coding [45].
Then average pooling and max pooling are normally used
to aggregate statistics from local features. Several more ad-
vanced coding methods, e.g., Fisher vector (FV) [34] and
vector of locally aggregated descriptors (VLAD) [16], have
emerged to reserve high order statistics of local features
and achieve noticeably better performance. However, these
methods obviously incur the loss of spatio-temporal order of
local features. Extensions to the completely orderless aggre-
gation methods include spatio-temporal pyramids [24] and
super sparse coding vectors [50]. Graphical models, such
as hidden Markov models (HMM) and conditional random
fields (CRF), are also popular methods to explore the long-
term temporal information in videos.

Many improvements of video classification are motivated
by advances in the image domain. The breakthrough on
image classification [20] also rekindled the interest in deep
neural networks for video classification. The pioneering work
of Karpathy et al. [19] trained 2D-CNN on various forms of
stacked video frames from Sports-1M. However, these deep
networks are quite inferior to the shallow model based on

the best hand-engineered features [44]. This is because com-
plex motions and long-term temporal patterns are difficult
to learn only through the simply stacked video frames. Si-
monyan et al. [36] designed the two-stream networks with
two 2D-CNNs on spatial and temporal streams. This method
takes advantage of the large-scale ImageNet [20] dataset
for pre-training and significantly reduces the complexity to
model dynamic motions through optical flow. Ji et al. [17]
employed a head tracker and human detector to segment hu-
man regions in videos. The segmented regions are stacked
as video volumes and used as inputs for 3D-CNN to recog-
nize human actions. Tran et al. [42] applied 3D-CNN on full
video frames to avoid pre-processing and jointly captures
appearance and motion information. With these methods,
similar results to the hand-engineered features [44] have been
reported. In contrast to the previous methods with only sin-
gle or dual modalities, we propose to use four complemen-
tary modalities during multimodal fusion.

The aforementioned models only concentrate on motions
during short period and lack considerations of long-term
temporal clues that are vital for video classification. Sev-
eral methods have been proposed to address this limitation.
Ng et al. [29] explored two schemes to handle full-length
videos. They proposed various temporal feature pooling ar-
chitectures and explored RNN with long short-term memory
(LSTM) cells. The trajectory-pooled deep convolutional de-
scriptor (TDD) was presented in [46] to incorporate tempo-
ral nature by trajectory constrained sampling and pooling.
TDD shares the advantages of both hand-engineered fea-
tures and deep-learned representations. While the improved
networks using RNN can model long-term temporal order,
our proposed multimodal method provides multi-temporal
scales with short, mid, and long-term time contexts.

Recent work has investigated reasoning across multiple
hierarchical levels in a network, which was shown to be ad-
vantageous for several tasks. Hariharan et al. [14] proposed
hypercolumns for image segmentation and fine-grained lo-
calization. A hypercolumn at a given location is the vector
containing all the values above that location at all layers
of the CNN. DAG-CNN [48] introduced a multi-scale ar-
chitecture to learn scale-specific features for natural scene
recognition. FlowNet [10] preserved feature maps of both
coarser and lower layers for optical flow estimation. We pro-
pose to extract feature representations from multiple layers
to reason at multi-scale abstraction and invariance for video
classification.

Combining multiple complementary feature representa-
tions is often effective to improve classification. Tamrakar
et al. [41] evaluated various early and late fusion strategies
in the context of multimedia event detection. Zhang et al.
[52] computed non-linear kernels for each feature type and
summed up the kernels for SVM training. Multiple kernel
learning (MKL) [22] is a popular approach to estimate fea-
ture combination weights. However, it was observed [12]
that simple averaging and geometric mean were highly com-
petitive to MKL. Jiang et al. [18] proposed to jointly com-
pute a codebook of audio and visual features for video clas-
sification with the intention to model correlations between
the two modalities. Ngiam et al. [30] proposed a deep au-
toencoder to enforce cross modality learning between audio
and video inputs. Our fusion method differs in combining ro-
bust boosting model with deep-learned representations from
multiple layers and modalities.



Figure 2: Illustration of multilayer representation
and fusion. The proposed feature aggregation meth-
ods are used to represent fully connected and convo-
lutional layers over time. The introduced boosting
algorithm is applied to combine the representations
from multiple layers.

