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Abstract. Motion in the image plane is ultimately a function of 3D
motion in space. We propose to compute optical flow using what is os-
tensibly an extreme overparameterization: depth, surface normal, and
frame-to-frame 3D rigid body motion at every pixel, giving a total of
9 DoF. The advantages of such an overparameterization are twofold: first,
geometrically meaningful reasoning can be called upon in the optimiza-
tion, reflecting possible 3D motion in the underlying scene; second, the
‘fronto-parallel’ assumption implicit in the use of traditional matching
pixel windows is ameliorated because the parameterization determines
a plane-induced homography at every pixel. We show that optimization
over this high-dimensional, continuous state space can be carried out
using an adaptation of the recently introduced PatchMatch Belief Prop-
agation (PMBP) energy minimization algorithm, and that the resulting
flow fields compare favorably to the state of the art on a number of small-
and large-displacement datasets.
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1 Introduction

One statement of the goal of optical flow computation is the recovery of a dense
correspondence field between a pair of images, assigning to each pixel in one
image a 2D translation vector that points to the pixel’s correspondence in the
other. Sun et al. [22] argue that classical models, such as the Horn and Schunck
[11] can achieve good performance when coupled to modern optimizers. They
point out the key elements that contribute to quality of the solution, includ-
ing image pre-processing, a coarse-to-fine scheme, bicubic interpolation, robust
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2 Hornáček, Besse, Kautz, Fitzgibbon, Rother

penalty functions, and median filtering, which they integrate into a new energy
formulation. Xu et al. [28] observe that while a large number of optical flow
techniques use a multiscale approach, pyramidal schemes can lead to problems
in accurately detecting the large motion of fine structures. They propose to
combine sparse feature detection with a classic pyramidal scheme to overcome
this difficulty. Additionally, they selectively combine color and gradient in the
similarity measure on a per pixel basis to improve robustness, and use a Total
Variation/L1 (TVL1) optimizer [31]. Similarly, Brox et al. [6] integrate SIFT
feature matching [14] into a variational framework to guide the solution towards
large displacements.

Another way to define a correspondence is in terms of the similarity of pixel
windows centered on each image pixel. Immediately, the size of the window be-
comes an important algorithm parameter: a small window offers little robustness
to intensity variations such as those caused by lighting change, differences in
camera response, or image noise; a large window can overcome these difficulties
but most published work suffers from what we loosely term the ‘fronto-parallel’
(FP) assumption, according to which each point in the window is assumed to
undergo the same 2D translation. The robustness of small-window models can
be improved by means of priors over motion at neighboring pixels, but first-order
priors themselves typically imply the fronto-parallel limitation, second-order pri-
ors are expensive to optimize for general energies [27] although efficient schemes
exist for some cases [23]. Beyond second order, higher-order priors impose quite
severe limitations on the state spaces they can model. In the case of optical flow,
the state space is essentially continuous, and certainly any discretization must
be very dense.

An alternative strategy to relax the FP assumption is to overparameterize
the motion field. Previous work in optical flow has considered 3 DoF similar-
ity transformations [3], 6 DoF affine transformations [18], or 6 DoF linearized
3D motion models [18]. In the case of stereo correspondence, the 1 DoF dispar-
ity field has been overparameterized in terms of a 3 DoF surface normal and
depth field [4, 5, 13]. With such models, even first order priors can be expressive
(e.g., piecewise constant surface normal is equivalent to piecewise constant depth
derivatives rather than piecewise constant depth). However, effective optimiza-
tion of such models has required linearization of brightness constancy [18] or
has suffered from local optimality [13]. Recently, however, algorithms based on
PatchMatch [2, 3] have been applied to 3 DoF (depth+normal) stereo matching
[4, 5, 10] and 6 DoF (3D rigid body motion) RGB-D scene flow [12], and it is to
this class of algorithms that ours belongs.

