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ABSTRACT

Image-pairs captured from a rig of two, carefully arranged cam-
eras are increasingly used to reconstruct partial 3D information. A
crucial step in this reconstruction is the matching of points in the
two images that are projections of the same 3D point through each
camera. Despite receiving much attention, algorithms to match cor-
respondencing points in two-frame stereo images are both slow, as
well as surprisingly fragile. The problem is exacerbated by noise or
blur in the input images because of the potential ambiguities they
introduce in the matching process.

For scenes that are poorly illuminated, it is necessary to make
a combination of three adjustments: To increase the size of the
aperture to allow more light; to increase the duration of exposure;
and to increase the sensor-gain (ISO). These adjustments poten-
tially introduce defocus, motion blur and noise — all of which
adversely affect reconstruction. We present an exploratory study
of how they relatively affect stereo-correspondence algorithms by
comparing the accuracy and precision of three reconstruction algo-
rithms over the space of exposures.

1. INTRODUCTION
As 3D films have become increasingly commonplace, capturing

digital 3D footage has also become mainstream technology. The
3D production pipeline often entails reconstructing scene depth,
e.g., in order to embed virtual objects or in order to perform depth
grading [18]. While there are commercial tools that perform depth
reconstruction, such as Nuke/Ocula [17], it is notoriously challeng-
ing [15, 21, 22, 23], especially in low light situations where the
signal to noise ratio decreases.

One of the hurdles is to robustly, and automatically, identify pix-
els in a left-right image pair that correspond to the same point in
3D. Typically this step of finding correspondences relies on a com-
parison of features across the image pair. While this is already a
difficult and potentially ambiguous problem, it is even more diffi-
cult when the images are blurred or noisy. Stereo matching meth-
ods are not inherently designed for low signal to noise ratio (SNR)
reconstruction, often failing when exposure time, aperture diame-
ter or sensor gain are increased or become sub-optimal. Essentially,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CVMP ’12, December 5 – 6, 2012, London, United Kingdom
Copyright 2012 ACM 978-1-4503-1311-7/12/11 ...$15.00.

in low-light situations, it is impossible to take well-exposed, sharp
images with a wide depth of field such that a good stereo recon-
struction can be achieved.

Sensor gain, exposure time and aperture are the obvious parame-
ters to tune in order to obtain a better exposure but are also distinct
sources of image noise. In the case of low light stereo capture, a
compromise must be made: either increasing the aperture, lead-
ing to a shallow depth of field and defocus blur; increasing sensor
gain, and therefore increasing the quantization error and reducing
the SNR; or increasing the exposure duration, and increasing noise
due to motion blur. In this paper, we explore the effect of these
settings on stereo reconstruction quality. To this end, we have cap-
tured stereoscopic images of several scenes under many different
aperture, exposure, and ISO settings. We then quantify the recon-
struction error of three different stereo algorithms [3, 8]. Whilst
there have been many quantitative comparisons of stereo matching
algorithms [24, 21], these techniques have not been compared on
light-limited scenes.

1.1 Related Work
Low SNR is a significant challenge for stereo matching and re-

construction algorithms. The resulting image noise causes two
matching pixels which should have the same intensity (under Lam-
bertian assumption) to differ. This becomes very apparent in footage
captured under poor lighting conditions. The problem is amplified
further when two different cameras are used in stereo capture. De-
pending on the matching technique being employed, some process-
ing is often necessary to correct the issue of false matches due to
noise.

Increasing sensor gain is clearly one solution to the problem of
low-light, but this leads to a notable increase in quantisation noise,
causing the uncertainty of a given stereo match to increase fur-
ther [1].

Alter et al [1] create a new noise measure which compares well
against a Euclidean Norm (which tends to break down under the un-
certainty of low SNR) and note that increasing sensor gain means
that the quantisation error becomes the dominant source of noise
due to the lack of intensity resolution and the lack of dynamic
range.

