
Interactive Viewpoint Video Textures

Philippe Levieux, James Tompkin, Jan Kautz
University College London

Figure 1: We enable the viewer to spatially explore a temporally coherent dynamic scene. In this example, captured discontinuously
with a single camera, the viewer changes the rotation of the figurine while it coherently waves the scarf above its head. The waving
motion continues even when the viewer stops rotating the figurine at novel viewpoints.

ABSTRACT
We propose an approach to interactively explore video textures
from different viewpoints. Scenes can be played back continu-
ously and in a temporally coherent fashion from any camera lo-
cation along a path. Our algorithm takes as input short videos from
a set of discrete camera locations, and does not require contem-
poraneous capture – data is acquired by moving a single camera.
We analyze this data to find optimal transitions within each video
(equivalent to video textures) and to find good transition points be-
tween spatially distinct videos. We propose a spatio-temporal view
synthesis approach that dynamically creates intermediate frames to
maintain temporal coherence. We demonstrate our approach on a
variety of scenes with stochastic or repetitive motions, and we ana-
lyze the limits of our approach and failure-case artifacts.

1. INTRODUCTION
Videos have been used for many decades to provide the viewer

with a sense of place and to immerse them into a scene or an
event. Video is especially well suited to capture the dynamics of
a scene and enable the viewer to follow the path taken by the cam-
era. However, interaction with the medium is extremely limited.
For instance, the viewer cannot stop a moving camera at a location
and observe the dynamics of the scene as the only option is to stop
playing the video. Over the past decade, image-based rendering
(IBR) techniques [13] have enabled some interaction with photos
and videos. For instance, the video textures technique [17, 1] al-
lows the viewer to continuously explore the (stochastic or repeti-
tive) dynamics of a scene, albeit only for a fixed spatial position.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CVMP ’12, December 5 – 6, 2012, London, United Kingdom
Copyright 2012 ACM 978-1-4503-1311-7/12/11 ...$15.00.

Free viewpoint video approaches [18] allow the user to move a vir-
tual camera in the scene, but require expensive specialized multi-
camera setups, and cannot generate endless animation.

Our goal is to allow the viewer to observe the stochastic or repet-
itive dynamics of a scene at any location along a path sampled by
video captures (see Figure 1). We want to avoid carefully calibrated
multi-camera setups, as these are costly and cannot be used for
forward-motion camera paths (along the line of sight of the cam-
era) without loss of resolution. This raises a challenge: the scene
can only be captured by a single camera at a number of discrete
locations along a camera path, and so critically we cannot time-
synchronously capture the dynamics of the object. Nonetheless,
from this footage, we want to be able to generate a continuously
looping video at any camera location along the path, even between
discrete capture locations, while also being able to move in a spa-
tially and, novelly, a temporally coherent fashion.

We extend the concept of video textures to narrow-baseline multi-
view data to achieve this goal. This medium provides an infinitely
varying stream of images that may never exactly repeat, present-
ing a more natural experience to the user than hard-looping video.
To create smooth transitions between the spatial sampling points
along the camera path, we generate an appropriate number of vir-
tual viewpoints in between each camera location. We make exten-
sive use of optical flow to combine frames of neighboring cam-
era locations into new virtual viewpoints while maintaining the
appearance of correct dynamics. Our flow-based method requires
camera baselines to be smaller than are typical in geometry-based
free-viewpoint video; however, our baselines are similar to many
existing data-driven image-based rendering techniques. As such,
our technique provides ‘endless’ photo-realistic viewing of tem-
porally consistent dynamic objects with real-time narrow baseline
view changes and, unlike other photo-realistic IBR techniques of
this kind, requires no complicated equipment, setup, or calibration.

2. RELATED WORK
Early dynamic textures work focused on model-based represen-

tations for stochastic temporal textures [20, 3, 19], which could
synthesize dynamic sequences of phenomena such as smoke and
water. Video textures [17] was the first approach to create dy-

namic textures of arbitrary objects under repetitive and stochastic
motions. Frames from a training video are reordered and repeated
indefinitely such that a new generated video is never exactly the
same as the input. Video textures builds a matrix of frame-to-frame
L2-distances and assures correct temporal progression and periodic
dynamics by matrix filtering and dead-end analysis.

