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1 Visualization for Qualitative Evaluation

Color coding for flow vectors We visualize the flow vectors in 2D following
the color encoding in [1], for optical flow δuof

0→1, egomotion flow δucm
0→1 and pro-

jected scene flow δusf
0→1. The central white color means there is no motion. Hue

represents the flow vector direction, and color intensity represents the magni-
tude. All the flow vectors are normalized to the range [0,1] during visualization,
shown in Figure 1. Thus, an accurate estimation of flow should have minimal
difference w.r.t. ground truth flow visualization both in hue and intensity.

Fig. 1: Flow color encoding in all qualitative visualizations. The central white
color means there is no motion. Hue represents the flow vector direction and
color intensity represents the magnitude. All the flow vectors are normalized to
the range of 0-1 during visualization.

We visualize the 3D dense scene flow following the same color encoding in
2D, simply by using the corresponding projected scene flow δusf

0→1 per-pixel.
Such color encoding in projected image space can alleviate the noisy estimation
for depth close to infinity, which usually has huge uncertainty in scale and thus
affects the magnitude normalization.

? This work started during an internship that the author did at NVIDIA.
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Table 1: Optical flow validation comparison (EPE) on SINTEL[1] set (all
images) using different datasets as training from scratch, validated at different
number of training iterations. The same PWC-net [2] architecture is use in all
training.

SINTEL EPE (clean/final) 6K 30K 60K 90K 120K
FlyingChairs[3] 6.87/7.58 4.27/5.22 3.75/4.66 3.42/4.50 3.36/4.43
FlyingThings3D [4] 8.98/9.89 6.14/7.11 5.57/6.63 5.26/6.28 5.13/6.11
REFRESH (Ours) 5.82/6.54 4.27/5.23 3.85/4.78 3.45/4.48 3.42/4.46

2 Training Optical Flow with REFRESH Dataset

We evaluate our optical flow model [2] trained on REFRESH dataset and com-
pare it against models trained on FlyingChairs [3] and FlyingThings3D [4]. This
evaluation serves as a sanity check of our dataset, and more importantly, an
indication of its usefulness for scene flow.

Admittedly, the comparison with FlyingChairs [3] is not apple-to-apple. First,
the FlyingChairs dataset is for 2D optical flow because it does not provide in-
formation such as depth, foreground masks, and camera ego-motion. More criti-
cally, the dataset has been tuned to match the statistics of the synthetic SINTEL
dataset. However, it is important to check how valid our new dataset is for 2D
optical flow, which is a sub-task of scene flow. As discussed earlier, the Fly-
ingThings3D dataset is the only training dataset that satisfies the requirements
for training scene flow models3.

As shown in Table 1, REFRESH dataset converges significantly faster and
achieves better results on SINTEL than the FlyingThings3D dataset. The model
trained on the REFRESH dataset also has similar performance as the one trained
on the FlyingChairs dataset.

3 Test Generalization to the Outdoor Domain

A fair quantitive evaluation on the KITTI dataset is challenging because: (1)
the available ground truth depth from LIDAR is sparse for our method, and
(2) the portion of moving regions is smaller. However, as an interest to see how
our method and the data perform in a completely different domains with above
domain discrepancies, we performed a qualitative evaluation on KITTI using
the same RTN network trained on our dataset and dense depth calculated from
PSMnet [5] output.

The rigidity results show that the RTN can generalize to KITTI reasonably
well despite the domain gap and imperfect depth. We find the errors are more
likely to happen in regions where the input depth uncertainty is higher and
the surfaces are rigid planar, or textureless, which are not covered in our current
generated data. This observation may inspire us to generate a mixture of nonrigid
and rigid moving objects to improve the dataset diversity.

3 The Sintel dataset is held for validation and contains much fewer sequences to train
scene flow models from scratch.
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Fig. 2: Rigidity on KITTI with network trained on our REFRESH dataset. There
is no finetuning on KITTI data.