3. MULTILAYER REPRESENTATIONS
As a hierarchical feed-forward architecture, CNN progres-

sively compute abstract and invariant representations of in-
puts. Recognition algorithms based on CNN often make
predictions based on softmax scores or the last layer which
is the summary of variables in the preceding layers. How-
ever, we argue that various abstractions such as pose, ar-
ticulation, parts, objects, etc., learned in the intermediate
layers can provide a complete description, from fine-scale to
global scale, for video classification. Moreover, we propose a
concept of convlet to utilize the spatial information reserved
in conv layers to refine the final feature representation. In
this section, we describe the detailed procedures to compute
multilayer representations as illustrated in Fig. 2.

3.1 Improved Fisher Vector with the Convlet
Recent work on visualizing and understanding CNN re-

veals that conv layers demonstrate many intuitively desir-
able properties such as strong grouping within each feature
map and exaggeration of discriminative parts of objects [51].
Therefore, a set of appropriate levels of compositionality in
conv layers are able to supply plenty of fine-scale information
to the category-level semantics. Meanwhile, the features
from the layers come for free because they are already ex-
tracted during the forward pass. Furthermore, compared to
fc layers, conv layers contain the spatial information, which
can be applied to adaptive pooling and feature refinement
because the discriminative information for video classifica-
tion is often unevenly distributed in spatial domain.

We start from defining the convlet which is used to mea-
sure the spatial discriminability of activations at a conv

layer. Assume sl is the size (height and width) of a fea-
ture map and dl denotes the total number of feature maps.
We represent a set of conv layers extracted from a video
by C = {ct,l; t = 1, . . . , T ; l = 1, . . . , Lc}, where T is the
number of frames or short clips, Lc is the number of selected
conv layers, and ct,l ∈ Rsl×sl×dl indicates the l-th conv layer
computed at the t-th timestamp. Since each convolutional
kernel can be treated as a latent concept detector [47], we
convert ct,l to sl × sl feature descriptors, each of which is
with the responses of dl concept detectors. Thus a video

Figure 3: Learning spatial discriminative weights of
a convolutional layer by convlets. A spatial weight
indicates how discriminative or important that local
spatial region is in a convolutional layer.

can generate nl = sl× sl×T feature descriptors xi ∈ Rdl at
the l-th convolutional level, where i = 1, . . . , nl. Let R in-
dicate the pre-defined spatial neighboring cells over a conv

layer and Rj denote the j-th cell. We obtain the convlet
corresponding to a spatial cell by

qj = G
(
{xi}i∈Rj

)
, j = 1, . . . , |R|, (1)

where G is a general coding and pooling operator and we
employ FV [34] as G in our experiments. The convlet qj
is a representation that aggregates xi in a local spatial re-
gion across the entire video, as shown in Fig. 3. We then
use each convlet qj to make video classification and the ac-
curacy αj associated with Rj indicates how discriminative
this local spatial cell is in a conv layer. We transform the
classification accuracy αj to a spatial discriminative weight

wj with softmax function wj = exp (αj)/
∑|R|
k=1 exp (αk) or

sigmoid function wj = 1/ [1 + exp (α′ − αj)], where α′ is a
parameter to control the relative weight. All features xi of
spatial cell Rj have the same associated weight wj .

The heat map in Fig. 3 demonstrates the spatial weights
learned by convlets of conv5 in VGG16 [37] on the UCF101
dataset [38]. The features close to boundary regions are
much less discriminative than those in the middle, in par-
ticular for the left two corner regions. It is also interesting
to observe that the hot regions are not exactly centered but
a bit shifted towards the right. In addition, spatial weights
of different conv layers in the same network often exhibit
slightly different spatial distributions. Since the weight wi of
xi represents how discriminative or important xi is for clas-
sification, we can take advantage of this property to improve
a general feature aggregation method. We demonstrate the
improvement to FV [34] in this paper.

As assumed in FV, the feature descriptors xi have a Gaus-
sian mixture model (GMM) distribution characterized by
parameters {πk,µk,σk} with k = 1, . . . ,K, where πk, µk,
and σk are the prior mode probability, mean, and covariance
(diagonal) of the k-th Gaussian component ϕk. To better
fit the diagonal covariance assumption, we apply PCA to
decorrelate xi and reduce feature dimensions. Each feature
xi is then encoded by the deviations with respect to the pa-
rameters of GMM. Let γi,k be the soft assignment of xi to
the k-th Gaussian component:

γi,k =
πkϕk (xi)∑K
j=1 πjϕj (xi)

. (2)



We obtain the improved Fisher vector (iFV) representation
of a video at a convolutional layer by concatenating the fol-
lowing derivative vectors from K Gaussian components:

ρk =
1

nl
√
πk

nl∑
i=1

γi,kwi

(
xi − µk
σk

)
, (3)

τ k =
1

nl
√

2πk

nl∑
i=1

γi,kwi

[
(xi − µk)2

σ2
k

− 1

]
, (4)

where ρk and τ k are the dl-dimensional derivatives with re-
spect to µk and σk of the k-th Gaussian component. We ap-
ply the spatial discriminative factor wi to weight the relative
displacements of xi to the mean and covariance in Eq. (3–4).
In this way, more informative features gain higher contribu-
tions to the final representation, while background or noisy
features are suppressed. We use iFV to compute the video
representations of selected conv layers over time.

