
Hand Gesture Recognition with 3D Convolutional Neural Networks

Pavlo Molchanov, Shalini Gupta, Kihwan Kim, and Jan Kautz
NVIDIA, Santa Clara, California, USA

Abstract

Touchless hand gesture recognition systems are becom-
ing important in automotive user interfaces as they improve
safety and comfort. Various computer vision algorithms
have employed color and depth cameras for hand gesture
recognition, but robust classification of gestures from differ-
ent subjects performed under widely varying lighting con-
ditions is still challenging. We propose an algorithm for
drivers’ hand gesture recognition from challenging depth
and intensity data using 3D convolutional neural networks.
Our solution combines information from multiple spatial
scales for the final prediction. It also employs spatio-
temporal data augmentation for more effective training and
to reduce potential overfitting. Our method achieves a cor-
rect classification rate of 77.5% on the VIVA challenge
dataset.

1. INTRODUCTION

Hand gesture recognition is important for designing
touchless interfaces in cars. Such interfaces allow drivers
to focus on driving while interacting with other controls,
e.g., audio and air conditioning, and thus improve drivers’
safety and comfort. In the last decade, many vision-based
dynamic hand gesture recognition algorithms were intro-
duced [11, 16]. To recognize gestures, different features
such as hand-crafted spatio-temporal descriptors [23] and
articulated models [9], were used. As gesture classifiers,
hidden Markov models [20], conditional random fields [24]
and support vector machines (SVM) [4] have been widely
used. However, robust classification of gestures under
widely varying lighting conditions, and from different sub-
jects is still a challenging problem [25, 1, 15].

To improve classification accuracy, gesture recognition
methods with multi-modal sensors were introduced [14, 21,
12, 5, 13]. Neverova et al. successfully combined RGBD
data from the hand region with upper-body skeletal mo-
tion data using convolutional neural networks (CNNs) for
recognizing 20 Italian sign language gestures [13]. How-
ever, their technique was intended for gestures performed
indoors only. Ohn-Bar and Trivedi evaluated various hand-

crafted spatio-temporal features and classifiers for in-car
hand-gesture recognition with RGBD data [14]. They re-
ported the best performance with a combination of his-
togram of gradient (HOG) features and an SVM classifier.
Molchanov et al. [12] fused information of hand gestures
from depth, color and radar sensors and jointly trained a
convolutional neural network with it. They demonstrated
successful classification results for widely varying lighting
conditions, which motivated our work.

Recently, classification with deep convolutional neural
networks has been successful in various recognition chal-
lenges [2, 8, 10, 18]. Multi-column deep CNNs that em-
ploy multiple parallel networks have been shown to improve
recognition rates of single networks by 30-80% for vari-
ous image classification tasks [3]. Similarly, for large scale
video classification, Karpathy et al. [7] observed the best re-
sults on combining CNNs trained with two separate streams
of the original and spatially cropped video frames.

Several authors have emphasized the importance of us-
ing many diverse training examples for CNNs [8, 17, 19].
They have proposed data augmentation strategies to prevent
CNNs from overfitting when training with datasets con-
tainig limited diversity. Krizhevsky et al. [8] employed
translation, horizontal flipping and RGB jittering of the
training and testing images for classifying them into 1000
categories. Simonyan and Zisserman [19] employed simi-
lar spatial augmentation on each video frame to train CNNs
for video-based human activity recognition. However, these
data augmentation methods were limited to spatial varia-
tions only. To add variations to video sequences contain-
ing dynamic motion, Pigou et al. [17] temporally translated
the video frames in addition to applying spatial transforma-
tions.

In this paper, we introduce a hand gesture recognition
system that utilizes depth and intensity channels with 3D
convolutional neural networks. Motivated by Molchanov
et al. [12], we interleave the two channels to build normal-
ized spatio-temporal volumes, and train two separate sub-
networks with these volumes. To reduce potential over-
fitting and improve generalization of the gesture classifier,
we propose an effective spatio-temporal data augmentation
method to deform the input volumes of hand gestures. The

1

augmentation method also incorporates existing spatial aug-
mentation techniques [8]. This work bears similarities to the
multi-sensor approach of Molchanov et al. [12], but differs
in the the use of two separate sub-networks and data aug-
mentation.