Another solution in low lighting conditions is to increase the ex-
posure time. This of course can lead to an increase in image blur
due to camera shake or subject motion. Xu and Jia [25] produce a
coarse stereo reconstruction based on feature points in the original
blurred images, use this to estimate the point spread function and
deconvolve the image. They then produce a fine stereo reconstruc-
tion. Structured blur, or coded aperture, can also help to estimate
better disparity maps, provided the blur kernel is known [16].

Heo et al [13] present an algorithm which simultaneously solves
the image de-noising and stereo reconstruction problems. The so-
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lution presented avoids using the L1 and L2 norm distance metrics
which are known to fail under changes in illumination and instead
proposes a new metric based on restored intensity and non-local
pixel distribution dissimilarity around matched pixels.

Heo et al [14] begin by applying synthetic noise to traditional
data sets, showing that noisy imagery can result in serious inaccu-
racies. Using NCC and belief propagation results in lower error but
a very ‘blocky’ result and methods solely using pixel-based inten-
sity are also very sensitive.

However, the above are all post-processing techniques which
give valuable improvements on degraded data sources. Another
option is to preprocess the scene before capturing any data such
that the resulting images that are obtained lead to a much better
reconstruction.

Combining a range of exposures (exposure stacking) is one such
technique commonly used in noise reduction and the capture of
high dynamic range images. Hasinoff and Kutulakos [9] assess the
optimal set of images needed to capture the full dynamic range of a
scene, with the aim of minimising noise. They find that contrary to
the normal practice of selecting a low ISO, using high ISO settings
can enable significant improvements in the SNR.

Further, the authors later show that a dense sequence of wider
apertures can be used as a faster alternative to taking a single long-
exposure shot for the desired depth of field. Hasinoff and Kutu-
lakos [12, 11] also attempt to determine the optimum number of
photos to be taken given a fixed time constraint, addressing the
compromise between defocus blur and sensor related noise. Results
are assessed based on the uncertainty in resolving scene depth.

Confocal stereo [10] also addresses the problems of capturing
low light scenes, noting that by controlling the focus and aperture
(focus stacking), the intensity of a given visible scene pixel changes
independently of the scene. The technique relies on a prior radio-
metric lens calibration.

We identify the following three leading stereo algorithms which
are either known to produce good results on the Middlebury dataset
[15, 21, 22, 23], common implementations of well-know algo-
rithms or adhere to the time-restriction of real-world stereo appli-
cations.

The Patch Match stereo algorithm [2, 3], currently a high per-
former on the Middlebury dataset, targets planar, slanted surfaces
which are notoriously hard to reconstruct, relying on a local algo-
rithm.

Efficient Large-scale Stereo Matching(ELAS) [8], also performs
well on the Middlebury dataset, relying on a generative probabilis-
tic model for stereo matching and producing good, dense matches
without the need for global optimisation. ELAS has a very quick
implementation and can produce results in close to real time. Re-
sulting features are also inherently robust to certain illumination
changes.

The third algorithm, Graph Cuts [4, 20], is chosen because of its
easy-to-access OpenCV implementation and frequent application
in stereo vision tasks. Graph cuts applies an energy minimisation
solution to the correspondence problem but treats the two images
asymmetrically, and does not make fully exploit the information
in both images. Freedman and Turek [6] propose an illumination-
invariant extension to the Graph Cuts algorithm.

2. LOW-LIGHT STEREO PHOTOGRAPHY

EXPERIMENTS
We conducted our experiments in three main settings: One static

scene and camera with predominantly fronto-parallel surfaces
(Fig. 2a); the same scene with camera motion (Fig. 2b) and an out-

door scene with a background that is slightly out of focus (Fig. 2c).
The stereo image pairs were captured using a Canon EOS 7D

along with a Loreo stereo lens (9005a) and camera motion was
achieved by introducing a camera shake and, as a stereo lens, pairs
of images underwent identical camera shake.

For each of these scenes, we acquired stereo image pairs and
used them to estimate disparities with three different algorithms: A
fast and robust, but less accurate, reconstruction algorithm as im-
plemented in the library libELAS [8]; a slower graph-cuts optimi-
sation [4, 20] as implemented in openCV; and finally, Patchmatch
stereo [2, 3]. Example disparity maps for different combinations of
scene and algorithm are visualized in Figures 1 and 9.

