
LANA: Latency Aware Network Acceleration

Pavlo Molchanov1, Jimmy Hall2, Hongxu Yin1, Jan Kautz1, Nicolo Fusi2, and
Arash Vahdat1

1 NVIDIA
2 Microsoft Research

Abstract. We introduce latency-aware network acceleration (LANA)–an
approach that builds on neural architecture search technique to accelerate
neural networks. LANA consists of two phases: in the first phase, it trains
many alternative operations for every layer of a target network using
layer-wise feature map distillation. In the second phase, it solves the
combinatorial selection of e�cient operations using a novel constrained
integer linear optimization (ILP) approach. ILP brings unique properties
as it (i) performs NAS within a few seconds to minutes, (ii) easily satisfies
budget constraints, (iii) works on the layer-granularity, (iv) supports
a huge search space Op10100q, surpassing prior search approaches in
e�cacy and e�ciency. In extensive experiments, we show that LANA
yields e�cient and accurate models constrained by a target latency
budget, while being significantly faster than other techniques. We analyze
three popular network architectures: E�cientNetV1, E�cientNetV2 and
ResNeST, and achieve accuracy improvement (up to 3.0%) for all models
when compressing larger models. LANA achieves significant speed-ups
(up to 5ˆ) with minor to no accuracy drop on GPU and CPU. Project
page: https://bit.ly/3Oja2IF

1 Introduction

In many applications, we may have access to a neural network that satisfies desired
performance needs in terms of accuracy but is computationally too expensive to
deploy. The goal of hardware-aware network acceleration [59, 103, 67, 28, 5, 13] is
to accelerate a given neural network such that it meets e�ciency criteria on a
device without sacrificing accuracy dramatically. Network acceleration plays a
key role in reducing the operational cost, power usage, and environmental impact
of deploying deep neural networks in real-world applications.

Given a trained neural network (teacher, base model), the current network
acceleration techniques can be grouped into: (i) pruning that removes inactive
neurons [51, 36, 20, 8, 49, 48, 45, 43, 98, 25, 26, 18, 29, 104, 35, 39, 94, 27, 44, 53, 22,
33, 19, 97, 24, 47, 4], (ii) compile-time optimization [62] or kernel fusion [81, 15,
14, 100] that combines multiple operations into an equivalent operation, (iii)
quantization that reduces the precision in which the network operates at [83, 16,
65, 7, 11, 55, 86, 101, 34], and (iv) knowledge distillation that distills knowledge
from a larger teacher network into a smaller student network [31, 64, 91, 95, 46,

2 Molchanov et al.

52, 1]. The approaches within (i) to (iii) are restricted to the underlying network
operations and they do not change the architecture. Knowledge distillation
changes the network architecture from teacher to student, however, the student
design requires domain knowledge and is done usually manually.

/D\HU��

,Q�VWHP

/D\HU��

/D\HU��

/D\HU��

2XW�VWHP

/1�PRGHO%DVH�PRGHO

2SHUDWLRQ��

,Q�VWHP

2SHUDWLRQ��

7HDFKHU

,GHQWLW\

2XW�VWHP

7UDQVIRUP

5HSODFH
.HHS
6NLS

Fig. 1: LANA is a post-training
model optimization method that
keeps, replaces or skips layers of
the trained base model (teacher).

In this paper, we propose latency-aware net-
work transformation (LANA), a network accel-
eration framework that replaces ine�cient op-
erations in a given trained network with more
e�cient counterparts (see Fig 1). Given a con-
volutional network as target and base model to
accelerate, we formulate the problem as search-
ing in a large pool of candidate operations to
find e�cient operations for di↵erent layers of
the base model (teacher). The search prob-
lem is combinatorial in nature with a space
that grows exponentially with the depth of the
network. To solve this problem, we can turn
to neural architecture search (NAS) [105, 106,
70, 6, 57, 78], which has been proven success-
ful in discovering novel architectures. However,
existing NAS solutions are computationally
expensive, and usually handle only a small
number of candidate operations (ranging from
5 to 15) in each layer and they often struggle
with larger candidate pools.

To tackle the search problem with a large number of candidate operations in
an e�cient and scalable way, we propose a two-phase approach. In the first phase,
we define a large candidate pool of operations ranging from classic residual blocks
[21] to recent blocks [17, 15, 66, 2], with varying hyperparameters. Candidate
operations are pretrained to mimic the teacher’s operations via a simple layer-
wise optimization. Distillation-based pretraining enables a very quick preparation
of all candidate operations, o↵ering a much more competitive starting point for
subsequent searching.

In the second phase, we search among the pre-trained operations as well
as the teacher’s own operations to construct an e�cient network. Since our
operation selection problem can be considered as searching in the proximity of
the teacher network in the architecture space, we assume that the accuracy of
a candidate architecture can be approximated by the teacher’s accuracy and
a simple linear function that measures changes in the accuracy for individual
operations. Our approximation allows us to relax the search problem into a
constrained integer linear optimization problem that is solved in a few seconds.
As we show extensively in our experiments, such relaxation can drastically cut
down on the cost of our search and it can be easily applied to a huge pool of
operations (197 operations per layer), while o↵ering improvements in model
acceleration by a large margin.

LANA: Latency Aware Network Acceleration 3

In summary, we make the following contributions: (i) We propose a simple two-
phase approach for accelerating a teacher network using NAS-like search. (ii) We
propose an e↵ective search algorithm using constrained integer optimization that
can find an architecture in seconds tailored to our setting where a fitness measure is
available for each operation. (iii) We examine a large pool of operations including
the recent vision transformers and new variants of convolutional networks. We
provide insights into the operations selected by our framework and into final
model architectures.

1.1 Related Work

Since our goal is to accelerate a trained model by modifying architecture, in this
section we focus on related NAS-based approaches.

Hardware-aware NAS: The goal of hardware-aware NAS is to design e�-
cient and accurate architectures from scratch while targeting a specific hardware
platform. This has been the focus of an increasingly large body of work on
multiobjective neural architecture search [6, 71, 87, 92, 79, 93, 88, 78]. The goal
here is to solve an optimization problem maximizing accuracy while meeting
performance constraints specified in terms of latency, memory consumption or
number of parameters. Given that the optimization problem is set up from
scratch for each target hardware platform, these approaches generally require the
search to start from scratch for every new deployment target (e.g., GPU/CPU
family) or objective, incurring a search cost that increases linearly as the number
of constraints and targets increases. [5] circumvents this issue by training a
supernetwork containing every possible architecture in the search space, and then
applying a progressive shrinking algorithm to produce multiple high-performing
architectures. This approach incurs a high pretraining cost, but once training
is complete, new architectures are relatively inexpensive to find. On the other
hand, the high computational complexity of pretraining limits the number of
operations that can be considered. Adding new operations is also costly, since the
supernetwork must be pretrained from scratch every time for a new operation.
Recent work [56] also explores prioritized paths within the supernetwork to help
guide the learning of weak subnets through distillation, such that all blocks can
be trained simultaneously and the strongest path constitutes a final architecture.
Despite remarkable insights the searching still imposes GPU days to converge
towards a final strong path overseeing a small search space.