We demonstrate that our system, with two sub-networks,
that employs spatio-temporal data augmentation for train-
ing, outperforms both a single CNN and the baseline
feature-based algorithm [14] on the VIVA challenge’s
dataset.

2. METHOD
We use a convolutional neural network classifier for dy-

namic hand gesture recognition. Sec. 2.1, briefly describes
the VIVA challenge’s hand gesture dataset used in this pa-
per. Sec. 2.2 to 2.4 describe the preprocessing steps needed
for our model, the details of the classifier and the train-
ing pipeline for the two sub-networks (Fig. 1). Finally, we
introduce a spatio-temporal data augmentation method in
Sec. 2.5, and show how it is combined with spatial transfor-
mations.

2.1. Dataset

The VIVA challenge was organized to evaluate and ad-
vance the state-of-the-art in multi-modal dynamic hand ges-
ture recognition under challenging conditions (with vari-
able lighting and multiple subjects). The VIVA challenge’s
dataset contains 885 intensity and depth video sequences of
19 different dynamic hand gestures performed by 8 subjects
inside a vehicle [14]. Both channels were recorded with the
Microsoft Kinect device and have a resolution of 115× 250
pixels. The dataset was collected under varying illumina-
tion conditions. The gestures were performed either with
the right hand by subjects in the driver’s seat or with the
left hand by subjects in the front passenger’s seat. The hand
gestures involve hand and/or finger motion.

2.2. Preprocessing

Each hand gesture sequence in the VIVA dataset has a
different duration. To normalize the temporal lengths of the
gestures, we first re-sampled each gesture sequence to 32
frames using nearest neighbor interpolation (NNI) by drop-
ping or repeating frames [12]. We also spatially down sam-
pled the original intensity and depth images by a factor of 2
to 57× 125 pixels. We computed gradients from the inten-
sity channel using the Sobel operator of size 3 × 3 pixels.
Gradients helped to improve robustness to the different illu-
mination conditions present in the dataset. We normalized
each channel of a particular gesture’s video sequence to be
of zero mean and unit variance. This helped our gesture
classifier converge faster. The final inputs to the gesture
classifier were 57× 125× 32 sized columns containing in-
terleaved image gradient and depth frames.

2.3. Classifier

Our convolutional neural network classifier consisted
of two sub-networks (Fig. 1): a high-resolution network
(HRN) and low-resolution network (LRN), with network
parameters WH and WL, respectively. Each network,
with parameters W , produced class-membership probabil-
ities (P (C|x,W) for classes C given the gesture’s obser-
vation x. We multipled the class-membership probabilities
from the two networks element-wise to compute the final
class-membership probabilities for the gesture classifier:

P (C|x) = P (C|x,WL) ∗ P (C|x,WH). (1)

We predicted the class label c∗ = argmaxP (C|x). The
networks contained more than 1.2 million trainable param-
eters.

The high-resolution network consisted of four 3D con-
volution layers, each of which was followed by the max-
pooling operator. Fig. 1 shows the sizes of the convolu-
tion kernels, volumes at each layer, and the pooling op-
erators. We input the output of the fourth 3D convolu-
tional layer to two fully-connected layers (FCLs) with 512
and 256 neurons, respectively. The output of this high-
resolution network was a softmax layer, which produced
class-membership probabilities (P (C|x,WH)) for the 19
gesture classes.

We input a spatially down sampled (via NNI) gesture
volume of 28 × 62 × 32 interleaved depth and image gra-
dient values to the low-resolution network. Similar to the
HRN, LRN also comprised of a number of 3D convolu-
tional layers, each followed by a max-pooling layer, two
FCLs, and an output softmax layer that estimated the class-
membership probability P (C|x,WL) values (Fig. 1).