This work includes an example where video textures are com-
bined with 3D depth estimation to produce 3D video textures, where
several cameras capture an event contemporaneously. However,
only one camera is used to generate the video texture, while the
other cameras are used to generate a depth map. Our work im-
proves upon that work by allowing smooth transitions between dif-
ferent motions in each video view. Schödl et al.’s view-interpolation
method works for left-to-right camera paths, but fails for paths with
forward sections as the cameras would see each other. Our decou-
pling of time and viewpoint solves this problem.

Schödl et al. [16] also provide an extension to generate video tex-
tures of moving objects viewed from static cameras. [9] create bet-
ter transitions within video textures by finding minimum cost seams
through a window around similar frames, and so enable video tex-
tures for more difficult surfaces such as water. [1] extend video
textures to panoramic imagery by rotating a single camera from a
single position and solving for y, t video volume slices.

Free-viewpoint video [22, 5, 12, 2] techniques solve a simi-
lar problem to ours. A scene is usually captured with multiple
video cameras. The videos are analyzed and 3D geometry is re-
constructed. Novel viewpoints are rendered from the videos and
the (per-frame) 3D geometry. Some methods only rely on dense
per-pixel image correspondences [11], which is more akin to our
method. However, in contrast to all free-viewpoint video methods,
which require a multi-camera setup, our method only requires a
single capture and sequential capture.

Sand et al. [15] describe a method for bringing two videos, cap-
tured from similar spatial but different temporal locations, into spa-
tiotemporal alignment. The method relies on regularized sparse
correspondence formed from static image regions, and it explicitly
rejects correspondence on dynamic objects. We specifically require
correspondence on dynamic objects. Applying this technique to
our problem will not find correspondence for motion in dynamic
scenes, and will cause ghosting. Knorr et al. [8] turn monocular
video into super-resolved stereo and multi-view video. However,
as this approach is dependent on structure-from-motion, again it is
not suitable for finding correspondence on dynamic objects.

Uyttendaele et al. [21] present an interactive system to navi-
gate omnidirectional video of real-world environments. They per-
form object replacement to enhance the static world viewed when
the camera position is stopped, e.g., replacing a static fireplace
with a video texture. These video texture replacements are not
view-dependent; in this use case, our method could provide view-
dependence.

Our method is indirectly related to light fields [10, 7]. These
allow the viewer to re-render a scene from new viewpoints as the
complete incident light field is recorded. While the original ap-
proach was geared towards static scenes, it is possible to capture
and re-render dynamic scenes from novel viewpoints. However,
the light fields acquisition setup is complex. Camera paths towards
the scene are difficult as the sampling rates are generally too low.

3. CONSTRUCTION AND RENDERING
First, we acquire short video segments at discrete, spatial loca-

tions that need not be uniformly spaced. These are analyzed to find
good transition points within and between videos. Our represen-
tation for possible transition points is derived from video textures

Figure 2: It is possible to capture any type of camera path, be it
straight (a), curved (b,c), and so forth. It is also possible – and
often easier – to keep the camera fixed and to move the object.

[17], namely transition tables, but is extended to handle spatial as
well as temporal transitions. At run-time, we create continuously
looping videos of the scene using these transition tables. They can
be viewed from any camera location along the camera path as we
synthesize new frames in real-time between real camera locations.

3.1 Capture
Our capture phase requires no complicated camera setup and

could be completed by a novice or home user. This is in contrast to
many existing techniques and was an important requirement when
devising our method. We record short segments of video contain-
ing a repetitive or stochastically moving object at a number of dis-
crete non-uniform spatial locations xl (usually along a forward or
sideways path, see Figure 2). Each segment must capture the pe-
riodicity of the object, or for stochastic motions be long enough to
capture the range of motion (typically 5–20 seconds long). In our
examples we capture approximately 10–30 locations at typically
5◦–15◦ angular baselines. A single capture session takes between
10 and 30 minutes depending on the effect desired. In principle,
the length of the path is not limited as the real-time renderer loads
the required data on the fly, but practically the preprocessing time
restricts the number of camera locations.