In this paper, we employ an overparameterization not previously applied to
the computation of optical flow, assigning a 9 DoF plane-induced homography to
each pixel. In addition to relaxing the FP assumption, such a model allows for ge-
ometrically meaningful reasoning to be integrated in the optimization, reflecting
possible 3D motion in the underlying scene. Vogel et al. [25] recover scene flow
over consecutive calibrated stereo pairs by jointly computing a segmentation of
a keyframe and assigning to each segment a 9 DoF plane-induced homography,
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optimized using QPBO [21] over a set of proposal homographies. For optical
flow from a pair of images without strictly enforcing epipolar geometry, we show
that PatchMatch Belief Propagation (PMBP) of Besse et al. [4] can be adapted
to optimize the high-dimensional, non-convex optimization problem of assigning
a 9 DoF plane-induced homography to each pixel and that the resulting flow
fields compare favorably to the state of the art on a number of datasets. The
model parameterizes, at each pixel, a 3D plane undergoing rigid body motion,
and can be specialized for piecewise rigid motion, or indeed for a single global
rigid motion [24, 26].

2 Algorithm

Let (I1, I2) be an ordered pair of images depicting a static or moving scene at
different points in time and/or from different points of view, and let (G1, G2)
be the analogous gradient images, each consisting of a total of p pixels. For one
of the two views i ∈ {1, 2}, let xs = (xs, ys)

> denote such a pixel, indexed by
s ∈ {1, . . . , p}. Let N(s) denote the set of indices of the 4-connected neighbors
of xs and W (s) the set of indices of pixels in the patch centered on xs. At
every pixel xs, rather than seek a 2D flow vector, we shall aim to obtain a state
vector θs that determines a plane-induced homography H(θs) to explain the
motion of the pixels xt, t ∈ W (s). We solve for the flow field by minimizing an
energy defined over such state vectors, comprising data terms ψs and smoothness
terms ψst:

E(θ1, . . . ,θp) =

p∑
s=1

ψs(θs) +

p∑
s=1

∑
t∈N(s)

ψst(θs,θt). (1)

In the remainder of this section, we proceed first to introduce the parameteriza-
tion and the data term, and follow by detailing the smoothness term.

2.1 Model and data term

Ignoring for the moment the details of the parameterization, let Ii(xs) and
Gi(xs) denote the color and gradient, respectively, at pixel xs in view i, i ∈
{1, 2}. Given a pixel x in floating point coordinates, we obtain Ii(x), Gi(x) by
interpolation. Let x̃ = (x1, x2, x3)> ∈ P2 denote a pixel in projective 2-space,
and ε(x̃) = (x1/x3, x2/x3)> ∈ R2 its analogue in Euclidean 2-space. Let Hs

be shorthand for H(θs) and Hs denote the 3 × 3 matrix form of Hs, and
let Hs ∗ x = ε(Hs(x

>, 1)>) ∈ R2 be the pixel obtained by applying the ho-
mography Hs to the pixel x. This lends itself to a data term that, at pixel xs

in view i—which we shall call the source view—sums over the pixels of the



4 Hornáček, Besse, Kautz, Fitzgibbon, Rother

patch W (s):

ψs(θs) =
1

|W (s)| (2)∑
t∈W (s)

wst ·
(

(1− α)
∥∥Ii(xt)− Ij(Hs ∗ xt)

∥∥+ α
∥∥Gi(xt)−Gj(Hs ∗ xt)

∥∥),
where j ∈ {1, 2}, i 6= j, indexes the destination view, wst = exp(−‖Ii(xs) −
Ii(xt)‖/γ) implements a form of adaptive support weighting [30], and α ∈ [0, 1]
controls the relative influence of the color and gradient components of the data
term. The data term is scaled by 1/|W (s)| in the aim of rendering the strength
of the smoothness term in (1) invariant to the patch size.