3.2 Feature Pooling and Mapping
We represent a set of fc layers computed from a video by
F = {f t,l; t = 1, . . . , T ; l = 1, . . . , Lf}, where f t,l ∈ Rdl
denotes the l-th fc layer computed at timestamp t. The
fc vector is more sensitive to the category-level semantic
information and usually has high dimensions (e.g., dl = 4096
in VGG16). Compared to ct,l, which can generate sl × sl
features at each timestamp, f t,l is far more sparse as spatial
information is lost. Considering these properties, we first
apply temporal max pooling to aggregate f t,l across time
to obtain f l, which is the initial representation of a video at
the l-th fc level.

While the last fully-connected layer in a network performs
linear classification, it is flexible to inject additional non-
linearity to f l by using non-linear kernels in SVM. How-
ever, non-linear SVM is generally much slower than linear
one in terms of both learning and prediction. In partic-
ular, we are able to train linear SVM in time linear with
the number of training samples. This favorably extends the
applicability of linear SVM algorithms to large-scale data,
which is usually the case for video classification. We thus
employ the explicit feature map [43] to approximate large-
scale non-linear SVM by the linear one. In explicit fea-
ture map, the initial representation f l is lifted to a Hilbert
space with moderately higher feature dimensions through
ψ : Rdl → Rdl(2z+1) such that the inner product in this
space can reasonably well approximate a non-linear kernel

κ, i.e., 〈ψ(f l), ψ(f
′

l)〉 ≈ κ(f l,f
′

l). Therefore the final rep-
resentation ψ(f l) of a fc layer makes use of not only the
discriminative power of non-linear kernels but also the effi-
cient training and evaluation of the linear one.

4. FC-RNN STRUCTURE
Most networks hinge on short or mid-term contents such

as a single frame [36] or a buffer of frames [42], where fea-
tures are independently extracted for video classification.
We believe that there are important connections between
frames of the entire video and that the order of frames mat-
ters. To address this intuition, we propose a simple and
effective structure, FC-RNN, to transform a network pre-
trained on separate frames or clips to deal with video as a
whole sequence.

4.1 Initialization of Recurrent Layers
One of the straightforward ways to enable networks to

work with video as a sequence is to introduce a stack of
recurrent layers on top of the last fc layer. This method
is common [8, 29] and shows improvement in performance.
The output of such a recurrent layer at timestamp t is com-
puted as:

ht = H(W ihf t +W hhht−1 + bh), (5)

where H is an activation function, W ih is the input-to-
hidden matrix, f t is the input to this layer, W hh is the
hidden-to-hidden matrix, ht−1 is a hidden state vector from
previous timestamp, and bh is an optional bias. Both W ih

and W hh are randomly initialized. We refer to this as the
standard initialization.

One drawback of the standard initialization is that it re-
quires to train an entire layer (or a stack of layers) from
scratch even if a pre-trained network is used for feature ex-
traction. This would result in reducing important general-
ization properties of a network that is fine-tuned on a rela-
tively small dataset. In this paper, we propose to transform
fc layers of a pre-trained CNN into recurrent layers. In this
way, we preserve the structure of a pre-trained network as
much as possible. Assume that a pre-trained fc layer at
timestamp t has the structure:

f t = H(W ioyt + bf ), (6)

where W io is the pre-trained input-to-output matrix, yt is
output of the previous layer and bf is bias. We suggest to
transform it into a recurrent layer as:

f t = H(W ioyt +W hhf t−1 + bf ). (7)

This fc initialized recurrent structure is referred as FC-
RNN. Fig. 4 illustrates the difference between our proposed
FC-RNN and the standard RNN. Our method only intro-
duces a single weight matrix that needs training from scratch,
i.e., the hidden-to-hidden matrix W hh. Other weight matri-
ces have been already pre-trained and can be just fine-tuned.
We observe that this design is effective to reduce over-fitting
and expedite convergence. LSTM is not used in our net-
works because 1) the complicated cell structure in LSTM
is not well-adapted to our design; 2) the sequence of clips
processed by 3D-CNN in a video is not long as each clip
covers a number of non-overlapping frames; 3) LSTM has
comparable results to standard RNN in our experiments.

