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Section 1 presents additional experiments for comparing the motion features learned at
different levels. Section 2 shows qualitative results using Grad-CAM++. Sections 3 and 4
respectively provide more details of our approach and the training on each specific dataset.

1 Motion at different levels

Here we provide more details of the KNN video classification experiment discussed in Sec-
tion 4.3 of the paper. As shown in Table 7, we compare the classification accuracy for motion
features learned at different levels. It is not surprising that the motion features at higher lev-
els achieve higher accuracy than the ones at lower levels as the former possess more useful
semantics of motion dynamics for the video action recognition task. More interestingly, we
find that the low-level motion features can obtain relatively high accuracy for some action
classes with apparent moving patterns (e.g., “turning the camera left"). This indicates that the
low-level motion features are capable of extracting elementary movements from raw video
frames. On the other hand, the motion features at higher levels can recognize the actions
that require finer understanding of high-level motion semantics (e.g., “pulling two ends of
something so that it separates into two pieces"). This finding validates the motion hierarchy
illustrated in Figure 1 of the paper.
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Acc (%) Classes with the largest relative gains

“turning the camera left" (73.8)
Low-level 11.6 “turning the camera right" (71.7)

“turning the camera upwards" (58.3)

“showing a photo to the camera" (0→ 19.4)
Mid-level 15.2 “showing smth behind smth" (0→ 12.2)

“poking a stack of smth" (0→ 9.5)

“pulling two ends of smth" (0→ 14.0)
High-level 21.7 “tipping smth with smth in it over" (0→ 12.5)

“sprinkling smth onto smth" (0→ 9.1)

Table 7: Comparison of classification accuracy using motion features learned at different
levels (accuracy for random output: 0.6%). For the mid/high levels, we show the top-3
classes with the largest relative gains compared with the lower-level motion features. For the
low level, we report the top-3 classes with the highest accuracy instead.

Figure 6: Visualization of the learned features by Grad-CAM++ [2]. Fonts in green and red
indicate correct recognition and misclassification. (a-b) Features learned by our approach
(bottom) are more sensitive to the regions with important motion cues. (c) Our motion
learning module (bottom) equips the 2D backbone with the ability of reasoning the temporal
order of video frames.

2 Qualitative Result

To qualitatively verify the impact of the learned motion features, we utilize Grad-CAM++ [2]
to visualize the class activation map of the last convolution layer. Figure 6 shows the
comparison between baseline and our model with the backbone R2D-50 on UCF-101 and
Something-V1. Our model attentions more on the regions with informative motion, while
the baseline tends to be distracted by the static appearance. For instance, in Figure 6(a), our
method focuses on the moving hands of the person, while the baseline concentrates on the
static human body. Our motion learning module also equips the 2D backbone with effective
temporal modeling ability. As shown in Figure 6(c), our model is capable of reasoning the
temporal order of the video and predicting the correct action, while the baseline outputs the
opposite prediction result as it fails to capture the chronological relationship.
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3 More Details

3.1 Backbones

We adopt the standard convolutional networks R2D-50 [15] and R(2+1)D-101 [14] as the
backbones used in our experiments. A few changes are made to improve the computation
efficiency, as demonstrated in Table 8. Compared with the original network R(2+1)D-101,
our backbone supports higher input resolution and applies bottleneck layers with consistent
number of channels. We start temporal striding from res3 rather than res4, and employ the
top-heavy design as used in [16] for R(2+1)D-101, i.e., only using temporal convolutions in
res4 and res5.

Layer R2D-50 / R(2+1)D-101 Output Size
input – T × 224 × 224

conv1
1×7×7, 64

stride: 1×2×2 T × 112 × 112

res2

 1×1×1, 64
1×3×3, 64
1×1×1, 256

×3 T × 56 × 56

res3

 1×1×1, 128
1×3×3, 128
1×1×1, 512

×4 T/2 × 28 × 28

res4

 1×1×1, 256
(3×1×1, 256)
1×3×3, 256
1×1×1, 1024

×6 / 23 T/4 × 14 × 14

res5

 1×1×1, 512
(3×1×1, 512)
1×3×3, 512
1×1×1, 2048

×3 T/4 × 7 × 7

Table 8: Details of the architectures of the backbone networks R2D-50 / R(2+1)D-101 used
in our experiments.