(a) Static (b) Camera motion (c) Defocus

Figure 2: Left-images from our input dataset.

Ideally, the estimated disparities would be constant across pixels
on a fronto-parallel surface (as indicated by the user). We recon-
struct the disparities over these surfaces, to asses the accuracy and
dispersion of the methods under different exposure settings. We
use the relative error of the mean of the disparities over each fronto-
parallel surface as a measure of accuracy and the normalized vari-
ance within the region as a measure of dispersion (see Fig. 3). To
understand the importance of each, imagine a fronto-parallel tex-
tured plane as foreground with a differently textured background.
An accurate algorithm is one that provides a reliable disparity esti-
mate, on average, when the pixels covered by the foreground plane
are known. A precise algorithm (with low variance), on the other
hand, will be more useful to detect the boundary of the foreground
plane.
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Figure 3: Our measures for accuracy and dispersion given a

marked image and estimated disparities. We term as bias, as

the relative error of the mean estimated value with respect to

the ground truth reference value µref within the marked re-

gion. We will refer to the variance normalized by µref as sim-

ply the variance. This normalization simplifies quantitative

comparison across images and different depths in an image.

In our experiments, we vary two different parameters related to
exposure — exposure time and camera sensor gain (ISO) — with
constant illumination, and tabulate the bias and variance of each of
the three reconstruction algorithms. We then visualize this tabu-
lated data to assess the effects of increased noise due to long ex-
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Patchmatch stereo

Figure 1: Disparity maps computed using three different algorithms (rows). libELAS (top row) is fast and robust but approximate.

openCV’s method (second row) is reasonably robust for the static case but performs poorly with motion blur. Patchmatch stereo is

sensitive to noise as well as motion blur.

posures or high gain and increased blur due to motion or a wide
aperture.

The effect of motion-blur versus noise due to high-gain is sum-
marised in Figure 4, where image-pairs used in the reconstruc-
tions were acquired using a camera in motion. The figure shows
two user-indicated fronto-parallel regions (top row) and the errors
(mean within scribbled region - ground truth value) and variances
of the reconstructed disparities in those regions, using the three dif-
ferent algorithms (rows). Each graph visualizes the errors (or vari-
ances) of the disparities at the different ISO (Y-axis) settings and
exposure times (X-axis). The experiment is conducted on two dif-
ferent surfaces (indicated with white scribbles), one with a subtle
texture (left) and another with a high-contrast texture (right). For
the former, Patchmatch stereo performs better with noise to high-
ISO than blur due to long exposures while the other two algorithms
perform better with long exposures and low ISO. For the textured
region, on the other hand, increasing the ISO worsens the perfor-
mance of Patchmatch stereo. This could potentially be attributed to
spurious matches in the repetitive pattern, due to the noise.

When the above experiment was repeated without camera mo-
tion, indeed, the algorithms performed better with longer exposures
than high-ISO (Figure 5). A similar experiment was also performed
on an outdoor scene with two user-indicated regions, one in focus
and the other slightly out of focus (Figure 6). As expected, high-
ISO was again a bigger problem than longer exposure time. In the

outdoor scene, with more available light in the scene, a combination
of high-ISO and long exposures deteriorated reconstruction results
possibly due to over-exposure.

Figure 8 summarises the performance of the different algorithms
(columns) for each input image (rows). Each graph visualizes vari-
ances (dashed curves) and bias (solid curves) for different exposure
values for two scribbled regions in each image. Splines were fit
with a stiffness coefficient of 0.05. The exposure values (X-axis)
were computed as [19]

e = log
2

N2

t
+ log

2

S

100
(1)

where N is the relative aperture (f-number), t is the exposure time
and S is the ISO. A high exposure value may be realized by either
decreasing exposure time, gain or aperture width (larger f-number
N ). Thus, exposure settings mapping to a high exposure value are
chosen for brightly illuminated scenes.

2.1 Implementation details
The stereo image pairs were captured using a Canon EOS 7D

along with a Loreo stereo lens (9005). Given the fixed camera in-
trinsics for each view, calibration was not necessary. Vertical rec-
tification of the image pairs was done using uncalibrated epipolar
rectification [7].