4.2 Regularization
We apply a number of regularization techniques in the

training of FC-RNN. The recurrent connection is prone to
learn the specific order of videos in the training set, there-
fore we randomly permute the order of training videos for
each epoch. This operation slows down convergence but im-
proves generalization. The regularization term which forces
to learn weights with smaller `2-norm also helps generaliza-
tion. With intention of preventing the gradients from ex-
ploding in recurrent layers, we employ soft gradient clipping
in the following way. For each computed gradient g during
stochastic gradient descent (SGD), we check if its `2-norm
‖g‖ is greater than a pre-defined threshold δ = 10. If that
is the case, we rescale the gradient to g ← gδ/‖g‖. We find
that without gradient clipping the explosion of gradient val-
ues is a critical barrier to successfully training the networks.
To further improve generalization, we train networks with



Figure 4: Comparison of standard RNN and FC-
RNN. The variables in red correspond to the pa-
rameters that need to be trained from scratch.

drop-out on the outputs of recurrent layers. During train-
ing, we set the outputs of the recurrent layers to 0 with a
probability of p = 0.5, and scale the activations of other
neurons by a factor of 1/(1− p).

5. MULTIMODAL REPRESENTATIONS
Since the visual information in videos is a juxtaposition of

not only scenes and objects but also atomic actions evolv-
ing over the whole video sequence, it is favorable to capture
and combine both static appearances and dynamic motions.
To address this challenge we use a multimodal approach to
model a variety of semantic clues in multi-temporal scales.
Fig. 1 demonstrates our proposed four modalities, which
provide mutually complementary information in short, mid,
and long-term temporal contexts.

The two networks operating on spatial frames (single frame
in 2D-CNN-SF and short clip of frames in 3D-CNN-SF) can
capture objects and scenes that are strongly correlated to
certain video categories, e.g., snow and mountains in Fig. 1
indicate skiing. 2D-CNN-SF is essentially an image classifi-
cation network which can be built upon the recent advances
in large-scale image recognition methods and datasets. 3D-
CNN-SF selectively attends to both motion and appearance
cues through spatio-temporal convolution and pooling oper-
ations. It encapsulates the mid-term temporal information
as the network’s input is a short video clip (e.g., 16 spatial
frames). We utilize the proposed FC-RNN for 3D-CNN-SF
to learn the long-term temporal order. The recurrent struc-
ture is not used for 2D-CNN-SF due to very limited improve-
ment (0.1%). This is probably because the static informa-
tion such as objects and scenes modeled by 2D-CNN-SF is
not very correlated with the temporal evolution.

Since optical flow [2] explicitly captures dynamic motions,
the two networks running on optical flow images (single im-
age in 2D-CNN-OF and short clip of images in 3D-CNN-OF)
provide vital clues to recognize actions. Moreover, optical
flow also conveys rough shape cues of moving objects, e.g.,
the skier and ski poles in Fig. 1. Note, in contrast to the
temporal stream [36] used in most previous methods, which
work on the stacked optical flow maps, we input a single
colorized optical flow image to 2D-CNN-OF. As illustrated
in Fig. 1, a colorized optical flow image contains 3 chan-

nels with RGB values, while an optical flow map includes 2
channels with the raw values of horizontal and vertical dis-
placements. The hue and saturation of an colorized optical
flow image indicate flow’s orientation and magnitude. This
enables us to reduce over-fitting and training time by lever-
aging pre-trained models from large-scale image datasets.
Since the input is a single colorized image, 2D-CNN-OF
captures the fine-scale and short-term temporal information
between a pair of adjacent frames. 3D-CNN-OF models the
high order motion cues such as spatial and temporal deriva-
tives of optical flow, which has been successfully applied to
hand-engineered features [44]. This modality also encapsu-
lates the mid-term temporal clues. Similar to 3D-CNN-SF,
FC-RNN is also employed to learn the long-term temporal
order of 2D-CNN-OF and 3D-CNN-OF.

To obtain the final multimodal representation of a video,
we use the aforementioned iFV as well as temporal max
pooling and explicit feature map to compute the represen-
tations of selected conv and fc layers (respectively for each
modality).