3.2 Prime Motion Block

Here we describe the prime motion block in more details. As illustrated in Figure 2 in the
paper, the prime motion block is wrapped as a residual block [7] such that the motion fea-
tures P can be inserted into a backbone network seamlessly. For the cost volume layer, we
limit the search range with the maximum displacement d = 6 and the stride s = 2, which
is equivalent to covering a region of 13× 13 pixels with a stride 2. To combine the com-
plementary information provided by the cost volumes and the convolutional features (after
dimension reduction), we concatenate the two features in channels and then perform a 2D
convolution. We use batch normalization [8] and ReLU after each convolutional layer and
cost volume layer.
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3.3 Sampling Strategy

We denote the predicted motion feature at level l as P̂l
t,k, where t ∈

{
1, ...,T l

}
is the tempo-

ral index, and k ∈
{
(1,1),(1,2), ...(H l ,W l)

}
is the spatial index. The only positive pair is

(P̂l
t,k,P

l
t,k), which is the ground-truth feature that corresponds to the same video and locates

at the same position in both space and time as the predicted one. Following the terminology
used in [6], we define three types of negative samples for all the prediction and ground-truth
pairs (P̂l

t,k,P
l
τ,m):

Spatial negatives are the ground-truth features that come from the same video of the pre-
dicted one but at a different spatial position, i.e., k 6= m. Considering the efficiency, we
randomly sample N spatial locations for each video within a mini-batch to compute the loss.
So the number of spatial negatives is (N−1)T l .
Temporal negatives are the ground-truth features that come from the same video and same
spatial position, but from different time steps, i.e., k =m, t 6= τ . They are the hardest negative
samples to classify, and the number of temporal negatives are T l−1.
Easy negatives are the ground-truth features that come from different videos, and the num-
ber of easy negatives are (B−1)NT l , where B is the batch size.

4 Experimental Details

4.1 Datasets

We extensively evaluate our proposed approach on the four benchmarks: Kinetics-400 [1],
Something-Something (V1&V2) [5] and UCF-101 [12]. Kinetics-400 is a large-scale video
dataset with 400 action categories. As some videos are deleted by their owners over time,
our experiments are conducted on a subset of the original dataset with approximately 238K
training videos (∼96%) and 196K validation videos (∼98%). In practice, we notice a bit
accuracy drop for the same model using our collected dataset with fewer training samples,
suggesting that our results can be further improved with the full original dataset. Something-
Something (V1&V2) are more sensitive to temporal motion modeling. Something-V1 con-
tains about 100K videos covering 174 classes, and Something-V2 increases videos to 221K
and improves video resolution and annotation quality. UCF-101 includes about 13K videos
with 101 classes. As the number of training videos is small, it is often used for evaluating
unsupervised representation learning [3, 10] and transfer learning [11, 13].

4.2 Implementation details

We use the synchronized SGD with a cosine learning rate scheduling [9] and a linear warm-
up [4] for all model training. The spatial size of the input is 224× 224, randomly cropped
and horizontally flipped from a scaled video with the shorter side randomly sampled in [256,
320] pixels for R2D-50, and [256, 340] pixels for R(2+1)D-101. We apply temporal jittering
when sampling clips from a video. The balancing weights for the joint training in Eq. (5)
are set to λ = 15,γ1 = γ2 = 0.25, respectively. We describe the training details for different
benchmarks as follow.
Kinetics-400. We sample a clip of T = 16 frames with a temporal stride 2 for the experiments
using the backbone R2D-50 and T = 32 frames for those with the backbone R(2+1)D-101.
We train all models using the distributed SGD on GPU clusters with 8 clips per GPU. We
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set the learning rate per GPU to 0.0025, and linearly scale the learning rate according to the
number of GPUs. For the self-supervised training phase, all models are trained for 80 epochs
with the first 10 epochs for warm-up, and the global batch normalization (BN) [8] is used to
avoid trivial solution. As for the joint training phase, the models are trained for 200 epochs
with the first 40 epochs for warm-up, and BN statistics is computed within each 8 clips.
Something-V1&V2. Since this dataset has a higher frame rate than Kinetics-400, we sample
a clip of T = 32 frames with a temporal stride 1 for all experiments. Models are trained for
150 epochs with the first 50 epochs for warm-up and the learning rate per GPU is also 0.0025.
UCF-101. For the experiments described in Table 4 of the paper, the models are initialized
with the weights pre-trained on Kinetics-400 for classification, and then are fine-tuned for
30 epochs with a batch size of 32 and a learning rate of 0.002.
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