Teacher-based NAS: Our work is more related to the line of work that
focuses on modifying existing architectures. Approaches in this area build on
teacher-student knowledge distillation, performing multiobjective NAS on the
student to mimic the teacher network.

The AKD approach [42] applies knowledge distillation at the network level,
training a reinforcement learning agent to construct an e�cient student network
given a teacher network and a constraint and then training that student from
scratch using knowledge distillation. DNA [38] and DONNA [50] take a more
fine-grained approach, dividing the network into a small number of blocks, each
of which contain several layers. During knowledge distillation, they both attempt

4 Molchanov et al.

Table 1: Related method comparison. Time is mentioned in GPU hours by h, or
ImageNet epochs by e. Our method assumes 197 candidate operations for the
full pool, and only 2 (teacher and identity) for single shot mode. L is the number
of target architectures.
Method Knowledge Diverse Design Space Pretrain Search Train Total

Distillation Operators Size Cost Cost Cost Cost

To Train L Architectures

Once-For-All [5] None ° O
`
10

19
˘

1205e 40h 75eL 1205e + 75eL

AKD [42] Network X ° O
`
10

13
˘

0 50000eL 400eL 50400eL

DNA [38] Block ° O
`
10

15
˘

320e 14hL 450eL 320e + 450eL

DONNA [50] Block X ° O
`
10

13
˘

1920e3 1500e + § 1hL 50eL 3420e + 50eL

Cream [56] Network X ° O
`
10

16
˘

0 120eL 500eL 620eL

This Work Layer X ° O
`
10

100
˘

197e †1hL 100eL 197e + 100eL

This Work - single shot None ° O
`
10

2
˘

0 „0 100eL 100eL

to have student blocks mimic the output of teacher blocks, but [38] samples
random paths through a mix of operators in each block, whereas [50] trains
several candidate blocks with a repeated single operation for each teacher block.
They then both search for an optimal set of blocks, with DNA [38] using a novel
ranking algorithm to predict the best set of operations within each block, and then
applying a traversal search, while [50] trains a linear model that predicts accuracy
of a set of blocks and use that to guide an evolutionary search. While both
methods deliver impressive results, they di↵er from our approach in important
ways. DNA [38] ranks each path within a block, and then use this ranking to
search over the blocks, relying on the low number of blocks to accelerate search.
DONNA [50] samples and finetunes 30 models to build a linear accuracy predictor,
which incurs a significant startup cost for search. In contrast, we formulate the
search problem as an integer linear optimization problems that can be solved
very quickly for large networks and large pool of operations.

Table 1 compares our work to these works in detail. We increase the granularity
of network acceleration, focusing on each layer individually instead of blocks
as done in DNA and DONNA. The main advantage of focusing on layers is
that it allows us to accelerate the teacher by simply replacing ine�cient layers
whereas blockwise algorithms such as DNA and DONNA require searching for an
e�cient subnetwork that mimics the whole block. The blockwise search introduces
additional constraints. For example, both DNA and DONNA enumerate over
di↵erent depth values (multiplying the search space) while we reduce depth
simply using an identity operation. Additionally, DONNA assumes that the same
layer in each block is repeated whereas we have more expressivity by assigning
di↵erent operation to di↵erent layers. The expressivity can be seen from the
design space size in Table 1 in which our search space is orders of magnitude
larger. On the other hand, this extremely large space necessitate the development
of a highly e�cient search method based on integer linear optimization (presented
in Section 2). As we can see from Table 1, even with significantly larger search
space, our total cost is lower than prior work. We additionally introduce one-shot
formulation when LANA transforms an architecture by simply skipping blocks
(cells). This setting imposes no pretraining and search cost is negligibly small.

LANA: Latency Aware Network Acceleration 5

%DVH�PRGHO�
�WHDFKHU�

/D\HU�ZLVH
SUHWUDLQLQJ�

3RRO�RI�RSHUDWLRQV�
���[��FRQYROXWLRQ�
���[��ERWWOHQHFN
�,GHQWLW\
HWF�

'HYLFH�VSHFLILF
/DWHQF\�/87

6FRUULQJ� $UFKLWHFWXUH
�VHDUFK

2QO\�RQFH

)LQDO�
�DUFKLWHFWXUH

%XGJHW
�FRQVWUDLQW�
VSHFLILF

&DQGLGDWH�3UHWUDLQLQJ 2SHUDWLRQ�6HOHFWLRQ

Fig. 2: LANA framework: A set of candidate operations is pretrained to mimic
layers of the trained base (teacher) model. Then, operations are scored on their
goodness metric to approximate the teacher. These 2 steps are only performed
once for a given base model. Finally, an architecture search is performed to select
operations per every layer to satisfy a predefined budget constraint.

2 Method

Our goal in this paper is to accelerate a given pre-trained teacher/base network by
replacing its ine�cient operations with more e�cient alternatives. Our method,
visualized in Fig. 2, is composed of two phases: (i) Candidate pretraining phase

(Sec. 2.1), in which we use distillation to train a large set of operations to
approximate di↵erent layers in the original teacher architecture; and (ii) Operation

selection phase (Sec. 2.2), in which we search for an architecture composed of a
combination of the original teacher layers and pretrained e�cient operations via
linear optimization.

2.1 Candidate Pretraining Phase

We represent the teacher (base) network as the composition of N teacher op-
erations by T pxq “ tN ˝ tN´1 ˝ . . . ˝ t1 pxq, where x is the input tensor, ti is
the i

th operation (i.e., layer) in the network. We then define the set of candi-

date student operations
î

N

i“1
tsijuM

j“1
, which will be used to approximate the

teacher operations. Here, M denotes the number of candidate operations per
layer. The student operations can draw from a wide variety of operations – the
only requirement is that all candidate operations for a given layer must have
the same input and output tensor dimensions as the teacher operation ti. We
denote all the parameters (e.g., trainable convolutional filters) of the operations
as W “ twijuN,M

i,j
, where wij denotes the parameters of the student operation

sij . We use a set of binary vectors Z “ tziuNi“1
, where zi “ t0, 1uM is a one-hot

vector, to represent operation selection parameters. We denote the candidate
network architecture specified by Z using Spx;Z,Wq.

The problem of optimal selection of operations is often tackled in NAS. This
problem is usually formulated as a bi-level optimization that selects operations
and optimizes their weights jointly [41, 105].

6 Molchanov et al.

Finding the optimal architecture in hardware-aware NAS reduces to:

min
Z

min
W

ÿ

px,yqPXtr

L
`
Spx;Z,Wq, y

˘

objective

, (1)

s.t.
Nÿ

i“1

bT

i
zi § B

budget constraint

; 1T zi “ 1 @ i P r1..N s
one op per layer

where bi P RM
` is a vector of corresponding cost of each student operation (la-

tency, number of parameters, FLOPs, etc.) in layer i. The total budget constraint
is defined via scalar B. The objective is to minimize the loss function L that
estimates the error with respect to the correct output y while meeting a budget
constraint. In general, the optimization problem in Eq. 1 is an NP-hard combina-
torial problem with an exponentially large state space (i.e., MN). The existing
NAS approaches often solve this optimization using evolutionary search [60],
reinforcement learning [105] or di↵erentiable search [41].