All the layers in the networks, except for the softmax
layers, had rectified linear unit (ReLU) activation functions:

f(z) = max(0, z). (2)

We computed the output of the softmax layers as:

P (C|x,W) =
exp(zC)∑
q exp(zq)

, (3)

where zq was the output of the neuron q.

2.4. Training

The process of training a CNN involves the optimization
of the network’s parametersW to minimize a cost function
for the dataset D. We selected negative log-likelihood as
the cost function:

L(W,D) = − 1

|D|

|D|∑
i=0

log
(
P (C(i)|x(i),W)

)
. (4)

19
 classes

512
neurons

256
neurons

Input

2@57x125x32

kernels
3@7x7x5

max-pooling
2x2x2

4@25x59x14

3
D

 c
o

n
vo

lu
ti

o
n

an

d
 m

ax
-p

o
o

lin
g

3
D

 c
o

n
vo

lu
ti

o
n

an

d
 m

ax
-p

o
o

lin
g

kernels
8@5x5x3

max-pooling
2x2x2

8@10x27x6

3
D

 c
o

n
vo

lu
ti

o
n

an

d
 m

ax
-p

o
o

lin
g

kernels
32@5x5x3

max-pooling
1x2x1

32@6x11x4

3
D

 c
o

n
vo

lu
ti

o
n

an

d
 m

ax
-p

o
o

lin
g

kernels
64@3x5x3

max-pooling
2x2x1

64@2x3x2

FCL 1 FCL 2

SM 1

19
 classes

512
neurons

256
neurons

3
D

 c
o

n
vo

lu
ti

o
n

an

d
 m

ax
-p

o
o

lin
g

kernels
8@5x5x5

max-pooling
2x2x2

8@12x29x14

3
D

 c
o

n
vo

lu
ti

o
n

an

d
 m

ax
-p

o
o

lin
g

kernels
32@5x5x3

max-pooling
2x2x2

32@4x12x6

3
D

 c
o

n
vo

lu
ti

o
n

an

d
 m

ax
-p

o
o

lin
g

kernels
64@3x5x3

max-pooling
1x4x1

64@2x2x4

FCL 3 FCL 4

SM 2

Sp
at

ia
l

d
o

w
n

sa
m

p
lin

g
b

y
2

2@28x62x32

Low-resolution network

High-resolution network

19
 classes

P
re

d
ic

ti
o

n

…

…

…

…

Figure 1: Overview of our CNN classifier We used a CNN-based classifier for hand gesture recognition. The inputs to
the classifier were 57 × 125 × 32 sized volumes of image gradient and depth values. The classifier consisted of two sub-
networks: a high-resolution network (HRN) and a low-resolution network (LRN). The outputs of the sub-networks were
class-membership probabilities P (C|x,WH) and P (C|x,WL), respectively. The two networks were fused by multiplying
their respective class-membership probabilities element-wise.

We performed optimization via stochastic gradient de-
scent with mini-batches of 40 and 20 training samples for
the LRN and the HRN, respectively. We updated the net-
work’s parameters, w ∈ W with the Nesterov accelerated
gradient (NAG) [22] at every iteration i as:

∇wi =

〈
δL

δ(wi−1)

〉
batch

, (5a)

vi = µvi−1 − λ∇wi, (5b)
wi = wi−1 + µvi − λ∇wi, (5c)

where λ was the learning rate, µ was the momentum coef-
ficient, ∇wi was the value of gradient of the cost function
with respect to the parameter wi averaged across the mini-
batch. We set the momentum to 0.9. We observed that NAG
converged faster than gradient descent with only momen-
tum.

We initialized the weights of the 3D convolution layers
with random samples from a uniform distribution between
[−Wb,Wb], where Wb =

√
6/(ni + no), and ni and no

were the number of input and output neurons, respectively.
We initialized the weights of the fully-connected hidden
layers and the softmax layer with random samples from a
normal distribution N (0, 0.01). The biases for all layers,
except for the softmax layer, were initialized with a value
of 1 in order to have a non-zero partial derivative. For the
softmax layers biases were set to 0.