4 REFRESH Datasets

4.1 Dataset rendering details

The whole dataset creation is done using Blender 2.784, fully automated with
python scripts without any GUI interaction, which scales well to the creation of
the entire dataset. We separately render the background 3D meshes and fore-
ground nonrigid humans, which allows us to speed up the rendering process.
Since we use the raw color image as the background image and only use the ge-
ometry ground truth from multi-pass rendering (depth, flow, and segmentation),
lighting does not affect background rendering with or without the foreground.
Such separation can significantly boost the dataset creation speed. With a 28-
core CPU server, we can finish the entire rendering process using BundleFusion
[6] 3D scenes in two days.
Background Static Mesh Rendering Since we do not use the rendered color
images in any process, we use a simplified setting for background rendering
without ray-tracing, tile size as 512 × 512. The rendering time depends on the
size of 3D mesh size. In average, we render one frame in (< 1s) in CPU, and we
can finish the frame-by-frame rendering of 8 scenes of BundleFusion in 10 hours.

4 Blender: https://www.blender.org/
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Foreground Nonrigid Human Rendering We create the human bodies fol-
lowing SURREAL [7] with synthetic textures (772 clothes textures and 158 CAE-
SAR textures). The illuminated textures are used as the appearance of humans
in our composted dynamic scenes. We use spherical harmonics with nine coef-
ficients [8], with ambient illumination coefficient randomly sampled from [0.5,
1.5] and other coefficients randomly sampled from [-0.7, 0.7]. We implement this
part by refactoring over [7], by extending SURREAL to arbitrary humans bodies
with random textures and actions.

We split the camera trajectory into multiple clips. Each clip is a continuous
100-frame sequence, with randomly loaded human models and actions. There
are two major motivations to rendering the outputs in clips rather than an
entire trajectory: 1. We can load different random human bodies and motions
for different clips in the same trajectory, which increase the motion diversity
both in action and appearance; 2. There are numerous human models generated
along the entire trajectory, which composes complex meshes in 3D and slow for
rendering. Rendering individual clip with several human models is much faster
in execution. We can render multiple pass image ground truth with an average
of 3 seconds per frame.
Create Ground Truth We use Blender Cycles rendering passes to extract the
per-pixel ground truth. We use the Vector node to retrieve the 2D vectors giving
the frame by frame motions towards to the next and previous frame positions in
pixel space, which are denoted as the forward/backward optical flow. Note that
we currently do not retrieve the 3D motion vector representation of scene flow
from Blender as one pass, which can be an extension to the current dataset in
the future work.

We use the rendered depth from 3D scenes instead of the raw 3D scene depth
for all the training. Compared to the raw depth, the rendered depth is less noisy
and contains less missing measurements and has a per-pixel correspondence to
the other ground truth, e.g., optical flow. However, the rendered depth does
not guarantee a valid per-pixel value due to the incomplete 3D reconstruction
from raw measurements. We marked the projected pixels from incomplete re-
gions (holes in 3D reconstruction) as invalid region, and exclude them from the
training on-the-fly.

4.2 Dataset statistics

We rendered dataset using the optimized camera trajectory during 3D recon-
struction as the camera extrinsic setting. Since the camera movement during 3D
acquisition is small and stable between frames, we also use the sampled key-
frames from the camera trajectory during rendering. We name the sub-sample
trajectory based on their frame interval n as keyframe n: keyframe1 repre-
sents that we use every frame along the trajectory during dataset creation and
keyframe10 represents we use every ten frames. We list the number of static
scene frames with varying keyframes in Table 2.

Figure 3 shows the histogram distributions of our outputs in optical flow,
depth, and rigidity from the rendered REFRESH dataset. We show the histogram
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distribution independently for the data rendered from different keyframes (1,2,5).
Compare different keyframe splits, the distribution in depth and non-rigid area
ratio in the images are similar and when using larger keyframes, the output
optical flow tends to have a larger displacement. When using rendered outputs
from larger keyframes, we can simulate the observations from a camera with
larger motions.