Casting the standard FP model in these terms, one could define θFP =
(δx, δy)> to be the 2D flow vector at pixel xs, and express the homographyH(θFP)
in matrix form as

H(θFP) =

 1 0 δx
0 1 δy
0 0 1

 . (3)

Nir et al. [18] propose a number of further variants of H(θ) including a 6 DoF
affine transformation and a 6 DoF linearized 3D motion model. In [20], the
fundamental matrix F is assumed to be known, and homographies consistent
with F are parameterized by three parameters per pixel, yielding essentially
an unrectified dense stereo algorithm. The three parameters are related to the
3 DoF parameterization of a scene plane at pixel xs, as used in [4, 5]. We take
the parameterization a step further, parameterizing not only a 3D plane at each
pixel, but also a 3D rigid body motion transforming the points in the plane.

Let ns denote the unit surface normal of a plane in 3D and Zs the depth of
the point of intersection of that plane with the back-projection ps = K−1(x>s , 1)>

of the pixel xs, where K is the 3 × 3 camera calibration matrix. The point of
intersection is then given by Zsps ∈ R3. Let Rs, ts denote a rigid body motion
in 3D. We write our overparameterized motion model H(θs) in matrix form as

H(θs) = K

(
Rs +

1

Zsn
>
s ps

tsn
>
s

)
K−1, (4)

where θs = (Zs,ns, Rs, ts)
>, for a total of 9 DoF. Setting Zsn

>
s ps = −ds,

we obtain the familiar homography induced by the plane [9], with plane πs =
(n>s , ds)

> ∈ P3. For static scenes undergoing only camera motion, Rs, ts deter-
mine the pose of the camera of the destination view, expressed in the camera
coordinate frame of the source view. More generally, such a homography lends
itself to interpretation as Rs, ts applied to the point obtained by intersecting
πs with a pixel back-projection in the source view, and projecting the resulting
point into the destination view (cf. Fig. 1), with the pose of both cameras kept
identical. On this interpretation, we may reason about scenes undergoing pure
camera motion, pure object motion, or joint camera and object motion in the
same conceptual framework.
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Zsps Rs, ts

ZsRsps + ts
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X

H(θs) ∗ xs

Fig. 1: Depiction of the geometric interpretation of a homography H(θs), θs =
(Zs,ns, Rs, ts)

>, assigned to a pixel xs as a 3D plane with unit normal ns inter-
secting the back-projection of the pixel xs at depth Zs and undergoing the rigid
body motion Rs, ts. Applying H(θs) to an arbitrary pixel xt has the effect of
intersecting the back-projection of xt with this plane to obtain a point Pt ∈ R3,
transforming Pt by the motion Rs, ts to obtain P′t = RsPt + ts, and finally
projecting P′t back to image space.

Recognizing that a plane whose normal does not point toward the camera
is meaningless, and one that is close to orthogonal to the look direction is of
no practical use in obtaining matches, we additionally wish to flatly reject such
invalid states without taking the time to compute the data term in (2). Ac-
cordingly, a homography H(θs) is deemed invalid if the source and destination
normals ns, Rsns do not both face toward the camera and are not both within
85◦ of the source and destination look direction vectors, respectively. We addi-
tionally deem invalid states that encode negative source or destination depth or
states for which H(θs) ∗ xs lies outside the destination image.

2.2 Smoothness term

The role of the smoothness term ψst is to encourage the action of the homogra-
phies parametrized by states θs,θt assigned to neighboring pixels to be similar.
One approach to defining a such a smoothness term could be to define distances
between the geometric quantities encoded in the state vectors, specifically depth,
normal, and rigid body motion. Reasoning directly in terms of the similarity of
the parameters of the model would introduce a number of algorithm tuning
parameters, as the natural scales of variation of each parameter type are not
commensurate. While these could be determined using a training set, a large
training set may be required. We instead focus our attention directly on the
smoothness of the resulting 2D flow—since it is a smooth 2D flow field that we
aim to obtain as output of our algorithm—and introduce a considerably more
intuitive smoothness term:

ψst(θs,θt) = λ ·min

(
κ,
∥∥Hs ∗ xs −Ht ∗ xs

∥∥+
∥∥Ht ∗ xt −Hs ∗ xt

∥∥), (5)



6 Hornáček, Besse, Kautz, Fitzgibbon, Rother

where λ ≥ 0 is a smoothness weight and κ > 0 is a truncation constant intended
to add robustness to large state discontinuities, particularly with object bound-
aries in mind. This smoothness term has only two parameters (λ and κ) and is
in units of pixels.