6. FUSION BY BOOSTING
Given the above representations of multiple layers and

modalities, in this section, we focus on how to effectively
utilize correlations across different representations. We for-
mulate the multilayer and multimodal fusion as a boosting
task to maximize the classification accuracy.

We represent a training set by {(vi, yi)}Ni=1 which con-
tains N instance pairs of a video vi ∈ V and a class label
yi ∈ {1, . . . , C}. Let {rm : V → Rdm}Mm=1 indicate M video
representations extracted by the proposed feature aggrega-
tion methods from conv and fc layers of multiple modal-
ities. We use a general kernel function κ to measure the
similarity between instances by the m-th video representa-
tion: κm (v, v′) = κ (rm(v), rm(v′)). So the kernel response
of a given instance v ∈ V to the whole training samples is de-
fined as Km(v) = [κm(v, v1), . . . , κm(v, vN )]T . We focus on
the binary classification problem in the following derivation,
which extends straightforwardly to multiple classes. Here
the objective is to optimize a linear combination of the pre-
dictions using M representations: U(v) =

∑M
m=1 θmum(v),

where θm is a mixing coefficient and um is a decision func-
tion. In this paper, we use SVM with the decision function
um(v) = Km(v)Tam + bm, but the weak learner um is not
necessarily SVM. All parameters of the fusion model can be
solved by training um based on each individual video repre-
sentation and subsequently optimizing θm through:

arg max
θ,ξ,ε

ε− 1

νN

N∑
i=1

ξi (8)

s.t. yi

M∑
m=1

θmum(vi) + ξi ≥ ε, i = 1, . . . , N

M∑
m=1

θm = 1, θm ≥ 0, m = 1, . . . ,M,

where ξi is a slack variable and ν is a regularization pa-
rameter to control the smoothness of the resulting function.
This is essentially a linear programming problem and can
be solved by the column generation approach [7]. Similar to
image classification [12], in the multiclass case with C cate-
gories we have two variations of the mixing coefficients. We



call the first variant boost-u which jointly learns a uniform
coefficient vector θ ∈ RM for all classes. The alternative one
boost-c learns a coefficient vector for each class resulting in
a coefficient matrix Θ ∈ RM×C . So the final decision func-
tions for the fusion of multiple layers and modalities with
the two boosting variants are:

y(v) = arg max
c=1,...,C

M∑
m=1

θm
(
Km(v)Tac,m + bc,m

)
, (9)

y(v) = arg max
c=1,...,C

M∑
m=1

Θc
m

(
Km(v)Tac,m + bc,m

)
. (10)

This boosting algorithm is a unified method for both mul-
tilayer and multimodal fusion. It can be used by multilayer
fusion to combine the video representations rm from multi-
ple layers in a single modality. If the set of representations is
extracted over multiple modalities, it then performs as mul-
timodal fusion. We observe that the joint fusion of multiple
layers over all modalities is slightly better than the separate
fusion of individual modality first then across all modalities.
This is probably because the joint fusion allows different
modalities to explore better correlations at different levels.

7. EXPERIMENTS
In this section, we extensively evaluate the proposed mul-

tilayer and multimodal fusion method on two public bench-
mark datasets for video classification: UCF101 [38] and
HMDB51 [21]. In all experiments, we use LIBLINEAR [9]
as the linear SVM solver. Experimental results show that
our algorithm achieves the state-of-the-art results on the two
benchmarks.

7.1 Experimental Setup

7.1.1 Datasets
The UCF101 [38] dataset contains 101 action classes with

large variations in scale, viewpoint, illumination, camera
motion, and cluttered background. It consists of 13,320
videos in total. We follow the standard experimental set-
ting as in [38] and use three training and testing splits. In
each split, 20% of training data is randomly selected as vali-
dation set for the boosting model selection. The first split of
UCF101 (denoted as UCF101*) is also used to evaluate and
understand the contribution of each individual component.
We report the average accuracy over the three splits as the
overall measurement.

The HMDB51 dataset [21] is collected from a wide range
of sources from digitized movies to online videos. It con-
tains 51 categories and 6,766 videos in total. This dataset
includes original videos and stabilized ones. Our evaluations
are based on the original version. There are 70 videos for
training and 30 videos for testing in each class. We use 40%
of training data as validation set to perform model selection
for boosting. We follow the evaluation protocol defined in
[21] and use three training and testing splits and report the
mean accuracy over the three splits.