However, the goal of NAS is to find an architecture in the whole search space
from scratch, whereas our goal is to improve e�ciency of a given teacher network
by replacing operations. Thus, our search can be considered as searching in the
architecture space in the proximity of the already trained model. That is why we
assume that the functionality of each candidate operation is also similar to the
teacher’s operation, and we train each candidate operation to mimic the teacher
operation

using layer-wise feature map distillation with the mean squared error (MSE)
loss:

min
W

ÿ

xPXtr

N,Mÿ

i,j

}tipxi´1q ´ sijpxi´1;wijq}2
2
, (2)

where Xtr is a set of training samples, and xi´1 “ ti´1 ˝ ti´2 ˝ . . . ˝ t1 pxq is the
output of the previous layer of the teacher, fed to both the teacher and student
operations.

Our layer-wise pretraining has several advantages. First, the minimization in
Eq. 2 can be decomposed into N ˆ M independent minimization problems as
wi,j is specific to one minimization problem per operation and layer. This allows
us to train all candidate operations simultaneously in parallel. Second, since each
candidate operation is tasked with an easy problem of approximating one layer
in the teacher network, we can train the student operation quickly in one epoch.
In this paper, instead of solving all N ˆ M problems in separate processes, we
train a single operation for each layer in the same forward pass of the teacher to
maximize reusing the output features produced in all the teacher layers. This
way the pretraining phase roughly takes OpMq epochs of training a full network.

2.2 Operation Selection Phase

Fig. 3 shows steps involved to find an accelerated architecture. Since our goal in
search is to discover an e�cient network in the proximity of the teacher network,

LANA: Latency Aware Network Acceleration 7

6FRUHV

3UHWUDLQHG
RSHUDWLRQV

/87

,QWHJHU��
/LQHDU�

�3URJUDPPLQJ

&DQGLGDWH
DUFKLWHFWXUH
HYDOXDWLRQ

0XOWLSOH
DUFKLWHFWXUHV

6LQJOH
DUFKLWHFWXUH

)LQDO�
�DUFKLWHFWXUH

2YHUODS
FRQVWUDLQW

Fig. 3: Architecture search with LANA: Given scores of pretrained operations
and their associated cost, LANA formulates the architecture search as an integer
linear programming problem. Multiple architectures are found to satisfy the
budget constraint via penalizing overlaps. Then, a single architecture is picked
during candidate architecture evaluation phase. The cost of the overall search is
minor comparing to existing NAS approaches as no training is involved.

we propose a simple linear relaxation of candidate architecture loss using
ÿ

Xtr

L
`
Spx;Zq, y

˘
«

ÿ

Xtr

L
`
T pxq, y

˘
`

Nÿ

i“1

aT
i
zi, (3)

where the first term denotes the training loss of teacher which is constant and ai
is a vector of change values in the training loss per operation for layer i. We refer
to ai as a score vector. Our approximation bears similarity to the first-degree
Taylor expansion of the student loss with the teacher as the reference point (since
the teacher architecture is a member of the search space). To compute taiuNi ,
after pretraining operations in the first stage, we plug each candidate operation
one-by-one in the teacher network and we measure the change on training loss
on a small labeled set. Our approximation relaxes the non-linear loss to a linear
function. Although this is a weak approximation that ignores how di↵erent layers
influence the final loss together, we empirically observe that it performs well in
practice as a proxy for searching the student.

Approximating the architecture loss with a linear function allows us to
formulate the search problem as solving an integer linear program (ILP). This has
several main advantages: (i) Although solving integer linear programs is generally
NP-hard, there exist many o↵-the-shelf libraries that can obtain a high-quality
solutions in a few seconds. (ii) Since integer linear optimization libraries easily
scale up to millions of variables, our search also scales up easily to very large
number of candidate operations per layer. (iii) We can easily formulate the
search problem such that instead of one architecture, we obtain a set of diverse

candidate architectures. Formally, we denote the k
th solution with

Zpkq(K

k“1
,

which is obtained by solving:

min
Zpkq

Nÿ

i“1

aT
i
zpkq
i

objective

, s.t.
Nÿ

i“1

bT

i
zpkq
i

§ B

budget constraint

; 1T zpkq
i

“ 1 @ i

one op per layer

;

Nÿ

i“1

zpkq
i

T

zpk1q
i

overlap constraint

§ O,@k1 † k (4)

8 Molchanov et al.

where we minimize the change in the loss while satisfying the budget and overlap
constraint. The scalar O sets the maximum overlap with any previous solution
which is set to 0.7N in our case. We obtain K diverse solutions by solving the
minimization above K times.

Solving the integer linear program (ILP). We use the o↵-the-shelf PuLP
Python package to find feasible candidate solutions. The cost of finding the first
solution is very small, often less than 1 CPU-second. As K increases, so does the
di�culty of finding a feasible solution. We limit K to „100.

Candidate architecture evaluation. Solving Eq. 4 provides us with K

architectures. The linear proxy used for candidates loss is calculated in an isolated
setting for each operation. To reduce the approximation error, we evaluate all
K architectures with pretrained weights from phase one on a small part of the
training set (6k images on ImageNet) and select the architecture with the lowest
loss. This step assumes that the accuracy of the model before finetuning is
positively correlated with the accuracy after finetuning. Batch normalization
layers have to use current batch statistics (instead of precompted) to adopted for
distribution change with new operations.

Candidate architecture fine-tuning. After selecting the best architecture
among the K candidate architectures, we fine-tune it for 100 epochs using
the original objective used for training the teacher. Additionally, we add the
distillation loss from teacher to student during fine-tuning.

3 Experiments

We apply LANA to the family of E�cientNetV1 [73], E�cientNetV2 [75] and
ResNeST50 [102]. When naming our models, we use the latency reduction ratio
compared to the original model according to latency look-up table (LUT). For
example, 0.25ˆB6 indicates 4ˆ target speedup for the B6 model. For experiments,
ImageNet-1K [61] is used for pretraining (1 epoch), candidate evaluation (6k
training images) and finetuning (100 epochs).

We use the NVIDIA V100 GPU and Intel Xeon Silver 4114 CPU as our
target hardware. A hardware specific look-up table is precomputed for each
candidate operation (vectors bi in Eq. 4). We measure latency in 2 settings: (i)
in Pytorch framework, and (ii) TensorRT [54]. The latter performs kernel fusion
for additional model optimization making it even harder to accelerate models.
The exact same setup is used for evaluating latency of all competing models, our
models, and baselines. Actual latency on target platforms is reported in tables.