2.3 Energy minimization

While it may be easy to formulate a realistic energy function, such a function is
of little practical use if it cannot be minimized in reasonable time. Minimizing
the energy in (1) is a non-convex optimization problem over a high-dimensional,
continuous state space. The recently introduced PatchMatch Belief Propaga-
tion (PMBP) algorithm of Besse et al. [4] provides an avenue to optimizing over
such a state space by leveraging PatchMatch [2, 3] for exploiting the underly-
ing spatial coherence of the parameter space by sampling from pixel neighbors
(spatial propagation), and belief propagation [29] for the explicit promotion of
smoothness.

We adapt PMBP in the aim of assigning to each pixel xs an optimal state θs,
mapping the projectively warped patch centered on xs in the source view to its
analogue in the destination view. Since our parameterization has a geometric
interpretation in terms of rigidly moving planes in 3D, we are able to tailor
PMBP to make moves that are sensible in 3D. We begin by (i) initializing the
state space in a semi-random manner, making use of knowledge about the scene
that we are able to recover from the input image pair (initialization). Next, for
i iterations, we traverse each pixel xs in scanline order, first (ii) attempting to
propagate the states assigned to neighbors of xs (spatial propagation) and then
(iii) trying to refine the state vector (random search), in each case adopting a
candidate state if doing so yields lower disbelief than the current assignment. We
do this in both directions (view 1 to view 2, view 2 to view 1) in parallel and in
opposite traversal orders, and as a last step when visiting xs we additionally (iv)
attempt to propagate the state at xs from the source view to H(θs) ∗ xs in the
destination, rounded to the nearest integer pixel (view propagation); accordingly,
by the time a pixel is reached in one view, the most recent match available from
the other has already been considered.

Initialization. In order to promote convergence to correct local minima, we con-
strain our choice of initializing state vectors using knowledge we are able to re-
cover from the input image pair. We estimate the dominant rigid body motion of
the scene by feeding pairs of keypoint matches obtained using ASIFT1 [17] to the
5 point algorithm [19] with RANSAC [8], giving an essential matrix E = [tE]×RE
that we subsequently decompose into a rigid body motion RE, tE [9]. One might
consider iteratively recovering additional dominant rigid body motions by culling
inlier matches and re-running the 5 point algorithm with RANSAC on the

1 The publicly available ASIFT code carries out a form of epipolar filtering using the
Moisan-Stival Optimized Random Sampling Algorithm (ORSA) [16]. We remove this
feature in order to obtain all matches recovered by the ASIFT matcher.
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R−1
E ,−R−1

E tE

RE, tE

Z

0

xs

X

s′x H(θs)∗xss′x

(a) Initialization from inlier matches.

Z

0

xs

X

s′ = H(θs)∗xsx

(b) Initialization from general matches.

Fig. 2: (a) Initialization from ASIFT match pairs (xs,xs′) that are inliers of
a recovered dominant rigid body motion RE, tE, with depth Zs determined by
triangulation and ns as the only free parameter. (b) Initialization from general
ASIFT match pairs (xs,xs′), constrained in that xs′ = H(θs)∗xs; an alternative
expression of this constraint is the requirement that ZsRsps + ts project exactly
to the pixel xs′ .

matches that remain, or consider alternative rigid motion segmentation tech-
niques [7]. We triangulate the ASIFT matches that are inliers of the recovered
dominant motion, giving seed points for which only the plane normal ns remains
a free parameter (cf. Fig. 2a). Since we wish to allow deviation from recovered
dominant motions yet would like to leverage all of the available ASIFT matches,
we additionally use the full set of ASIFT match pairs (xs,xs′) for seeding by
estimating, for each pair, a tailored rigid body motion constrained by the re-
quirement that xs′ = H(θs) ∗ xs (cf. Fig. 2b), with depth Zs in addition to
normal ns as free parameters. At pixels where more than one such seed is avail-
able, we choose one at random. For unseeded pixels, we set Rs, ts to one of the
recovered dominant motions, with depth Zs and normal ns again free.