3.2 Preprocessing the Dataset
We generate a within-video texture transition matrix indepen-

dently for each camera location. Once completed, we generate the
across-video textures transition matrices that link each pair of spa-
tially neighboring videos (Figure 3).

3.2.1 Within-video Textures
We follow the original video textures technique [17] to construct

a transition table for each video segment l at xl : We compute an
L2-distance table Dl

i j between all pairs of frames i and j for each
video. As in Schödl et al., we preserve dynamics by diagonally
filtering the matrix, and we avoid dead ends by including future
frame transition costs (with low future costs suggesting a seamless
frame sequence, and high future costs suggesting a dead end with
no similar frames to continue the video texture). Dl

i j is thresholded
and local non-maxima suppressed, and converted into the transi-
tion probability table Pl

i j. We store one table Pl
i j for each camera

location xl .

3.2.2 Across-video Textures
We extend the transition table idea to find good transition points

between videos. For each pair of neighboring camera locations xl
and xm, we compare all frames i from camera l to frames j from
camera m, and compute their distance with a metric to yield a cross-
video distance matrix Dlm

i j . Since the viewer is allowed to travel
bi-directionally, we also compute a distance matrix for the reverse
direction Dml

ji .

P1 P2 P3 P4 P5

Video 1 Video 2 Video 3 Video 4 Video 5

P1,2 P2,3 P3,4 P4,5

P2,1 P3,2 P4,3 P5,4

Figure 3: Within-video transition tables P1 to P5 are computed
for all video clips 1 to 5, and across-video transition tables P1,2

to P4,5 and P5,4 to P2,1 are computed for all spatially neigh-
bouring video clips pairs. These tables are walked as graphs
to find appropriate transitions and to generate endless video at
any point along the virtual camera path.

For the entries of Dlm
i j , we must find a meaningful distance met-

ric between spatially neighboring frames that is invariant to slight
viewpoint changes. We have investigated a number of different
metrics and found that, surprisingly, for our examples the L2-distance
between images often performs well, at least if the viewpoint changes
are slight and the objects are large. ‘Slight’ and ‘large’ here are
both scene dependent, but are typically 5−15◦ and approximately
20-30% of scene pixels for our L2 metric. These measures depend
on motion parallax in the background and any camera noise.

One other metric that worked consistently for us is based on op-
tical flow [4]. We compute the displacement field between each
pair of images, and take the average of all the displacement magni-
tudes. We found this metric to detect similarities even in cases with
large viewpoint variations. However, the L2-distance may still be
preferred as it is 3-12x cheaper computationally. One typical opti-
cal flow quality metric, computing the appearance difference (RMS
intensity difference) between f l

i and the warped version of f m
j , is

not appropriate as often the frame to frame differences are small
enough that little error exists to be a reliable measure.

To preserve scene dynamics, we filter the across-video distance
matrices Dlm

i j and Dml
ji with a diagonal kernel of normalized bino-

mial weights (see [17] Sec. 3.1). When transitioning to a neigh-
boring video m, it is possible that the frame to which we transition
leads to a dead end. As such, it is important to avoid such transi-
tions. However, in contrast to the within-video case, it is not nec-
essary to include future costs in the across-video distance matrices
as, by the inclusion of future costs in the within-video matrices, it is
very unlikely that dead ends will be picked for display (and, hence,
transition) at all. Instead, we simply ensure that the chosen transi-
tion frame in the neighboring video has a high probability in Pm

i j .
Finally, we convert the distance matrices to transition probability
tables Plm

i j and Pml
ji as in [17]. We prune the probability tables to

favor local maxima and threshold to avoid low probability jumps.