7.1.2 Implementations
We implement the networks of four modalities in Theano

with cuDNN4 on an NVIDIA DIGITS DevBox with four
Titan X GPUs. 2D-CNN and 3D-CNN in the experiments

are initialized with VGG16 [37] pre-trained on ImageNet and
C3D [42] pre-trained on Sports-1M, respectively. Outputs
of the last four layers of each network are used to represent
videos. Special attention is paid to assembling mini-batches
in order to deal with varying video length. We fill all frames
of a video into a mini-batch and use another video if there
is still space in the mini-batch. When the limit of a mini-
batch is reached and there are frames left, we use them in
the next one. When there are no more frames to fill a mini-
batch, we fill it with zeros and these examples are not used
in computation. We shuffle video instances after each epoch
to prevent learning a specific sequence of examples. The last
hidden state vector of each mini-batch is propagated to the
next batch.

We apply data augmentations to increase the diversity of
videos. For 2D-CNN we skip every second frame and oper-
ate on a single frame resized to 320 × 240 and cropped to
224× 224. 3D-CNN works on a clip of 16 frames resized to
160×120 and cropped to 112×112. Training frames are gen-
erated by random cropping and flipping video frames, while
for testing, only a central crop with no flipping is evaluated.
Since the two datasets are of quite different sizes, we apply
different learning rate schedules. For UCF101, we fine-tune
9 epochs with an initial learning rate of λ = 3 × 10−4 and
divide it by 10 after each 4 epochs. For HMDB51, we per-
form fine-tuning for 30 epochs with the same initial learning
rate and divide it by 10 after every 10 epochs. All network
parameters that do not have pre-trained weights are initial-
ized with random samples drawn from a zero-mean normal
distribution (σ = 0.01).We use the frame-wise negative log-
likelihood of a mini-batch as the cost function, which is op-
timized using SGD with a momentum of 0.9.

7.2 Experimental Results

7.2.1 Evaluation of Feature Aggregations
We first evaluate the performance of iFV to represent conv

layers in different modalities. Compared to the traditional
aggregation methods, iFV retains high-order statistics; in
particular, it adaptively weights the features of a conv layer
according to the associated spatial weights learned by the
proposed convlet. We keep 300 out of 512 components in
PCA. For computing the spatial discriminative weights, we
find the sigmoid is more discriminative than softmax, e.g.,
iFV with sigmoid outperforms that with softmax by 0.6% for
conv5 layer in 2D-CNN-SF. The sigmoid function is there-
fore used in the following experiments. We set K = 128
Gaussian components for both methods so the final feature
dimensionality is 76.8K. We compare iFV with the conven-
tional FV [34] in Table 1, where iFV consistently outper-
forms FV for conv layers in all modalities with the improve-
ments ranging from 0.6% to 2.5%. A larger improvement
is observed for conv4 than conv5, probably because of the
finer spatial information preserved in the lower layer. These
improvements clearly show the advantages of utilizing the
spatial discriminability learned by convlets to enhance the
feature representation.

We employ temporal max pooling to aggregate fc lay-
ers, which are further extended with an explicit feature map
to approximate non-linear kernels. This representation also
benefits from the same efficiency of learning and prediction
as linear SVM. We demonstrate the results of fc layers in
3D-CNN-SF with approximated non-linearities in Table 2.



Modality Layer FV [34] iFV

2D-CNN-SF
conv4 74.2% 76.7%
conv5 79.6% 80.6%

2D-CNN-OF
conv4 75.6% 78.1%
conv5 81.9% 82.6%

3D-CNN-SF
conv4 83.6% 84.8%
conv5 83.3% 84.6%

3D-CNN-OF
conv4 78.2% 78.8%
conv5 78.1% 78.7%

Table 1: Comparison of FV and the proposed iFV to
represent convolutional layers of different modalities
on UCF101*.

Layer Linear χ2 Jensen-Shannon Intersection

fc6 84.1% 84.8% 84.6% 84.9%

fc7 82.4% 82.9% 83.0% 83.2%

Table 2: Comparison of different non-linear approx-
imations to represent fully connected layers in 3D-
CNN-SF on UCF101*.

Both fc6 and fc7 are transformed to recurrent layers by
FC-RNN. We use the `2-norm and z = 3 in the explicit
feature map, so the extended feature dimension is 28,672.
The baseline method is the linear representation by tempo-
ral max pooling without feature mapping. We evaluate three
additive non-linear kernels: χ2, Jensen-Shannon and inter-
section kernels, which are widely used in machine learning
and computer vision. All non-linear representations out-
perform the linear one, especially the representation with
intersection kernel achieves the best results. We thus use
the intersection non-linearity approximation to represent fc
layers in the following experiments.