During training, we empirically find the network generalize the best when
using keyframe [1,2,5] from the optimized trajectory from BundleFusion. We use
the first seven scenes in BundleFusion as our training set (’apt0’, ’apt1’, ’apt2’,
’copyroom’, ’office0’, ’office1’, ’office2’) as our training set with a total of 69218
pairs of frames, and use ’office3’ as the validation set with 6390 pairs of frames.

4.3 Visualization

We visualize some examples of our datasets in Figure 4 across different scenes.
The invalid regions are visualized as black in the depth image and white in the
ground truth optical flow.

5 Evaluation on SINTEL Dataset

Quantitative Evaluation on Entire SINTEL Dataset

We evaluate our method using RTN and refine step on the all frames in en-
tire SINTEL dataset compared to the two baseline methods in the paper as
a supplement to the comparison in our test set split. First one is refinement
only, which we denote as solving the refinement stage without any information
acquired from RTN. Secondly, we compare our method to semantic rigidity es-
timation [9], which assumes that the non-rigid motion can be predicted from
its semantic labeling. The semantic network is trained using the DeepLab [10]
architecture with weights initialized from the pre-trained MS-COCO model on
the same data we used for our model. In the pose refinement stage, we substitute
our rigidity from RTN with the semantic rigidity. Both baselines use the same
optical flow network with the same weights, and all methods use the same depth

Table 2: The number of rendered images generated in our REFRESH dataset
using BundleFusion [6] as 3D scenes.

apt0 apt1 apt2 copyroom office0 office1 office2 office3 Total

keyframe 1 8560 8495 3873 4478 6083 5727 3494 3757 44467

keyframe 2 4280 4248 1937 2239 3043 2863 1748 1882 22240

keyframe 5 1712 1700 776 895 1220 1146 700 752 8901

keyframe 10 856 849 338 447 609 572 349 376 4446

keyframe 20 427 424 195 223 304 286 174 189 2222

keyframe 50 171 169 78 89 123 114 69 75 888

Total 16006 15885 7247 8371 11382 10708 6534 5149 83164
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Fig. 3: Histogram distributions of optical flow, depth, and rigidity from our ren-
dered REFRESH dataset in the training set. We calculate the distribution from
three splits using keyframes 1, 2, 5 independently. In each of the split, we show
the flow magnitude distribution (top) in pixels, depth distribution (medium) in
centimeters, and nonrigid ratio (belows) in the number of different images.
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Background scenes (color images), used in final composition

Rendered scenes (color images, not used in final composition)

Background scenes (raw depth images, not used in final composition)

Rendered scenes (depth images, used in final composition)

Nonrigid scenes (color images)

Composited dynamic Scenes (color images)

Composited dynamic Scenes (depth images)

Ground truth in optical flow

Ground truth in rigidity mask (non-rigid region in white)

Fig. 4: Qualitative visualization of Frames in REFRESH Datasets.
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Table 3: Quantitative Evaluation on SINTEL dataset using all frames. All models
in this evaluation are not finetuned and trained on REFRESH dataset. We report
the EPE in egomotion flow (EF) and projected scene flow (PSF). The number
in failures indicate the number of frames that has an EPE over 100, which is
excluded in the EPE calculation. For all the baseline methods, we use the same
optical flow network trained as our method. The lowest residual under the same
setting (e.g. clean set) is highlighted as bold.

Final Pass All Clean Pass All

EF PSF failures EF PSF failures

Refine (from flow only) 2.71 6.81 19 2.61 6.67 9

Semantic rigidity [9] + refine 6.19 9.35 25 4.57 7.68 12

RTN + Refine 1.78 5.81 17 1.75 5.72 6

from SINTEL ground truth. We use the EPE in egomotion flow and projected
scene flow as a metric. To exclude the effects of some catastrophic failures in
some particular frames, we exclude those frames that have over 100 EPE values
and separately count them as failure cases. None of the models are finetuned
on SINTEL dataset. Table 3 shows the quantitative evaluation. It is worth to
note that predicting rigidity based on semantics cannot generalize well across
different domains, which can lead to bad rigidity localization that significantly
harm the correspondence association. This evaluation also shows our method
outperforms the two baseline methods.
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