3.2.3 Estimating Camera Distances
We wish to create a smooth and seamless interactive experience

from discrete camera locations, but we also do not wish to require
accurate or regular camera placement. This is a challenge: inter-
polating between irregularly placed cameras will result in a jerky
and unsmooth viewing experience. However, if we can estimate the

xl

xm

Frame f l

xb

Frame f l

Frame f m Frame f m

i

i'

j

j'

Figure 4: Based on the current frame f l
i we choose the next

frame f l
j (brown arrow) as in standard video textures. For both

frames we find the best matching frames f m
i′ and f m

j′ according
to the cross-video transition table. The frame for location xb is
rendered by interpolating between frames f l

i and f m
i′ as well as

f l
j′ and f m

j′ (green circles). These two intermediary frames are
then interpolated to yield the final frame (blue circle) as this
gives smoother results.

relative distances between neighboring cameras, we can synthesize
a proportional number of virtual viewpoints in between capture lo-
cations. This would ensure that the viewer can move at a constant
speed along the camera path.

To accomplish this, we could opt for structure-from-motion tech-
niques [14] to estimate camera locations, but our scenes consist of
dynamic objects which tend to break these methods. As we only re-
quire approximate distances as a heuristic, we propose to use opti-
cal flow. Between each pair of adjacent video segments l and m, we
choose a random subset of frame pairs (i, j), where i is from l and
j is from m. We compute optical flow for each pair, and then com-
pute the average displacement magnitude δ̄ l,m over all flow fields.
This tends to average the flow induced by the dynamic object, leav-
ing the remaining camera motion. We assume the magnitude δ̄ l,m

is proportional to the actual distance, and so the number of view-
points inserted between l and m is proportional to δ̄ l,m. While this
relative distance heuristic estimate works well in many cases, it can
fail: when there are insufficient features on static objects for optical
flow to pick up or when the dynamic motion fills the camera.

3.3 Rendering
With the help of the within- and cross-video transition tables,

we now need to develop a real-time method to render temporally
coherent videos across location changes.

If the viewer picks a camera location x that coincides with one
of the capture locations xl , we simply play the standard within-
video texture associated with l. When the viewer moves to a camera
location xb that is between capture locations xl and xm, e.g., l < b<
m along the path, we propose the algorithm illustrated in Figure 4.

We use the video texture from the closest capture location, say xl ,
to predict the dynamics of the scene. That is, based on the current
frame f l

i we choose the next frame f l
j by sampling the within-video

texture probability table Pl
i j. For these two frames, we then find

matching frames from the neighboring video m: we find f m
i′ and

f m
j′ by sampling the cross-video probability transition tables at Plm

i
and Plm

j . However, an additional condition is added: the chosen
frame f m

j′ must have a non-zero probability in the row of Pm
i′ , i.e.,

there needs to be some probability that frame f m
j′ would follow on

from f m
i′ . This ensures that dynamics will be preserved even when

b = m and that the switch to video texture at m is not perceptible.
Given the four frames (see Figure 4), we now interpolate them

using fast optical flow [6]. The obvious choice would be to sim-
ply interpolate between f l

i and f m
j′ according to b. However, we

achieve smoother results by also including the current frames f l
i

and f m
i′ . We interpolate between spatially neighboring frames f l

i
and f m

i′ to yield f b
i′′ (left green circle in Figure 4), and between f l

j
and f m

j′ to yield f b
j′′ (right green circle in Figure 4). Finally, we in-

terpolate halfway between f b
i′′ and f b

j′′ to yield the final interpolated
frame f b

i′′ j′′ (blue circle in Figure 4). Frame interpolations are per-
formed as in [6]. These are bi-directional blended morphs – each
input frame is rendered as a quad mesh whose vertices are advected
by the flow, which transforms the frame to its corresponding pair.
Once advected, both input frames are linearly blended.

4. RESULTS
Figure 5 presents a variety of results which are best viewed in our

supplemental video. For computational efficiency, the L2 metric is
used in all of our presented sequences.