Spatial Propagation. In the usual manner of PatchMatch [2–4], we traverse the
pixels of the source image in scanline order and consider, at the current pixel xs,
the subset of states {θt | t ∈ N(s)} assigned to the 4-connected neighbors of
xs that have already been visited in the iteration, and adopt such a state θt if
doing so gives lower disbelief than the current assignment. Note that owing to
our parameterization, adopting the state θt = (Zt,nt, Rt, tt)

> at pixel xs calls
for recomputing the depth by intersecting the plane πt with the back-projection
of xs; the remaining components of the state vector θt are simply copied.

Random Search. We perturb, at random, either depth Zs and normal ns or the
rigid body motion Rs, ts of the state vector θs currently assigned to the pixel xs.
When Rs, ts are locked, we are effectively carrying out stereo matching. When
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xs

ns

Zsps

Z

0 X

ZsRsps + ts

Fig. 3: Refinement of the rigid motion Rs, ts for plane parameters Zs,ns fixed.
Perturbation of the translational component ts is carried out with the effect of
applying a translation to the current P′s = ZsRsps + ts within a radius of P′s in
3D (depicted by the dashed circle). Perturbation of the rotational component Rs
serves effectively to rotate the transformed plane around the current P′s.

Zs,ns are locked, we perturb the translational component of the motion with
the effect of sampling within a 3D radius around ZsRsps + ts; perturbation of
the rotational component serves effectively to change the normal of the trans-
formed plane (cf. Fig. 3). We carry out several such perturbations of the four
components of the assigned state vector, reducing the search range with every
try. We adopt a proposed perturbation if doing so gives lesser disbelief than the
current assignment.

If Rs, ts are reasonable and if at least parts of the reconstructed depth map
are already plausible, a geometrically sensible move to promote convergence to
correct local minima is to attempt to refine ns, Zs by fitting a plane to the al-
ready computed minimum disbelief recovered 3D points {Ztpt | t ∈ W (s),θt =
(Zt,nt, Rt, tt)

>}, using RANSAC. The candidate normal is simply the normal
vector—constrained to point toward the camera—of this plane, and the candi-
date depth is obtained by intersecting the plane with the back-projection of xs.
We carry out such a plane fit as the first step in random search, and follow with
the perturbations described above.

View Propagation. Most similarly to [12], which in turn builds upon [4, 5], as
a last step when visiting a pixel xs and given its assigned state vector θs =
(Zs,ns, Rs, ts)

>, we propose the inverted state θ′s = (Z ′s,n
′
s, R
′
s, t
′
s)
> in the desti-

nation view. We compute θ′s by n′s = Rsns, R
′
s = R−1s , t′s = −R−1s t; the depth Z ′s

is obtained by intersecting the transformed plane with the back-projection of
ZsRsps + ts projected to the nearest integer pixel, which is where in the des-
tination view we then evaluate θ′s. Geometrically, this amounts to considering
the inverse rigid body motion applied to the transformed plane. Since we carry
out our algorithm on both views in parallel and in opposite traversal orders, the
most recent corresponding match available from the destination view has thus
already been considered by the time xs is reached.
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2.4 Post-processing

Raw Inconsistent pixels Post-processed Ground truth

Fig. 4: Effect of our post processing on the Crates1Htxtr2 data set. Only the
pixels that fail the consistency check (indicated in gray) undergo post-processing.