Candidate operations. We construct a large of pool of diverse candidate
operation including M “ 197 operations for each layer of teacher. Our operations
include:

Teacher operation is used as is in the pretrained (base) model with teacher model
accuracy.
Identity is used to skip teacher’s operation. It changes the depth of the network.

LANA: Latency Aware Network Acceleration 9

Table 2: Comparison to prior art
on ImageNet1K. Latency is mea-
sured on NVIDIA V100 with vari-
ous batch size and inference preci-
sion.
Method Accuracy Latency (ms),

bs128/fp16 bs32/fp32

E�cientNetV1-B0 77.7 35.6
Cream-S [56] 77.6 36.7
DNA-D [38] 77.1 33.8
DONNA [50] 78.9 20.0
OFA flops@482M [5] 79.6 39.3
LANA(0.45xEFNv1-B2) 79.7 30.2 18.9
LANA(0.4xEFNv2-B3) 79.9 39.0

E�cientNetV1-B1 78.8 59.0
DNA-D [38] 78.4 61.3
DONNA [50] 79.5 25.0
OFA flops@595M [5] 80.0 50.0
Cream-L [56] 80.0 84.0
LANA(0.55xEFNv1-B2) 80.1 48.7 24.1
LANA(0.5xEFNv2-B3) 80.8 48.1

Table 3: Models optimized with LANA
for latency-accuracy trade-o↵ on Ima-
geNet1K.

Method Variant Res Accuracy Latency(ms)
px (%) TensorRT PyTorch

E�cientNetV1

E�cientNetV1-B1 240 78.83 29.3 59.0
LANA 0.25xB4 380 81.83 (+3.00) 30.4 64.5

E�cientNetV1-B2 260 80.07 38.2 77.1
LANA 0.3xB4 380 82.16 (+2.09) 38.8 81.8

E�cientNetV1-B3 300 81.67 67.2 125.9
LANA 0.5xB4 380 82.66 (+0.99) 61.4 148.1

E�cientNetV1-B4 380 83.02 132.0 262.4
LANA 0.25xB6 528 83.77 (+0.75) 128.8 282.1

E�cientNetV1-B5 456 83.81 265.7 525.6
LANA 0.5xB6 528 83.99 (+0.18) 266.5 561.2

E�cientNetV1-B6 528 84.11 466.7 895.2

E�cientNetV2

E�cientNetV2-B1 240 79.46 17.9 44.7
LANA 0.45xB3 300 80.30 (+0.84) 17.8 43.0

E�cientNetV2-B2 260 80.21 24.3 58.9
LANA 0.6xB3 300 81.14 (+0.93) 23.8 56.1

E�cientNetV2-B3 300 81.97 41.2 91.6

ResNeST50d 1s4x24d

ResNeST50 224 80.99 32.3 74.0
LANA 0.7x 224 80.85 22.3(1.45x) 52.7

Inverted residual blocks efn [63] and efnv2 [75] with varying expansion factor
e“t1, 3, 6u, squeeze and excitation ratio se“tNo, 0.04, 0.025u, and kernel size
k“t1, 3, 5u.
Dense convolution blocks inspired by [22] with (i) two stacked convolution (cb stack)
with CBRCB structure, C-conv, B-batchnorm, R-Relu; (ii) bottleneck architecture
(cb bottle) with CBR-CBR-CB; (ii) CB pair (cb res); (iii) RepVGG block [15];
(iv) CBR pairs with perturbations as conv cs. For all models we vary kernel size
k “ t1, 3, 5, 7u and width w “ t1{16, 1{10, 1{8, 1{5, 1{4, 1{2, 1, 2, 3, 4u.
Transformer variations (i) visual transformer block (vit) [17] with depth d “
t1, 2u, dimension w “ t25, 26, 27, 28, 29, 210u and heads h “ t4, 8, 16u; (ii) bottle-
neck transformers [66] with 4 heads and expansion factor e “ t1{4, 1{2, 1, 2, 3, 4u;
(iii) lambda bottleneck layers [2] with expansion e “ t1{4, 1{2, 1, 2, 3, 4u.

With the pool of 197 operations, distilling from an E�cientNet-B6 model
with 46 layers yields a design space of the size 19746 «10100.

3.1 E�cientNet and ResNeST Derivatives

Our experimental results on accelerating E�cientNetV1(B2, B4, B6), E�cient-
NetV2(B3), and ResNeST50 family for GPUs are shown in Tables 2 and 3.
Comparison with more models from timm is in the Appendix.

At first we compare to prior NAS-like models tailored to E�cientNetV1-B0
and B1 in Table 2. LANA has clear advantages in terms of accuracy and latency.

Next, we demonstrate a capability of LANA for a variety of larger architectures
in Table 3. Results show that:

– LANA achieves an accuracy boost of 0.18-3.0% for all models when compressing
larger models to the latency level of smaller models (see E�cientNet models
and the corresponding LANA models in the same latency group).

10 Molchanov et al.

Table 4: Local pretraining of
the teacher model initialized from
scratch on ImageNet1K at di↵erent
granularity.
Model Original Distillation

Block-wise Layer-wise
[50], [38] (LANA)

E�cientNetV1-B2 82.01 68.21 76.52
E�cientNetV2-B3 81.20 73.53 76.52
ResNeST-50 86.35 77.54 80.61

Table 5: Comparing methods for can-
didate selection (NAS). Our proposed
ILP is better (`0.43%) and 821ˆ faster.

Method Accuracy Search cost

ILP, K=100 (ours) 79.28 4.5 CPU/m
Random, found 80 arch 76.44 1.4 CPU/m
SNAS [90] 74.20 16.3 GPU/h
E-NAS [57] 78.85 61.6 GPU/h

Table 6: Impact of the search space
on 0.55ˆE�cientNetV1-B2 compres-
sion. Two operations correspond to
Single-shot LANA.
Operations 2 5 10 All

Space size Op107q Op1016q Op1023q Op1046q
Accuracy 79.40 79.52 79.66 80.00
STD ˘0.208 ˘0.133

Table 7: Single-shot LANA with only
skip connections.
Setup Top-1 Acc. Latency(ms)

Single-shot All TensorRT

0.45xE�cientNetV1-B2 78.68 79.71 16.2
0.55xE�cientNetV1-B2 79.40 80.11 20.6

– LANA achieves significant real speed-ups with little to no accuracy drop: (i)
E�cieintNetV1-B6 accelerated by 3.6x and 1.8x times by trading-o↵ 0.34% and
0.11% accuracy, respectively; (ii) B2 variant is accelerated 2.4x and 1.9x times
with 0.36% and no accuracy loss, respectively. (iii) ResNeST50 is accelerated
1.5x with 0.14% accuracy drop.
A detailed look on E�cientNets results demonstrate that E�cientNetV1

models are accelerated beyond E�cientNetV2. LANA generates models that
have better accuracy-throughput trade-o↵ when comparing models under the
same accuracy or the same latency. LANA also allows us to optimize models for
di↵erent hardware at a little cost. Only a new LUT is required to get optimal
model for a new hardware without pretraining the candidate operations again.
We present models optimized for CPU in supplementary materials Table 8 which
are obtained using a di↵erent LUT only.