Figurine. This example features a moving figurine on a turntable
while the camera is kept still. It consists of 17 video segments
spanning a baseline of approximately 125◦ (7◦ between cameras)
– this is in line with other image-based view interpolation meth-
ods. Geometry-based techniques, which do allow larger baselines
between cameras, would not work well on dynamic scenes such as
ours. Long camera paths or large cumulative baselines are also not
a principled problem with our technique.

Interactive Example. The user loads a dataset into memory
and moves forward and backward along the path in real-time. We
use a small buffer to improve the response-time and interaction.
This scene features a plant blowing in the wind in which the camera
is moving across 11 viewpoints.

Drinking Bird. A scene acquired from 17 camera locations. Here,
the user moves away from a drinking bird while the dynamics of the
bird are preserved. The yellow and blue sliders illustrate the frames
picked from the original sequences.

Candle. This scene shows the stochastic motions of a candle blow-
ing in the wind. The camera slides horizontally to the left along 25
viewpoints. Here, we demonstrate how it is possible to travel along
a path with a temporally coherent dynamic element.

Plants (Different Speeds & Frames). First, we show how
it is possible to change the number of frames played per virtual
viewpoint, with the number of frames inversely proportional to the
speed of travel. Second, we vary the (proportional) number of vir-
tual viewpoints between two original camera locations. On the left,
with the proportion set to 0, no virtual viewpoints are generated. In
the center, with the proportion set to 0.1, roughly 10 virtual view-
points are generated. Finally, on the right, approximately 20 virtual
viewpoints yield a very smooth motion along the path.

Two Plants. We present a scene with two plants where each is
independently rendered while keeping the same proportion of vir-
tual viewpoints and frames played per viewpoint. This scene split
is interactively defined.

Gas Stove. Here, we additionally modify the state of the scene
as well as moving the camera. We capture a gas stove burner with
a low flame and increase its intensity within each video segment
captured. This results in an interactive viewpoint video texture in
which the user can precisely vary the intensity of the flames (by
selecting the range of frames used for the within-video transition
tables) as well as change the viewpoint. Unlike existing work, this
shows how scene content, within limits, can be photo-realistically
altered, demonstrating how to interact with scene content using
image-based rendering. We also use this example to demonstrate
the smoothness gained from the camera distance measure (3:00 in
video). As the cameras do not regularly sample a path, the ex-
perience without accounting for camera distance is jerky (camera
distances: min: 0.47, max: 2.89, mean: 1.20, st.dev.: 0.61).

4.1 Timings and Data Costs
The pre-processing time depends on the number of frames per

segment, the number of segments, and the frame size. We usually
downsample the flow computation to speed up the preprocess. For
our examples, the preprocess using the L2-distance took between
2–9 hours. With the optical flow metric, it increased to 5-24 hours.

While it might seem that there are more efficient approaches for
matching similar frames within and across videos such that some
frame comparisons could be skipped, there is a trade-off involved.
All-pair matching is an intrinsic part of the video textures approach.
For high-quality results, any frame-matching algorithm must guar-
antee that the video is loopable. At the same time, to provide vari-
ation in pseudo-random scenes, we want to find all good loopable
subsequences. Efficient frame matching becomes even more of a
problem for stochastic motions (such as plants or flames) as the
motion can change substantially in very few frames.

Rendering is inexpensive; however, we must still compute flow
vectors for each interpolation. For videos of 640×360 pixels, each
new synthesized frame takes approximately 17ms on an NVIDIA
GTX 580M; for videos of 1280× 720 pixels, this takes approxi-
mately 30ms on the same hardware.

Our work has comparable data costs to existing free-viewpoint
video approaches. Many interactive video techniques have expen-
sive pre-processes and we are no different. As expected, for pe-
riodic motions, we actually require the minimum of data for each
view (just enough to capture the periodicity of the motion). Along
with the input videos (or their minimal subset of frames), we re-
quire one square within-video matrix per video with sides equal in
length to the number of frames in the video, and one square/rect-
angular across-video matrix per neighbouring pair with width and
height equal in length to the number of frames in the first and sec-
ond videos in the pair respectively.