In areas of the scene that are occluded in one of the two views, subject to
the aperture problem, or poorly textured, our algorithm is likely to assign states
that do not correspond to the correct flow (cf. Fig. 4). If flow is computed in
both directions, we can identify inconsistent state assignments by running a
consistency check over ‘forward’ and ‘backward’ flow, labelling as inconsistent
each pixel xs that fails the following condition:∥∥xs −H(θB

s ) ∗
(
H(θF

s ) ∗ xs

)∥∥ ≤ 1, (6)

where θF
s determines the forward flow assigned in the source view to pixel xs,

and θB
s the backward flow assigned in the destination view to the pixel θF

s ∗ xs

rounded to the nearest integer coordinates. This generates a pixel mask that
identifies pixels that subsequently undergo post-processing. For each xs that
failed the check, we first consider the pixels in a window around xs that passed,
adopting the homography of the pixel that is closest in appearance. Next, for
pixels xs that still fail the check, we seek the nearest pixels above and below
xs that passed, and adopt the homography of the pixel closest in appearance.
Finally, we proceed similarly for left and right.

3 Evaluation

We tested our method on the UCL optical flow data set [15] and on a subset
of the Middlebury optical flow benchmark [1] for which ground truth flow was
available. Accordingly, we considered data sets exhibiting flow at small and large
displacements (we set the threshold between the two at 25 pixels) and undergoing
rigid, piecewise rigid, and non-rigid motions. A comparison over end point error
(EPE) is provided in Table 1 with respect to four competing methods. We ran
our algorithm on all data sets in the table with a patch size of 21 × 21 for three
iterations on a single particle. As in [4, 5], we set the weight α that balances
the influence of gradient over color in (2) to 0.9, and γ in the adaptive support
weighting to 10. The truncation constant κ of the smoothness term in (5) was
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set to 1 in all our experiments. Only a single dominant rigid body motion was
recovered per data set, in the manner described in Sec. 2.3. Minimum depth
was fixed to 0; maximum depth per view was set to the maximum depth of
triangulated matches that were inliers of the dominant motion. In the random
search stage, maximum allowable deviation from the current rigid body motion
was set to 0.01 for both the rotational (expressed in terms of quaternions) and
translational components of the motion. Analogously to [4, 5], we set maximum
flow per dataset. Camera calibration matrix K was fixed such that the focal
length was 700 pixels and the principal point was in the image center.

TV LD CN MDP Oursλ=0.005 Oursλ=0 Oursλ=0.01

UCL Lg. Displ.
Crates1 3.46 3.10 3.15 1.65 2.37 2.62 2.9
Crates2 4.62 2.51 10.4 1.35 1.71 1.84 1.73
Mayan1 2.33 5.56 1.71 0.48 0.16 0.17 0.18

Robot 2.34 1.21 1.53 0.7 1.85 2.14 1.96
Crates1Htxtr2 1.11 0.54 1.64 0.28 0.29 0.39 0.3
Crates2Htxtr1 3.13 0.81 8.8 0.37 0.47 0.45 0.64

Brickbox1t1 1.09 2.6 0.22 0.2 0.15 0.16 0.15
Brickbox2t2 7.48 3.51 2.19 0.56 0.22 0.2 0.22

GrassSky0 2.1 1.04 1.3 0.47 0.27 0.3 0.27
GrassSky9 0.72 0.51 0.27 0.29 0.25 0.34 0.26

blow19Txtr2† 0.53 0.32 0.19 0.26 0.22 0.23 0.27
drop9Txtr2† 5.2 4.37 2.71 1.15 0.65 0.75 0.86

street1Txtr1† 3.65 2.66 4.09 3.19 0.92 1.72 1.45

TV LD CN MDP Oursλ=0.005 Oursλ=0 Oursλ=0.01

UCL Sm. Displ.
Mayan2 0.44 0.35 0.21 0.23 0.17 0.19 0.18

YosemiteSun† 0.31 0.18 0.23 3.79 0.33 0.35 0.38
GroveSun 0.58 0.48 0.23 0.43 0.24 0.24 0.23

