
A. Domain Adaptation: from Game to Real.

The linear transformation based arbitrary style transfer
shares a lot of resemblance with typical high-level ideas of
domain adaptation (e.g., by Sun et al. [29]), in which both
are proposed to align the second-order statistics between
two different domains, e.g., style and content images [20].
A pioneer work proposed by Liu et.al [5] successfully uti-
lize the WCT-based style transfer technique in the game-
to-real domain adaptation with an unsupervised setting. In
this section, we validate that the proposed model can signif-
icantly narrow down the domain gap for semantic segmen-
tation between the game images and the real images.

First, we apply the PSPNet semantic segmentation
model [35], which is well-trained on the Cityscapes [2]
dataset, to segment the images from the GTA [26] which
contains similar traffic scenes, but with different image
quality of computer games. We then transfer the game
images to “real” images, based on the proposed method.
Specifically, we implement the task as photo-realistic style
transfer by randomly taking one image from the GTA
dataset as content input, and another image from the
Cityscapes dataset as style input. The transformation is
conducted w.r.t the corresponding semantic mask, where all
non-shared labels from both image are considered as be-
longing to an additional class. We then process semantic
segmentation using the same PSPNet model on the trans-
ferred results, as shown in Figure 15. The segmentation
results on column 2 (segmentation results before domain
adaptation) and column 4 (segmentation results after do-
main adaptation) demonstrate that the proposed algorithm
is effective to adapt the domain of game images to real im-
ages in the semantic space. We note that narrowing the gaps
between these two datasets (especially adapting games im-
ages to real world scenes) is practical for increasing training
samples for semantic/instance-level segmentation, flow and
depth estimation, to name a few, due to the fact that the
dense annotations of these tasks in the real-world scenes
are difficult to obtain. Our algorithm provide an efficient
and low-cost solution to generate numerous training data,
which could potentially benefit for various vision problems.

B. More Applications
We show more related applications that can be achieved

via our method, including style interpolation (Figure 13)
and user-controllable stylization (Figure 16).

B.1. Style Interpolation
We use Fd

0 =
PK

i=1 wiF
i
d to interpolate between K

styles with corresponding weights w1, . . . , wk, where F

i
d is

the transferred features for style i, similar to [12]. We feed
the “weighted” feature F

0
d into the decoder to obtain trans-

ferred image and show interpolation results between four
styles in Figure 13.

Figure 12. Content/Style loss comparison on holdout images. Magenta
dots denote our algorithm.

Method Style Content Speed (s) Preference
AdaIn [4] 1.8 2.79 0.07 14.7%
WCT [5] 3.2 2.34 1.08 28.8%
Ours 2.6 2.11 0.036 35.3%

Table 2. Summary of evaluation between our algorithm and state-of-the-
art methods. The style loss is shown without multiplying with 10�4.

B.2. User-controllable Stylization
Our algorithm allows flexible controlling from user, by

adjusting the weights between content and style. This is
achieved by using Fd

0 = ↵Fd+(1�↵)Fc, where Fc and Fd

are content features and transferred features, and ↵ controls
the degree of stylization in synthesized images. We show
results using different ↵ in Figure 16. As shown in this
figure, larger ↵ leads to more stylized images.

C. Experimental Results
In Figure 17, we show more comparisons between the

state-of-the-art methods [10, 8, 30, 12, 18] and our algo-
rithm for artistic style transfer. Unlike the methods [10, 12],
our method does not introduce undesired color. For in-
stance, the method proposed by Ghiasi et al. [10] introduces
undesired redness in row 2, 8 and 9 in Figure 17, while
our transferred results is consistent with the overall color
distributions in the style images. We show more compar-
isons with the state-of-the-art methods and our algorithm
for photo-realistic style transfer in Figure 14. Thanks to the
end-to-end architecture and the data-driven training strat-
egy, our algorithm is not only faster, but also preserves the
overall contrast compared to the other methods [23, 19] that
contain two separate stages.

D. Quantitative evaluation.
We summarize various quantitative evaluation metrics

including the style transfer loss, inference time and user
study preference percentage of different methods in Table 2.
We also visualize loss comparisons following the work of
Ghiasi et al [10] and WCT [18] in Figure 12. Table 2 and
Figure 12 show that our algorithm not only achieves lower
loss but also faster speed than [12, 18].

10



Figure 13. Style Interpolation. Our algorithm allows flexible combination of styles by feeding the decoder “weighted” transferred features of these styles.

Content Style Luan [23] Li [19] Ours +SPN
Figure 14. Photo-realistic style transfer results comparison. Spatial mask is displayed at the right bottom corner of each content and style image. “+SPN”
in last column means results filtered by a SPN after stylization. Zoom-in to see the details.

11



Game Game seg Transfer Transfer seg Ground truth
Figure 15. Segmentation results by the PSPNet [35] before and after domain adaptation by our method. Column 1 shows game images while column 3
shows transferred results by taking images from column 1 as content inputs and images from the Cityscapes [2] dataset as style inputs. The segmentation
results in column 4 are better than results in column 2, showing the usefulness of our algorithm in domain adaptation.

↵ = 0 ↵ = 0.2 ↵ = 0.4 ↵ = 0.6 ↵ = 0.8 ↵ = 1.0 Style
Figure 16. Content style trade-off. Our algorithm allows content-style trade-off at inference time by using different ↵. Larger ↵ leads to more stylized
results.

12



Content Ghiasi [10] Gatys [8] Ulyanov [30] Huang [12] Li [18] Ours

Figure 17. Comparison between the results by our style transfer algorithm and other methods. Our model is trained to transfer the content
features from relu4 1, and with style losses computed on the relu1 1, relu2 1, relu3 1, relu4 1 layers of VGG-19. No content image as
well as style image presented here is included in the training set.

13