4.2 Discussion
Our technique produces photo-realistic results on the range of

objects and scene setups that we have demonstrated, and this has
immediate applications in advertising. However, since our render-
ing method is based on optical flow, artifacts tend to appear where
optical flow has difficulties, e.g., for transparent or translucent ob-
jects such as glass or water, or for large parallax. Ghosting or warp-
ing can occur in novel view synthesized frames if the dynamic mo-
tion is temporally undersampled. This is especially true of stochas-
tic motions which do not regularly repeat (see Figure 6). In gen-
eral, if the video segments do not fully capture the motion then it
is difficult to create both a convincing video texture and a convinc-
ing spatiotemporal transition as the number of possible seamless
dynamic motion transition points between neighbouring videos is
low. Likewise, if the number of capture locations is too few (and

Figure 5: An overview of our results. Please view the supplemental video for a better impression.

Figure 6: Common artifacts in novel views: Left: The trans-
parent glass edges have incorrect flow and so ghost. The liq-
uid in the neck of the drinking bird also ghosts because the
across-video L2 distance metric cannot accurately account for
all scene motion. Switching to the optical flow metric alleviates
this problem. Center: Leaves in this tree ghost and warp be-
cause the stochastic motion is temporally undersampled and so
there are no good across-video transitions. Right: The drinking
bird is temporally understampled and so ghosts.

the distances between them too far, see Table 1), then rendering
quality suffers as correct correspondences are often not found dur-
ing optical flow. More free-form capture setups, such as hand-held
capture, may be possible with a rigid software stabilization pre-
process for each input clip, but complicated capture environments
with many dynamic objects or variable lighting conditions (as is
common outdoors) would cause problems for our technique. More
sophisticated correspondence estimation methods, such as those in
[11], allow more substantial camera motions, but these approaches
take many hours per frame pair to compute correspondence.

Table 1 focuses on the figurine example to assess and relate
both our camera distance measure and the artifacts which are in-
troduced when increasing the angular baseline between capture lo-
cations (4:20 in video). For this assessment we use maximally 25
views, each approximately 5◦ apart and covering 125◦ total. Grad-
ually, we remove cameras such that the baseline between cameras
increases but the overall baseline between the path start and end
cameras is the same. Visible artifacts at each of these different
spatial samplings are identified, and we show how camera distance
relates to baseline. As the camera distance is an average, the val-
ues (in pixels) should not be taken literally, e.g., a 25◦ baseline

undergoes more than a 3 pixel movement. In our experience, the
limiting factor for disparity is not the ability of the metric to find
good transitions, but is rather the optical flow interpolation for gen-
erating intermediate frames. As we use a real-time flow technique,
ghosting artifacts may start to appear as the disparity increases, but
this is scene dependent. Better morph results could be achieved
with more expensive dense correspondence matching but then our
approach would no longer be interactive.

How much data can you throw away? For this example, a base-
line of 14◦ (9 views)/camera distance of 1.59 still gives pleasing
results. This would allow a 360◦ rotation with 24 spatial locations.
If the object had a short cycle (< 30s), a complete capture session
would take approximately 30 minutes with no setup or calibration.

For forward-motion camera paths along the line of sight of the
camera, or dolly-like shots, baseline/camera distance has a different
artifact relationship than for curved camera paths. A dolly-like shot
generally moves towards (or away) from one point in the scene –
the focus of expansion (or contraction; henceforth FOE) – at which
there is zero optical flow. Even for very large camera distances,
scene content at and around this point will be artifact free. Con-
versely, scene content far from the FOE will suffer artifacts even at
small camera distances. Table 2 demonstrates this with the drinking
bird example. In this example, with the object spanning much of
the image height, a baseline of 5cm/camera distance of 2.32 gives
pleasing results. Image regions close to the FOE suffer no arti-
facts even at the most distant baseline tested. While image regions
that are middle distance from the FOE do not suffer ghosting until
large camera distances of 5+, far distances suffer major ghosting
and warping much earlier.