Sponza1 1.01 0.91 1.1 1.08 2.75 2.84 2.8
Sponza2 0.53 0.48 1.6 1.77 2.61 2.58 2.61

TxtRMovement 3.17 0.36 0.13 0.19 1.71 1.7 1.72
TxtLMovement 1.52 0.6 0.12 0.23 1.73 1.76 1.76

blow1Txtr1† 0.09 0.08 0.03 0.05 0.04 0.04 0.04
drop1Txtr1† 0.12 0.08 0.05 0.06 0.04 0.04 0.04

roll1Txtr1† 0.004 0.002 0.002 0.002 0.002 0.002 0.002
roll9Txtr2† 0.04 0.02 0.01 0.02 0.01 0.01 0.01
Middlebury

Dimetrodon† 0.211 0.117 0.115 0.153 0.169 0.174 0.17
Grove2 0.220 0.149 0.091 0.15 0.184 0.187 0.3
Grove3 0.745 0.657 0.438 0.53 0.517 0.455 0.97

Hydrangea† 0.196 0.178 0.154 0.164 0.222 0.207 0.234
RubberWhale† 0.135 0.120 0.077 0.09 0.114 0.12 0.125

Urban2 0.506 0.334 0.207 0.32 0.3 0.312 0.29
Urban3 1.132 0.600 0.377 0.42 0.905 1.27 1.03

Venus 0.408 0.433 0.229 0.28 0.342 0.342 0.434

Table 1: End point error (EPE) comparison. TV = A Duality Based Approach for
Realtime TV-L1 Optical Flow [31]. LD = Large Displacement Optical Flow [6].
CN = Secrets of Optical Flow [22]. MDP = Motion Detail Preserving Optical
Flow [28]. Cell colors indicate ranking among the five methods, from best to
worst: green, light green, yellow, orange, red. Gray cells are shown for comparison
but are not included in the ranking. † indicates that the scene is non-static.

Our method performs particularly well on the large displacement cases of
the UCL dataset, and produces reasonable results for smaller displacements.
Quantitative results show that our technique outperforms all four other methods
in ca. 1/3 of the data sets (ca. 1/2 of the cases for large motion), while the
end point error is lower than that of TV and LD in most of the cases. The
color scheme used in Table 1 indicates that our approach is the one that is
most frequently ranked in the first two positions (ca. 2/3 of the cases), when
compared to the other four techniques. A visual comparison for four data sets is
given in Fig. 5. The effect of the smoothness term can be seen in Fig. 6, where
we compare the resulting 2D flow for our algorithm with λ = 0 (no smoothness)
and λ = 0.005 on the Middlebury Dimetrodon data set. Additionally, we give
the EPE results for λ = 0 and λ = 0.01 for all data sets in Table 1.
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Brickbox2t2 - 1 Brickbox2t2 - 2 drop9Txtr2 - 1 drop9Txtr2 - 2

MDP (EPE 0.56) CN (EPE 2.19) MDP (EPE 1.115) CN (EPE 2.71)

Ground truth Ours (EPE 0.22) Ground truth Ours (EPE 0.65)

street1Txtr1 - 1 street1Txtr1 - 2 roll9Txtr2 - 1 roll9Txtr2 - 2

MDP (EPE 3.19) CN (EPE 4.09) MDP (EPE 0.020) CN (EPE 0.014)

Ground truth Ours (EPE 0.92) Ground truth Ours (EPE 0.01)

Fig. 5: Optical flow colorings for a subset of the UCL optical flow data set. EPE
= End Point Error. CN = Secrets of Optical Flow [22]. MDP = Motion Detail
Preserving Optical Flow [28]. Results correspond to Table 1.
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λ = 0 (EPE: 0.175) λ = 0.005 (EPE: 0.169) Ground truth

Fig. 6: The effect of the smoothness term on the Dimetrodon data set for λ = 0
(no smoothness) and λ = 0.005. Inlay shown with contrast stretch; results best
viewed zoomed in. Flow coloring and EPE without post-processing.