The three algorithms used were libELAS [8], openCV’s graph-

86



cut-based reconstruction and an implementation of Patchmatch stereo.
LibELAS works by finding matching points on a regular grid

using the l1 distance between vectors composed of the horizontal
and vertical Sobel filter responses in a 9 by 9 window. Patchmatch
stereo works by optimising a Nearest Neighbour field as a function
of offsets defined over all of the possible patch centres in the first
image, for some distance function between the two patches.

LibELAS performed the reconstruction in the order of millisec-
onds while the latter two took typically 4 to 10 minutes. All recon-
structions were run on a laptop with an Intel i7 quad-core processor
and 8GB RAM, on 640× 480 pixel images.

3. DISCUSSION AND CONCLUSION
High-ISO We observe that both accuracy and precision are poor
when the ISO is boosted to extremely high values keeping exposure
short. This is expected, since the signal to noise ratio is known to
be low in this setting. However, in the presence of large blur due
to motion in textured areas with repetitive patterns, we observed
that noise is preferable to blur. Despite the decreased accuracy,
the variance of the reconstructed disparities is low. That is, while
increasing the gain may yield an incorrect depth estimate, depth
discontinuities (boundaries) are more easily identified.

Long exposure time Longer exposures result in low accuracy and
precision unless the ISO is boosted. While this is intuitive for dy-
namic scenes, where motion blur plays spoil-sport to finding corre-
spondences, surprisingly, we notice this is the case even for static
scenes. A possible cause is dark-current noise in longer exposures.
Further study is required to ascertain the cause of this observation.
Since short exposures have a low SNR and long exposures either
introduce blur or a low SNR, identifying a suitable choice of expo-
sure time is non-trivial.

Wide aperture Our experiment on the effect of defocus was lim-
ited by the Loreo lens, which does not provide very wide aperture
settings. In our experiment at f/11 (see bottom two rows of Fig. 8),
defocus did not pose a significant problem to the correspondence
algorithms in our set. We tested individually with the foreground
and background in focus. Our observation is that the relative er-
ror is always higher for objects that are closer. This is, perhaps,
due to a combination of the need for searching for correspondences
within a larger neighbourhood as well as the higher absolute values
of disparity for points that are closer. The Patchmatch correspon-
dence algorithm exhibited notably higher bias relative to the other
two algorithms.

Accuracy-precision trade-off In the static scene, we observe qual-
itatively that accuracy and precision are positively correlated (see
first row of Fig. 8). However, in the presence of motion or defocus,
their relationship is complex and dependent on the image content.
We notice in the plots of Fig. 4 that for long exposures, with low
ISO, the variance is low in places where the bias is high.

Accuracy and precision against exposure-values Fig. 8 shows
that, for a static scene (row 1) in dim illumination, choosing a lower
exposure value generally results in lower bias as well as variance.
This is also the case for regions that are out of focus (red curves in
row 3). However in the presence of motion or defocus, the curves
are less predictable. The behaviour of these curves stresses the
need for a deeper study of the effects of motion blur and defo-
cus on stereo-correspondence algorithms. The absolute values of
the normalized biases and variances suggest that, of the three algo-
rithms compared, Patchmatch stereo works best for our scene with

motion, the GraphCut algorithm works best for static scenes and
libElas works best for our scene with defocus. By ’best’, we mean
the algorithm with lowest bias as well as variance.

3.1 Conclusion
We presented a preliminary study of the effects of changing aper-

ture settings, sensor gain and exposure time on reconstruction for
binocular stereo images shot in low-light settings. Our primary
observation is that the choice of exposure settings has a statis-
tically significant effect on the accuracy and precision of stereo-
correspondence algorithms. We observed that, under low-light set-
tings, attaining high accuracy as well as high precision requires
careful identification of a small region of exposure space. We com-
pared three stereo-correspondence algorithms and found that Patch-
match stereo works best for our scene with motion (lowest bias and
variance), the GraphCut algorithm works best for static scenes and
libElas works best for our scene with defocus. Based on our ex-
periments, we also propose the following guidelines on adjusting
camera exposure.