5. CONCLUSION
We have presented a user-friendly method to capture and render

interactive viewpoint video textures. Our work produces real-time
high-quality results free from disagreeable artifacts, using a simple
and easily-reproduced automatic approach. This approach reduced
the equipment requirements for a specific subset of free-viewpoint
video applications. Every technique has trade-offs: in our case, in
providing camera capture flexibility and reducing equipment costs,
we restrict the scope of possible scenes.

Our approach is straightforward and this is positive given the
photo-realistic quality we achieve. We relate two previously uncon-

Views Baseline Cam. Dist. Artifacts Zoom

5 25◦ 2.69 Major warping and discontinuities across many fig-
urine parts; reduced sense of temporal consistency.

6 20◦ 2.31 Temporal consistency, but major warping/ghosting
on many parts.

7 18◦ 2.00 Facial disfigurement and warping on base logo.

9 14◦ 1.59 Face intact; some scarf ghosting and base logo
warping on some transitions.

13 10◦ 1.16 Minor flow artifact on ear.

25 5◦ 0.69 Minor ghosting on turntable surface; otherwise no
noticeable artifacts.

Table 1: How much data can you throw away? Figurine curved path dataset with gradually increasing number of camera locations
for a fixed 125◦ arc, their camera distance, and the artifacts caused. All numbers of views suffer some turntable ghosting (see video).
Camera distance is in pixels.

nected research fields (of video textures and free-viewpoint video)
and bring important accessibility and flexibility gains. Needing
only one camera, anyone at home could create these effects easily
with only a tripod: camera placement need not be uniform as our
camera distance estimation automatically compensates to produce
smooth, photo-realistic results with no calibration. Our rendering
algorithm is computationally inexpensive, and enables the user to
interact with video textures by moving the viewpoint and, in our
gas stove example, by changing scene content. As such, our work
is immediately applicable to advertising. We demonstrate the ef-
fectiveness of our approach on a variety of examples and show at
which points it is likely to break with a baseline/camera distance
analysis.

5.1 Future Work
We have demonstrated linear and curved paths. Non-linear paths

and grid arrangements are possible, though our viewing interface
would have to be adapted for grid arrangements. There is more to
explore with along-line-of-sight paths also, as our examples could
arguably be achieved with zooming – dolly-zooms and forward-
sweeping paths should be explored. Currently our work is limited
to repetitive or stochastic motions. Ideally, we would extend our
method to deal with structured motions while keeping the capture
just as simple, though this is a challenging extension. Less homoge-
nous backgrounds are possible so long as the camera path does not
induce a larger flow vector change through parallax motion in the
background than the flow vector change in cyclic movement in the
foregorund object, and these situations need to be tested. Back-
grounds with moving content would also be a challenging addi-
tion. Finally, we would like to explore a greater range of interac-
tive scene content changes as exemplified by our gas stove example.
This use of our approach provides fertile ground for future research
into interactive techniques.

6. REFERENCES
[1] A. Agarwala, K. C. Zheng, C. Pal, M. Agrawala, M. Cohen,

B. Curless, D. Salesin, and R. Szeliski. Panoramic video
textures. ACM Trans. Graph., 24(3):821–827, 2005.

[2] L. Ballan, G. J. Brostow, J. Puwein, and M. Pollefeys.
Unstructured video-based rendering: interactive exploration
of casually captured videos. ACM Trans. Graph.,
29(4):87:1–87:11, 2010.

[3] Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Werman.
Texture mixing and texture movie synthesis using statistical
learning. volume 7, pages 120–135. IEEE Computer Society,
2001.

[4] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High
accuracy optical flow estimation based on a theory for
warping. In Proc. ECCV, volume 3024, pages 25–36, 2004.

[5] P. Einarsson, C.-F. Chabert, A. Jones, W.-C. Ma, B. Lamond,
T. Hawkins, M. Bolas, S. Sylwan, and P. Debevec. Relighting
Human Locomotion with Flowed Reflectance Fields. pages
183–194, Nicosia, Cyprus, 2006. Eurographics Association.