7.2.2 Evaluation of FC-RNN
Our method extracts static and dynamic information at

multiple temporal scales. 2D-CNN and 3D-CNN on spatial
frames and optical flow images compute features from short-
term and mid-term temporal contexts. FC-RNN is then em-
ployed to model each video as an ordered sequence of frames
or clips to capture the long-term temporal order. Since FC-
RNN maintains the structure of a pre-trained network to
the greatest extent, it is therefore effective at preserving
important generalization properties of the network, when
fine-tuned on a smaller target dataset. Moreover, FC-RNN
achieves higher accuracy and is faster to converge compared
to the standard RNN. We compare the training and test-
ing performances of our proposed FC-RNN and the stan-
dard RNN in Fig. 5. To avoid clutter, we only show this
comparison for 3D-CNN modalities—a similar phenomena
is observed on 2D-CNN-OF as well. FC-RNN is generally
able to alleviate over-fitting and converge faster, e.g., FC-
RNN outperforms standard RNN and LSTM by 3.0% and
2.9% on 3D-CNN-SF. In comparison to the networks with-
out recurrent connections, FC-RNN significantly improves
the modalities of 2D-CNN-OF, 3D-CNN-SF and 3D-CNN-
OF by 3.3%, 3.2% and 5.1%, respectively. This demon-
strates the benefits of FC-RNN in modeling the long-term
temporal clues.

Figure 5: Comparison of the proposed FC-RNN and
the standard RNN in training and testing of 3D-
CNN-SF and 3D-CNN-OF on UCF101*.

Initialized by 3D-CNN-SF X X
Using FC-RNN X X

Accuracy of 3D-CNN-OF 68.4% 70.4% 72.5% 73.5%

Table 4: Comparison of the initialization methods
for 3D-CNN-OF on UCF101*.

7.2.3 Evaluation of Multilayer Fusion
Here we evaluate the multilayer fusion on combining var-

ious layers for individual modalities. Table 3 shows the per-
formance of each single layer across different modalities and
the fusion results on the two datasets. Although the last
layer in a network is the most sensitive to category-level se-
mantics, it is not unusual for lower layers to have on par
or superior results, e.g., conv5 of 2D-CNN-OF on UCF101
and conv5 of 2D-CNN-SF on HMDB51. So it is of great
potential to exploit the intermediate abstractions such as
parts, objects, poses, articulations and so on for video clas-
sification. It is also of interest to observe that most layers
produce accuracies better than the baseline of softmax, i.e.,
the prediction outputs of a network. This again validates
the merit of the proposed feature aggregation methods to
represent conv and fc layers.

If we use the boosting algorithm to combine multiple lay-
ers, the fusion result significantly outperforms the baseline
for all modalities, especially for 3D-CNN-OF with 7.2% and
7.9% gains on UCF101 and HMDB51. This demonstrates
that various abstractions extracted in multiple layers are of
rich complementarity. Although boost-c is more flexible to
have class-specific mixing coefficients, its results are inferior
to those of boost-u. This is because the model of boost-c
tends to over-fit, since the C×M parameters to fit in boost-c
require more training data than the M parameters in boost-
u. We thus use boost-u in the following fusion experiments.
3D-CNN-SF is the best modality before fusion as it jointly
models appearance and motion information. After multi-
layer fusion the other two modalities involving dynamic cues
are enhanced to a similar performance level, which shows
that the boosting method successfully maximizes the capa-
bility of a network.



UCF101 (%) HMDB51 (%)

2D-CNN-SF 2D-CNN-OF 3D-CNN-SF 3D-CNN-OF 2D-CNN-SF 2D-CNN-OF 3D-CNN-SF 3D-CNN-OF

conv4 75.0 79.7 83.1 80.2 37.0 41.7 49.1 48.9

conv5 79.9 83.9 83.7 80.6 42.0 47.0 49.9 48.6

fc6 81.0 81.1 84.0 80.3 42.7 48.3 51.8 51.5

fc7 80.5 82.7 83.7 79.9 41.6 47.3 52.1 50.0

softmax 79.5 80.9 82.9 75.3 40.2 47.9 51.2 45.1

boost-c 82.1(+2.6) 84.4(+3.5) 84.5(+1.6) 81.4(+6.1) 43.8(+3.6) 50.6(+2.7) 52.2(+1.0) 52.8(+7.7)

boost-u 82.6(+3.1) 85.9(+5.0) 85.4(+2.5) 82.5(+7.2) 44.5(+4.3) 51.4(+3.5) 53.1(+1.9) 53.0(+7.9)

Table 3: Performances of individual layers over different modalities and multilayer fusion results.