1. Static scenes: Short exposures with high gain are detrimen-
tal to both accuracy as well as precision, regardless of the
image content. For a fixed exposure time, choose the high-
est gain possible without overexposing for better accuracy as
well as gain. For a fixed gain value, choose medium expo-
sures over longer exposures.

2. Dynamic scenes: Long exposures with low gain and short
exposures with high gain are both detrimental to accuracy,
with the latter being preferable. For greater precision, In
the presence of high-contrast texture, short exposures with
high gain results is preferable. For greater precision, In the
absence of high-contrast texture, medium gain with longer
exposures is preferable.

We conclude that exposure settings for attaining a compromise
on accuracy and precision are non-trivial to identify since they de-
pend on the content of the image-pairs. We believe that automati-
cally identifying these settings within the space of exposures is an
exciting area for future research.
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Ground truth disparity (selection) = 47.67 Ground truth disparity (selection) = 32.33

Bias % Variance Bias % Variance

libELAS

Graph-cut (openCV)

Patchmatch stereo

Figure 4: A comparison of stereo reconstruction algorithms over the space of ISO and exposure time when the camera is hand-held.

While high-ISO settings allow quick exposures, without motion blur, they introduce noise that potentially affects reconstruction.

Figure shows accuracies and variances of the disparity maps within the user-indicated regions, obtained using three different stereo

reconstruction algorithms (rows), as a function of exposure time and sensor ISO. The errors are large because the mean is swayed

by some outlier pixels in the scribbled regions that might have a disparity value far from the mean. The indications are overlaid

(semi-transparent white) on the input left-images.
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Ground truth disparity (selection) = 58.0 Ground truth disparity (selection) = 49.33

Bias % Variance Bias % Variance

libELAS

Graph-cut (openCV)

Patchmatch stereo

Figure 5: A comparison of stereo reconstruction algorithms over the space of ISO and exposure time with a static camera. Fig-

ure shows accuracies and variances of disparity maps, obtained using three different stereo reconstruction algorithms (rows), as a

function of sensor ISO and exposure time. The scribbles are shown (semi-transparent white) overlaid on the input left-images. Not

surprisingly, in most settings, long exposures are preferable to high-ISO.
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Ground truth disparity (selection) = 98.5 Ground truth disparity (selection) = 23.5

Bias % Variance Bias % Variance

libELAS

Graph-cut (openCV)

Patchmatch stereo

Figure 6: A comparison of stereo reconstruction algorithms over the space of ISO and exposure time for an outdoor scene, with a

background that is in focus. Figure shows accuracies and variances of disparity maps, obtained using two different stereo reconstruc-

tion algorithms (rows), as a function of exposure time and sensor ISO. The scribbles are shown (semi-transparent white) overlaid on

the input left-images. For the static, out-of-focus region, the reconstructions are better with long exposures than with high-ISO.
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Ground truth disparity (selection) = 98.5 Ground truth disparity (selection) = 23.5

Bias % Variance Bias % Variance

libELAS

Graph-cut (openCV)

Patchmatch stereo

Figure 7: Results of the same experiment as shown in Fig. 6, but this time with the foreground in focus.
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Figure 8: Variance and bias in the reconstructed disparities for three scenes (rows) using each of the three algorithms (columns).

Each graph plots the variance (dashed lines, left y-scale) and bias % (solid lines, right y-scale) against exposure values (computed

using Eq. 1). Different colors (blue and red) correspond to the two scribbled regions in each image. Splines were fit to the points to

depict trends. The blue curves in columns 1, 2 and 3 correspond to the scribbles on the left in figures 4, 5, 6 and 7 respectively. The

absence of axis labeling (variance of libELAS last two rows) suggests very low values, in the order of 1e− 6.
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Figure 9: Disparity maps for a scene with surfaces that are not

fronto-parallel. libELAS is fast, but again less accurate in this

setting. Patchmatch stereo is better than openCV’s graph cut

optimisation at capturing the gradual changes in depth, but is

more sensitive to high-ISO.
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