GT normals Recovered normals Recovered depth Colored point cloud

Fig. 7: Restriction to the recovered dominant rigid body motion RE, tE for the
Brickbox2t2 data set. Estimation of the plane normals and depth on a static
scene, and rendering as a colored point cloud.

(Piecewise) Unrectified Stereo. For scenes undergoing only a single dominant
rigid body motion, one could run our algorithm with no deviation allowed from
the recovered dominant rigid body motion RE, tE. We show precisely such a re-
construction for the Brickbox2t2 data set in Fig. 7, providing a coloring of the
recovered normals, the depth map, and a colored point cloud rendered at a novel
view. Locking the motion reduces our algorithm to an unrectified stereo matcher
with slanted support windows, most closely akin to [4].

In order to give an impression of the limits of the approach, we recover
the dominant rigid body motion on the street1Txtr1 data set in the manner
described in Sec. 2.3 and obtain motions on the three independently moving
cubes by manually supplying correspondences to the 5 point algorithm using
RANSAC (cf. Fig. 8). We show the result for allowing deviations from those
four motions, and for allowing no deviation. We additionally show the resulting
point cloud where no deviation is allowed. Note that the three cubes are not
reconstructed with commensurate size; this is a consequence of each piecewise
reconstruction being individually up to a scale ambiguity.

Radial Flow. Certain types of camera motions can be difficult to handle for flow
methods that use a 2D parametrisation. For instance, camera zoom induces a
radial flow pattern around the viewing direction, which conflicts with a smooth-
ness assumption that promotes neighboring flow vectors to be similar. However,
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Manual seeds Unrestricted (EPE 0.73) Restricted (EPE: 0.468) Restricted

Fig. 8: Result obtained on the street1Txtr1 data set by seeding with the dominant
motion obtained by the 5 point algorithm with RANSAC on all ASIFT matches
and on the three additional sets of manually provided matches (indicated in red,
yellow, and green), giving four motions in total. Results shown for deviation
allowed from those four motions, and for no deviation allowed. Otherwise, we
used the same parameter settings to compute our results as in Table 1.

our approach is flexible enough to recover the homographies induced by this
motion, as illustrated in Fig. 9.

Limitations. We kept the patch size identical across all our experiments, regard-
less of image size or scale. As in patch-based stereo techniques, our approach is
sensitive to the aperture problem, and more generally to poorly textured sur-
faces. It is this problem of inadequate match discriminability that accounts for
the comparatively poor performance of our algorithm for the Robot, Sponza1,
Sponza2, TxtRMovement, and TxtLMovement data sets. An obvious way to al-
leviate this problem where applicable is to set the patch size appropriately. A
direction for future work could be to develop a smoothness term that promotes
not only smoothness of the 2D flow, but explicitly exploits the geometric in-
terpretation of the paramterization to promote similarity of the 9 DoF states
themselves.

4 Conclusion

We have presented a new optical flow technique that uses a simple and geomet-
rically motivated model and exploits that model to carry out the optimization
in a manner that makes geometrically reasonable moves. While the model lives
in a high-dimensional space that would prove challenging to optimize using con-
ventional methods, we show PMBP to be well suited for the task. We obtain a
2D flow that compares favorably to other state-of-the-art techniques and man-
age to handle both small and large displacements. Our smoothness term helps
promote smoothness of the obtained 2D flow fields. A side effect of our approach
is that—provided rigid body motions are reasonable—depth can be directly ex-
tracted from the parameterization, which can be used to construct a point cloud
and flowed to intermediate time steps.
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Image 1 Image 2 Ground truth

CN (EPE: 38.25) MDP (EPE: 1.02) Ours (EPE: 0.42)

Fig. 9: Result on a challenging case with large displacement camera zoom, caus-
ing a radial flow pattern. Note that this sequence is not part of the published
UCL optical flow data set. We used the same parameter settings to compute our
results as in Table 1.
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