3.2 Analysis

Here, we provide detailed ablations to analyze our design choices in LANA
for both pretraining and search phases, along with observed insights. We use
E�cientNetV1-B2 and E�cientNetV2-B3 as our base models for the ablation.
Operator pretraining. Previous work ([50] and [38]) applies per block distilla-
tion for pretraining. Main reason for that is costly search if they operate in per
layer setting. With per layer pretraining the search cost increases exponentially.
Main advantage of our work is ILP that it is faster by several orders of magnitude.
Therefore, we can perform per layer distillation.

To study the benefit of using per layer distillation we perform a teacher
mimicking test where all parameters of the teacher are re-initialized. Then, we

LANA: Latency Aware Network Acceleration 11

(a) Optimization objective (b) ILP vs random (c) Candidate evaluation

Fig. 4: Analyzing ILP performance on E�cientNetV2-B3. ILP results in sig-
nificantly higher model accuracy before finetuning than 1k randomly sampled
architectures in (b). Accuracy monotonically increases with ILP objective (a).
Model accuracy before finetuning correctly ranks models after finetuning (c).
Train top-1 is measured before finetuning, while Validation top-1 is after.

perform isolated pretraining (with MSE loss) of teacher blocks/layers and report
the final top1 accuracy on the training set on the ImageNet. Results in Table 4
clearly demonstrate significant advantage of per layer pretraining. By carefully
studying we found that per block supervision provides very little guidance to
first layers of the block and therefore lacks performance. We conclude that per
layer distillation is more e�cient and provides extra advantages.

Linear relaxation in architecture search assumes that a candidate architec-
ture can be scored by a fitness metric measured independently for all operations.
Although this relaxation is not accurate, we observe a strong correlation between
our linear objective and the training loss of the full architecture. This assumption
is verified by sampling 1000 architectures (di↵erent budget constraints), optimiz-
ing the ILP objective, and measuring the real loss function. Results are shown in
Fig. 4a using the train accuracy as the loss. We observe that ILP objective ranks
models with respect to the measured accuracy correctly under di↵erent latency
budgets. The Kendall Tau correlation is 0.966.

To evaluate the quality of the solution provided with ILP, we compare it with
random sampling. The comparison is shown in Fig. 4b, where we sample 1000
random architectures for 7 latency budgets. The box plots indicate the poor
performance of the randomly sampled architectures. The first ILP solution has
significantly higher accuracy than random architecture. Furthermore, finding
multiple diverse solutions is possible with ILP using the overlap constraint. If we
increase the number of solutions found by ILP from K“1 to K“100, performance
improves further. When plugging pretrained operations (Fig. 4b) into the teacher,
the accuracy is high (it is above 30%, even at an acceleration factor of 2ˆ). For
E�cientNetV1, this is above 50% for the same compression factor.

Candidate architecture evaluation plays an important role in LANA. This
step finds the best architecture quickly out of the diverse candidates generated
by the ILP solver, by evaluating them on 6k images from the train data. The

12 Molchanov et al.

procedure is built on the assumption that the accuracy of the model on the
training data before finetuning (just by plugging all candidate operations) is a
reasonable indicator of the relative model performance after finetuning. We verify
this hypothesis in the Fig. 4c and see positive correlation. Same observation was
is present in other works like [37].

Comparing with other NAS approaches. We compare our search algo-
rithm with other popular approaches to solve Eq. (1), including: (i) Random

architecture sampling within a latency constrain; (ii) Di↵erentiable search with

Gumbel Softmax – a popular approach in NAS to relax binary optimization as a
continuous variable optimization via learning the sampling distribution [90, 87,
78]. We follow SNAS [90] in this experiment; (iii) REINFORCE is a stochastic
optimization framework borrowed from reinforcement learning and adopted for
architecture search [57, 106, 72]. We follow an E-NAS-like [57] architecture search
for (iii) and use weight sharing for (ii) and (iii).

Experiments are conducted on E�cientNetV1-B2 accelerated to 0.45ˆ original
latency. The final validation top-1 accuracy after finetuning are presented in
Table 5. Our proposed ILP achieves higher accuracy (`0.43%) compared to the
second best method E-NAS while being 821ˆ faster in search.

Single-shot LANA. Our method can be applied without pretraining proce-
dure if only teacher cells and Identity (skip) operation are used (M “ 2 operations
per layer). Only the vector for the change in loss for the Identity operator will
be required alongside the LUT for the teacher operations. This allows us to do
single-shot network acceleration without any pretraining as reported in Table 7.
We observe that LANA e�ciently finds residual blocks that can be skipped. This
unique property of LANA is enabled because of layer-wise granularity.

Pretraining insights. To gain more insights into the tradeo↵ between the
accuracy and speed of each operation, we analyze the pretrained candidate
operation pool for E�entNetV1B2. A detailed figure is shown in the appendix.
Here, we provide general observations.

We observe that no operation outperforms the teacher in terms of accuracy;
changing pretraining loss from per-layer MSE to full-student cross-entropy may
change this but that comes with an increased costs of pretraining. We also see
that it is increasingly di�cult to recover the teacher’s accuracy as the depth in
the network increases. The speedups achievable are roughly comparable across
di↵erent depths, however, we note that achieving such speedups earlier in the
network is particularly e↵ective towards reducing total latency due to the first
third of the layers accounting for 54% of the total inference time.

Looking at individual operations, we observe that inverted residual blocks
(efn, efnv2) are the most accurate throughout the network, at the expense of
increased computational cost (i.e., lower speedups). Dense convolutions (cb stack,
cb bottle, conv cs, cb res) exhibit a good compromise between accuracy and
speed, with stacked convolutions being particularly e↵ective earlier in the network.

Visual transformer blocks (ViT) and bottleneck transformer blocks (bot trans)
show neither a speedup advantage nor ability to recover teacher accuracy.

LANA: Latency Aware Network Acceleration 13

Common Operations. In Appendix 5, we analyze the distribution of the
selected operations by solving for 100 architecture candidates with Eq. 4 for
0.5ˆE�cientNetV1B2. We observe: (i) teacher operations are selected most
frequently, it is expected as we only transform the model and no operations can
beat teacher in terms of accuracy; (ii) identity operation is selected more often for
large architectures with higher compression rates; (iii) dense convolution blocks
tend to appear more for larger models like E�cientNet-B6 to speed them up.

Architecture insights In the appendices, we visualize the final architectures
discovered by LANA. Next, we share the insights observed on these architectures.

Common across all models: (i) Teacher’s operations are usually selected in
the tail of the network as they are relatively fast and approximating them results
in the highest error. (ii) Teacher operation is preferred for downsampling layers
(e.g. stride is 2). Those cells are hard to approximate as well, we hypothesize
this is due to high nonlinearity of these blocks. (iii) Transformer blocks are never
selected, probably because they require significantly longer pretraining on larger
datasets. (v) LANA automatically adjusts depth of every resolutional block by
replacing teacher cells with Identity operations.