Modality Accuracy Combinations

2D-CNN-SF 83.2 X X X X X
2D-CNN-OF 84.8 X X X X X
3D-CNN-SF 85.9 X X X X X
3D-CNN-OF 81.4 X X X

Fusion Accuracy 90.3 90.8 87.1 90.4 91.2 91.3 91.9

Table 5: Classification accuracies (%) of different
modalities and various combinations on UCF101*.

7.2.4 Evaluation of Multimodal Fusion
We now demonstrate multimodal fusion, combining the

proposed four modalities. Our networks are initialized by
models pre-trained on large-scale image and video datasets
so it is natural to fine-tune these networks for the two modal-
ities of spatial frames. However, for the other two modalities
involving optical flow, they are distant from the source if we
regard fine-tuning as a way of domain transformation. We
introduce a simple but effective method to bridge the two
domains—initialize optical flow networks by spatial frame
models that have been fine-tuned on the target domain. As
shown in Table 4, compared to the networks directly fine-
tuned on the source model (i.e., not initialized by 3D-CNN-
SF), our initialization remarkably improves the results.

Table 5 contains the accuracies for various combinations of
the four modalities. Observe that fusing any pair of modal-
ities improves the individual results. The best classifica-
tion accuracy of 91.9% is obtained by the combination of
all modalities. In the end, we achieve an accuracy of 91.6%
on UCF101 and 61.8% on HMDB51 through combining the
four modalites by boost-u. In comparison to the results in
Table 3, the multimodal fusion produces much higher accu-
racy than any individual modality. This indicates the strong
complementarity between the four modalities that capture
diverse static and dynamic features at multiple temporal
scales. In comparison to the baseline fusion methods, boost-
u improves the result by 2.3% over geometric mean [41],
4.3% over SVM-based fusion [36], and 7.9% over AdaBoost
[5] on UCF101*. This demonstrates that boost-u is more
effective to exploit and fuse the complementary relationship
of multiple modalities.

We finally compare our results with the most recent state-
of-the-art methods in Table 6. Our method produces the
best accuracy on UCF101 with a clear margin over other
competing algorithms. It is more challenging to fine-tune

UCF101 (%) HMDB51 (%)

STIP + BOVW [21] 43.9 STIP + BOVW [21] 23.0
DT + MVSV [4] 83.5 DT + MVSV [4] 55.9
iDT + HSV [33] 87.9 iDT + HSV [33] 61.1
C3D [42] 85.2 iDT + FV [44] 57.2
LRCN [8] 82.9 Motionlets [3] 42.1
TDD [46] 90.3 TDD [46] 63.2
RNN-FV [25] 88.0 RNN-FV [25] 54.3
Two-Stream [36] 88.0 Two-Stream [36] 59.4
MultiSource CNN [32] 89.1 MultiSource CNN [32] 54.9
Composite LSTM [39] 84.3 Composite LSTM [39] 44.1

Ours 91.6 Ours 61.8

Table 6: Comparison of the multimodal fusion to
the state-of-the-art results.

networks and train boost-u on HMDB51, where each train-
ing split is 2.6 times smaller than UCF101. Our method still
achieves superior performance on HMDB51. Other compet-
itive results [33, 46] are based on the improved dense tra-
jectories, which require quite a few hand-crafted processes
such as dense point tracking, human detection, camera mo-
tion estimation, etc. As shown on UCF101, large training
data is beneficial for training networks and boosting, so we
are planing to explore techniques such as multi-task learn-
ing and temporal elastic deformation to increase the effective
training size of HMDB51.

8. CONCLUSION
In this paper, we have presented a novel framework to fuse

deep neural networks in multiple layers and modalities for
video classification. A multilayer strategy is proposed to in-
corporate various levels of semantics in each single network.
We employ effective feature aggregation methods, i.e., iFV
and explicit feature maps to represent conv and fc layers.
We further introduce a multimodal approach to capture di-
verse static and dynamic cues from four highly complemen-
tary modalities at multiple temporal scales. FC-RNN is then
proposed to effectively model long-term temporal order by
leveraging the generalization properties of pre-trained net-
works. A powerful boosting model is used for the optimal
combination of multilayer and multimodal representations.
We evaluate our approach extensively on two public bench-
mark datasets and achieve superior results compared to a
number of recent methods.
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