[6] M. Eisemann, B. De Decker, M. Magnor, P. Bekaert,
E. De Aguiar, N. Ahmed, C. Theobalt, and A. Sellent.
Floating textures. Computer Graphics Forum,
27(2):409–418, 2008.

[7] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen.
The lumigraph. In Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’96, pages 43–54, 1996.

[8] S. Knorr, M. Kunter, and T. Sikora. Stereoscopic 3d from 2d
video with super-resolution capability. Image Commun.,
23(9):665–676, Oct. 2008.

[9] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick.
Graphcut textures: Image and video synthesis using graph
cuts. In ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03,
pages 277–286, 2003.

[10] M. Levoy and P. Hanrahan. Light field rendering. In
Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’96,
pages 31–42, 1996.

[11] C. Lipski, C. Linz, K. Berger, A. Sellent, and M. Magnor.
Virtual video camera: Image-based viewpoint navigation

Baseline Cam. Dist. Artifacts Zoom (close, middle, far from FOE)

2cm 1.31 No noticeable artifacts.

3cm 1.68 Minor warping and ghosting at image edges far
from FOE.

4cm 2.01 Minor warping and ghosting at image edges far
from FOE.

5cm 2.32 Warping and ghosting at image edges far from FOE.

6cm 2.87 Warping and ghosting at image edges far from FOE.

7cm 3.29 Warping and ghosting at image edges far from FOE,
minor ghosting at middle distances from FOE.

13cm 5.43 Major warping and ghosting at image edges far
from FOE, major ghosting at middle distances from
FOE.

Table 2: How much data can you throw away? Drinking bird dolly shot dataset with gradually reducing spatial camera locations,
their camera distance, and the artifacts caused. Camera distance is in pixels. FOE stands for focus of expansion.

through space and time. Computer Graphics Forum,
29(8):2555–2568, Dec. 2010.

[12] M. Magnor. Video-based Rendering. A K Peters, 2005.
[13] L. McMillan and S. Gortler. Image-based rendering: A new

interface between computer vision and computer graphics.
SIGGRAPH Comput. Graph., 33:61–64, 1999.

[14] D. P. Robertson and R. Cipolla. Structure from motion. In
M. Varga, editor, Practical Image Processing And Computer
Vision. John Wiley, 2008.

[15] P. Sand and S. Teller. Video matching. In ACM SIGGRAPH
2004 Papers, SIGGRAPH ’04, pages 592–599, New York,
NY, USA, 2004. ACM.

[16] A. Schödl and I. A. Essa. Controlled animation of video
sprites. In Proceedings of the 2002 ACM
SIGGRAPH/Eurographics Symposium on Computer
Animation, SCA ’02, pages 121–127, 2002.

[17] A. Schödl, R. Szeliski, D. H. Salesin, and I. Essa. Video
textures. In Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH
’00, pages 489–498, 2000.

[18] A. Smolic, K. Mueller, P. Merkle, C. Fehn, P. Kauff,
P. Eisert, and T. Wiegand. 3d video and free viewpoint video
- technologies, applications and mpeg standards. In
Multimedia and Expo, 2006 IEEE International Conference
on, pages 2161 –2164, july 2006.

[19] S. Soatto, G. Doretto, and Y. Wu. Dynamic textures. In
Proceedings of the International Conference on Computer
Vision, volume 2, pages 439–446, 2001.

[20] M. Szummer and R. W. Picard. Temporal texture modeling.
In IEEE Intl. Conf. Image Processing, volume 3, pages
823–826, 1996.

[21] M. Uyttendaele, A. Criminisi, S. Kang, S. Winder,
R. Szeliski, and R. Hartley. Image-based interactive
exploration of real-world environments. Computer Graphics
and Applications, IEEE, 24(3):52 – 63, may-jun 2004.

[22] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and
R. Szeliski. High-quality video view interpolation using a
layered representation. ACM Trans. Graph., 23(3):600–608,
2004.