E�cientNetV1. Observing final architectures obtained by LANA on the
E�cientNetV1 family, particularly the 0.55ˆB2 version optimized for GPUs, we
discover that most of the modifications are done to the first half of the model:
(i) squeeze-and-excitation is removed in the early layers; (ii) dense convolutions
(like inverted stacked or bottleneck residual blocks) replace depth-wise separable
counterparts; (iii) the expansion factor is reduced from 6 to 3.5 on average.
Surprisingly, LANA automatically discovers the same design choices that are

introduced in the E�cientNetV2 family when optimized for datacenter inference.

E�cientNetV2. LANA accelerates E�cientNetV2-B3 by 2ˆ, with the fol-
lowing conclusions: (i) the second conv-bn-act layer is not needed and can be
removed; (ii) the second third of the model benefits from reducing the expan-
sion factor from 4 to 1 without squeeze-and-excitation operations. With these
simplifications, accelerated model still outperforms E�cientNetV2-B2 and B1.

ResNeST50. LANA discovers that cardinality can be reduced from 4 to 1
or 2 for most blocks without any loss in accuracy, yielding a 1.45ˆ speedup.

Ablations on finetuning

We select 0.45ˆE�cientNetV1-B2 with the final accuracy of 79.71%.
Pretrained weights.We look deeper into the finetuning step. Reinitializing

all weights in the model, as opposed to loading them from the pretraining stage,
results in 79.42%. The result indicates the importance of pretraining stage (i) to
find a strong architecture and (ii) to boost finetuning.

Knowledge distillation plays a key role in student-teacher setups. When it
is disabled, we observe an accuracy degradation of 0.65%. This emphasizes the
benefit of training a larger model and then self-distilling to a smaller one. We
further verify whether we can achieve a similar high accuracy using knowledge

14 Molchanov et al.

distillation from E�cientNetV1-B2 to vanilla E�cientNetV1-B0 in the same
setting. The top-1 accuracy of 78.72% is still 1% less than LANA’s accuracy.
When both models are trained from scratch with the distillation loss, LANA
0.45xB2 achieves 79.42% while E�cientNetV1-B0 achieves 78.01%.

Length of finetuning. Pretrained operations have already been trained to
mimic the teacher layer. Therefore, even before finetuning the student model can
be already adept at the task. Next, we evaluate how does the length of finetuning
a↵ects the final accuracy in Table 9 (Supplementary). Even with only 5 epochs
LANA outperforms the vanilla E�cientNet counterparts.

Search space size. ILP enables us to perform NAS in a very large space
(Op10100q). To verify the benefit of large search space, we experiment with a
restricted search space. For this, we randomly pick 2, 5 and 10 operations per
layer to participate in search and finetuning for 50 epochs. We observe clear
improvements from increasing the search space, shown Table 6 (results are
averaged over 5 runs). When more than 2 operations are present we select the
teacher cell, identity operation and the rest to be random operations with the
constrain to have score di↵erence of no more than 5.0% and being faster.

4 Conclusion

In this paper, we proposed LANA, a hardware-aware network transformation
framework for accelerating pretrained neural networks. LANA uses a NAS-like
search to replace ine�cient operations with more e�cient alternatives. It tackles
this problem in two phases including a candidate pretraining phase and a search
phase. The availability of the teacher network allows us to estimate the change
in accuracy for each operation at each layer. Using this, we formulate the search
problem as solving a linear integer optimization problem, which outperforms
the commonly used NAS algorithms while being orders of magnitude faster. We
applied our framework to accelerate E�cientNets (V1 and V2) and ResNets with
a pool of 197 operations per layer and we observed that LANA accelerates these
architectures by several folds with only a small drop in the accuracy.

Limitations. The student performance in LANA is bounded by the base
model, and it rarely passes in terms of accuracy. Additionally, the output dimen-
sion of layers in the student can not be changed, and must remain the same as
in the original base model.

Future work. We envision that a layer-wise network acceleration framework
like LANA can host a wide range of automatically and manually designed
network operations, developed in the community. Our design principals in LANA
consisting of extremely large operation pool, e�cient layer-wise pretraining, and
lightening fast search help us realize this vision. Components of LANA can be
further improved in the follow-up research: i) pretraining stage to consider error
propagation; ii) scoring metric; iii) ILP with finetuning; iv) candidate architecture
evaluation.

LANA: Latency Aware Network Acceleration 15

References

1. Belagiannis, V., Farshad, A., Galasso, F.: Adversarial network compression. In:
Proceedings of the European Conference on Computer Vision (ECCV) Workshops.
pp. 0–0 (2018)

2. Bello, I.: Lambdanetworks: Modeling long-range interactions without attention.
arXiv preprint arXiv:2102.08602 (2021)

3. Bello, I., Fedus, W., Du, X., Cubuk, E.D., Srinivas, A., Lin, T.Y., Shlens, J., Zoph,
B.: Revisiting resnets: Improved training and scaling strategies (2021)

4. Blalock, D., Ortiz, J.J.G., Frankle, J., Guttag, J.: What is the state of neural
network pruning? arXiv preprint arXiv:2003.03033 (2020)

5. Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once for all: Train one network
and specialize it for e�cient deployment. In: International Conference on Learning
Representations (2020), https://arxiv.org/pdf/1908.09791.pdf

6. Cai, H., Zhu, L., Han, S.: ProxylessNAS: Direct neural architecture search on target
task and hardware. In: International Conference on Learning Representations
(2019), https://openreview.net/forum?id=HylVB3AqYm

7. Cai, Y., Yao, Z., Dong, Z., Gholami, A., Mahoney, M.W., Keutzer, K.: ZeroQ:
A novel zero shot quantization framework. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 13169–13178 (2020)

8. Chauvin, Y.: A back-propagation algorithm with optimal use of hidden units. In:
NIPS (1989)

9. Chen, L.C., Zhu, Y., Papandreou, G., Schro↵, F., Adam, H.: Encoder-decoder
with atrous separable convolution for semantic image segmentation (2018)

10. Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., Feng, J.: Dual path networks. arXiv
preprint arXiv:1707.01629 (2017)

11. Choi, J., Wang, Z., Venkataramani, S., Chuang, P., Srinivasan, V., Gopalakrishnan,
K.: Pact: Parameterized clipping activation for quantized neural networks. ArXiv
abs/1805.06085 (2018)

12. Chollet, F.: Xception: Deep learning with depthwise separable convolutions (2017)
13. Dai, X., Zhang, P., Wu, B., Yin, H., Sun, F., Wang, Y., Dukhan, M., Hu, Y., Wu,

Y., Jia, Y., Vajda, P., Uyttendaele, M., Jha, N.K.: ChamNet: Towards e�cient
network design through platform-aware model adaptation. In: CVPR (2019)

14. Ding, X., Guo, Y., Ding, G., Han, J.: Acnet: Strengthening the kernel skeletons for
powerful cnn via asymmetric convolution blocks. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 1911–1920 (2019)

15. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: Repvgg: Making vgg-style
convnets great again. arXiv preprint arXiv:2101.03697 (2021)

16. Dong, Z., Yao, Z., Gholami, A., Mahoney, M.W., Keutzer, K.: Hawq: Hessian
aware quantization of neural networks with mixed-precision. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. pp. 293–302 (2019)

17. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

18. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In: International Conference on Learning Representations (2018)

19. Gordon, A., Eban, E., Nachum, O., Chen, B., Wu, H., Yang, T.J., Choi, E.:
Morphnet: Fast & simple resource-constrained structure learning of deep networks.
In: CVPR (2018)

16 Molchanov et al.

20. Hanson, S.J., Pratt, L.Y.: Comparing biases for minimal network construction
with back-propagation. In: NIPS (1989)

21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

22. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.
In: ECCV (2016)

23. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image
classification with convolutional neural networks (2018)

24. He, Y., Dong, X., Kang, G., Fu, Y., Yang, Y.: Progressive deep neural networks
acceleration via soft filter pruning. arXiv preprint arXiv:1808.07471 (2018)

25. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating
deep convolutional neural networks. In: Proceedings of the 27th International
Joint Conference on Artificial Intelligence. pp. 2234–2240 (2018)

26. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median for
deep convolutional neural networks acceleration. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 4340–4349 (2019)

27. He, Y., Han, S.: Adc: Automated deep compression and acceleration with rein-
forcement learning. arXiv preprint arXiv:1802.03494 (2018)

28. He, Y., Lin, J., Liu, Z., Wang, H., Li, L.J., Han, S.: Amc: Automl for model
compression and acceleration on mobile devices. ECCV pp. 784–800 (2018)

29. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural
networks. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 1389–1397 (2017)

30. Heo, B., Yun, S., Han, D., Chun, S., Choe, J., Oh, S.J.: Rethinking spatial
dimensions of vision transformers (2021)

31. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

32. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks
(2019)

33. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: CVPR (2017)

34. Krishnamoorthi, R.: Quantizing deep convolutional networks for e�cient inference:
A whitepaper. ArXiv abs/1806.08342 (2018)

35. Lebedev, V., Lempitsky, V.: Fast convnets using group-wise brain damage. In:
CVPR. pp. 2554–2564 (2016)

36. LeCun, Y., Denker, J.S., Solla, S., Howard, R.E., Jackel, L.D.: Optimal brain
damage. In: NIPS (1990)

37. Li, B., Wu, B., Su, J., Wang, G.: Eagleeye: Fast sub-net evaluation for e�cient
neural network pruning. In: European Conference on Computer Vision. pp. 639–654.
Springer (2020)

38. Li, C., Peng, J., Yuan, L., Wang, G., Liang, X., Lin, L., Chang, X.: Block-wisely
supervised neural architecture search with knowledge distillation. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2020)

39. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for e�cient
ConvNets. In: ICLR (2017)

40. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks (2019)
41. Liu, H., Simonyan, K., Yang, Y.: Darts: Di↵erentiable architecture search. arXiv

preprint arXiv:1806.09055 (2018)

LANA: Latency Aware Network Acceleration 17

42. Liu, Y., Jia, X., Tan, M., Vemulapalli, R., Zhu, Y., Green, B., Wang, X.: Search to
distill: Pearls are everywhere but not the eyes. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (June 2020)

43. Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T.: Rethinking the value of network
pruning. arXiv preprint arXiv:1810.05270 (2018)

44. Louizos, C., Welling, M., Kingma, D.P.: Learning sparse neural networks through
l 0 regularization. arXiv preprint arXiv:1712.01312 (2017)

45. Luo, J.H., Wu, J., Lin, W.: ThiNet: A filter level pruning method for deep neural
network compression. In: ICCV (2017)

46. Mishra, A., Marr, D.: Apprentice: Using knowledge distillation techniques to
improve low-precision network accuracy. In: ICLR (2018)

47. Molchanov, D., Ashukha, A., Vetrov, D.: Variational dropout sparsifies deep
neural networks. In: International Conference on Machine Learning. pp. 2498–2507.
PMLR (2017)

48. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Importance estimation
for neural network pruning. In: CVPR (2019)

49. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional
neural networks for resource e�cient transfer learning. In: ICLR (2017)

50. Moons, B., Noorzad, P., Skliar, A., Mariani, G., Mehta, D., Lott, C., Blankevoort,
T.: Distilling optimal neural networks: Rapid search in diverse spaces. arXiv
preprint arXiv:2012.08859 (2020)

51. Mozer, M.C., Smolensky, P.: Skeletonization: A technique for trimming the fat
from a network via relevance assessment. In: NIPS (1989)

52. Nayak, G.K., Mopuri, K.R., Shaj, V., Babu, R.V., Chakraborty, A.: Zero-shot
knowledge distillation in deep networks. In: CVPR (2019)

53. Neklyudov, K., Molchanov, D., Ashukha, A., Vetrov, D.P.: Structured bayesian
pruning via log-normal multiplicative noise. In: Advances in Neural Information
Processing Systems. pp. 6775–6784 (2017)

54. NVIDIA: TensorRT Library. https://developer.nvidia.com/tensorrt (2021), [On-
line; accessed 10-May-2021]

55. Park, E., Yoo, S., Vajda, P.: Value-aware quantization for training and inference
of neural networks. In: ECCV (2018)

56. Peng, H., Du, H., Yu, H., Li, Q., Liao, J., Fu, J.: Cream of the crop: Distilling
prioritized paths for one-shot neural architecture search. Advances in Neural
Information Processing Systems 33, 17955–17964 (2020)

57. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: E�cient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268 (2018)

58. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network
design spaces (2020)

59. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classifi-
cation using binary convolutional neural networks. In: European conference on
computer vision. pp. 525–542. Springer (2016)

60. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J., Le, Q.V.,
Kurakin, A.: Large-scale evolution of image classifiers. In: International Conference
on Machine Learning. pp. 2902–2911. PMLR (2017)

61. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

18 Molchanov et al.

62. Ryoo, S., Rodrigues, C., Baghsorkhi, S.S., Stone, S.S., Kirk, D., Hwu, W.: Opti-
mization principles and application performance evaluation of a multithreaded gpu
using cuda. Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming (2008)

63. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2:
Inverted residuals and linear bottlenecks. In: CVPR (2018)

64. Sau, B.B., Balasubramanian, V.N.: Deep model compression: Distilling knowledge
from noisy teachers. arXiv preprint arXiv:1610.09650 (2016)

65. Shen, S., Dong, Z., Ye, J., Ma, L., Yao, Z., Gholami, A., Mahoney, M.W., Keutzer,
K.: Q-BERT: Hessian based ultra low precision quantization of BERT. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence. pp. 8815–8821 (2020)

66. Srinivas, A., Lin, T.Y., Parmar, N., Shlens, J., Abbeel, P., Vaswani, A.: Bottleneck
transformers for visual recognition. arXiv preprint arXiv:2101.11605 (2021)

67. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: E�cient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE 105(12), 2295–2329
(2017)

68. Szegedy, C., Io↵e, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet
and the impact of residual connections on learning. In: Proceedings of the AAAI
Conference on Artificial Intelligence (2017)

69. Szegedy, C., Vanhoucke, V., Io↵e, S., Shlens, J., Wojna, Z.: Rethinking the
inception architecture for computer vision. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 2818–2826 (2016)

70. Tan, M., Chen, B., Pang, R., Vasudevan, V., Le, Q.V.: Mnasnet: Platform-aware
neural architecture search for mobile. arXiv preprint arXiv:1807.11626 (2018)

71. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.:
Mnasnet: Platform-aware neural architecture search for mobile. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2019)

72. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.:
Mnasnet: Platform-aware neural architecture search for mobile. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
2820–2828 (2019)

73. Tan, M., Le, Q.: E�cientnet: Rethinking model scaling for convolutional neural
networks. In: International Conference on Machine Learning. pp. 6105–6114. PMLR
(2019)

74. Tan, M., Le, Q.V.: Mixconv: Mixed depthwise convolutional kernels. arXiv preprint
arXiv:1907.09595 (2019)

75. Tan, M., Le, Q.V.: E�cientnetv2: Smaller models and faster training. arXiv
preprint arXiv:2104.00298 (2021)

76. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-e�cient image transformers & distillation through attention. arXiv preprint
arXiv:2012.12877 (2020)

77. Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., Jégou, H.: Going deeper
with image transformers. arXiv preprint arXiv:2103.17239 (2021)

78. Vahdat, A., Mallya, A., Liu, M.Y., Kautz, J.: Unas: Di↵erentiable architecture
search meets reinforcement learning. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 11266–11275 (2020)

79. Veniat, T., Denoyer, L.: Learning time/memory-e�cient deep architectures with
budgeted super networks. arXiv preprint arXiv:1706.00046 (2017)

LANA: Latency Aware Network Acceleration 19

80. Wang, C.Y., Liao, H.Y.M., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H.: Cspnet:
A new backbone that can enhance learning capability of cnn. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition workshops.
pp. 390–391 (2020)

81. Wang, G., Lin, Y., Yi, W.: Kernel fusion: An e↵ective method for better power
e�ciency on multithreaded gpu. 2010 IEEE/ACM Int’l Conference on Green
Computing and Communications and Int’l Conference on Cyber, Physical and
Social Computing pp. 344–350 (2010)

82. Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y.,
Tan, M., Wang, X., et al.: Deep high-resolution representation learning for visual
recognition. IEEE transactions on pattern analysis and machine intelligence (2020)

83. Wang, K., Liu, Z., Lin, Y., Lin, J., Han, S.: HAQ: Hardware-aware automated
quantization with mixed precision. In: CVPR (2019)

84. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: Eca-net: E�cient channel
attention for deep convolutional neural networks. In: 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (2020)

85. Wightman, R.: Pytorch image models. https://github.com/rwightman/pytorch-
image-models (2019). https://doi.org/10.5281/zenodo.4414861

86. Wu, B., Wang, Y., Zhang, P., Tian, Y., Vajda, P., Keutzer, K.: Mixed preci-
sion quantization of convnets via di↵erentiable neural architecture search. ArXiv
abs/1812.00090 (2018)

87. Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia,
Y., Keutzer, K.: Fbnet: Hardware-aware e�cient convnet design via di↵erentiable
neural architecture search. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (June 2019)

88. Wu, B., Wang, Y., Zhang, P., Tian, Y., Vajda, P., Keutzer, K.: Mixed precision
quantization of convnets via di↵erentiable neural architecture search. arXiv preprint
arXiv:1812.00090 (2018)

89. Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated residual
transformations for deep neural networks. CoRR abs/1611.05431 (2016),
http://arxiv.org/abs/1611.05431

90. Xie, S., Zheng, H., Liu, C., Lin, L.: SNAS: stochastic neural architec-
ture search. In: International Conference on Learning Representations (2019),
https://openreview.net/forum?id=rylqooRqK7

91. Xu, Z., Hsu, Y.C., Huang, J.: Training shallow and thin networks for accelera-
tion via knowledge distillation with conditional adversarial networks. In: ICLR
Workshop (2018)

92. Yang, T.J., Howard, A., Chen, B., Zhang, X., Go, A., Sandler, M., Sze, V., Adam,
H.: Netadapt: Platform-aware neural network adaptation for mobile applications.
Energy 41, 46 (2018)

93. Yang, Y., Huang, Q., Wu, B., Zhang, T., Ma, L., Gambardella, G., Blott, M.,
Lavagno, L., Vissers, K., Wawrzynek, J., et al.: Synetgy: Algorithm-hardware co-
design for convnet accelerators on embedded fpgas. arXiv preprint arXiv:1811.08634
(2018)

94. Ye, J., Lu, X., Lin, Z., Wang, J.Z.: Rethinking the smaller-norm-less-informative
assumption in channel pruning of convolution layers. ICLR (2018)

95. Yin, H., Molchanov, P., Alvarez, J.M., Li, Z., Mallya, A., Hoiem, D., Jha, N.K.,
Kautz, J.: Dreaming to distill: Data-free knowledge transfer via deepinversion. In:
CVPR (2020)

20 Molchanov et al.

96. Yu, F., Wang, D., Shelhamer, E., Darrell, T.: Deep layer aggregation. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp.
2403–2412 (2018)

97. Yu, R., Li, A., Chen, C.F., Lai, J.H., Morariu, V.I., Han, X., Gao, M., Lin, C.Y.,
Davis, L.S.: NISP: Pruning networks using neuron importance score propagation.
CVPR (2017)

98. Yu, R., Li, A., Chen, C.F., Lai, J.H., Morariu, V.I., Han, X., Gao, M., Lin, C.Y.,
Davis, L.S.: NISP: Pruning networks using neuron importance score propagation.
In: CVPR (2018)

99. Zagoruyko, S., Komodakis, N.: Wide residual networks. CoRR abs/1605.07146
(2016), http://arxiv.org/abs/1605.07146

100. Zagoruyko, S., Komodakis, N.: Diracnets: Training very deep neural networks
without skip-connections. arXiv preprint arXiv:1706.00388 (2017)

101. Zhang, D., Yang, J., Ye, D., Hua, G.: Lq-nets: Learned quantization for highly
accurate and compact deep neural networks. ArXiv abs/1807.10029 (2018)

102. Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T.,
Mueller, J., Manmatha, R., et al.: Resnest: Split-attention networks. arXiv preprint
arXiv:2004.08955 (2020)

103. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shu✏enet: An extremely e�cient con-
volutional neural network for mobile devices. arXiv preprint arXiv:1707.01083
(2017)

104. Zhu, C., Han, S., Mao, H., Dally, W.J.: Trained ternary quantization. In: ICLR
(2017)

105. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578 (2016)

106. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: CVPR. pp. 8697–8710 (2018)