We trained the LRN and the HRN separately and merged
them only during the forward propagation stage employed

for decision making. We applied weight decay to all con-
volution layers. After processing each mini-batch we sub-
tracted 0.5% from the network weights. We observed that
regularization with weight decay usually led to better gen-
eralization for gestures from different subjects. We also ap-
plied drop-out (with p = 0.5) to the outputs of the fully-
connected hidden layers [6]. During drop-out, the outputs
were randomly (with p = 0.5) set to 0, and were conse-
quently not used in the back-propagation step of that train-
ing iteration. For the forward propagation stage, the weights
of the layer following the dropped layer were multiplied by
2 to compensate for the effect of drop-out.

For tuning the learning rate, we first initialized the rate to
0.005 and reduced it by a factor of 2 if the cost function did
not improve by more than 10% in the preceding 40 epochs.
We terminated network training after the learning rate had
decayed at least 4 times or if the number of epochs had ex-
ceeded 300. Since the dataset is small, we did not reserve
data from any subjects to construct a validation set. Instead,
we selected the network configuration that resulted in the
smallest error on the training set.

2.5. Spatio-temporal Data augmentation

The VIVA challenge dataset contains less than 750 ges-
tures for training, which are not enough to prevent overfit-
ting. To avoid overfitting we performed offline and online
spatio-temporal data augmentation. Note that we did not
augment the test data.

original: swipe to the left - right hand

reversed ordering: swipe to the right - right hand

mirroring: swipe to the right - left hand

reversed ordering and mirroring: swipe to the left - left hand

Figure 2: Offline data augmentation We used three trans-
formations on the original data: reversed ordering of frames
only, mirroring of frames only, and reversed ordering and
mirroring of frames.

Offline data augmentation (Fig. 2) was motivated by ex-
isting methods [8, 19], and is comprised of three operations:
reverse ordering of frames, horizontal mirroring, and ap-
plying both operations together. With these operations we
generated additional samples for training. For example, ap-
plying both operations transforms the original gesture swipe
to the left with the right hand to a new gesture: swipe to the
left with the right hand.

To further prevent overfitting and to increase the general-
ization performance of the classifier, we also augmented the
data online during training (Fig. 3). During online augmen-
tation, we trained each epoch with different training sam-
ples. While the back propagation stage of an epoch was be-
ing performed, we concurrently generated the training sam-
ples for the next epoch by transforming 50% randomly se-
lected training gestures.

Online data augmentation included spatial and tempo-
ral transformations. Spatial augmentation was composed
of: (a) affine transformations: rotation (±10o), scaling
(±30%), translation (±4 pixels along the x axis, and ±8
along the y axis), (b) spatial elastic deformation [18] with
pixel displacement α = 6 and standard deviation of the
smoothing Gaussian kernel σ = 10 pixels, (c) fixed pat-
tern drop-out: setting p = 50% randomly selected spatial
locations to zero across all frames, (d) random drop-out:
randomly setting p = 50% of the pixels in the entire vol-
ume of the gesture to zero.

The transformation parameters for (a) and (b) were fixed
for a particular gesture and for the two sensor channels
for an epoch. The transformation parameters for (a) were

Original - Intensity Gradient of the image

Rotated, scaled, shifted Elastic deformation

Fixed pattern drop-out Random drop-out

−10

−8

−6

−4

−2

0

2

4

6

8

10

Original - Depth Random drop-out

Figure 3: Online data augmentation The top three rows
show augmentation of the intensity channel. The last shows
augmentation of the depth channel.

drawn from a uniform distribution. During each epoch
new transformation parameters for (a)-(d) were drawn from
their corresponding distributions. We applied the transfor-
mations (c) and (d) independently to the depth and inten-
sity channels. We observed that the CNN learned tempo-
ral smoothing filters in the first convolutional layer when
we only used random drop-out (c) without the fixed pattern
drop-out (d). When the fixed pattern drop-out (d) was ap-
plied, we did not observe this since the network was then
forced to learn from gestures with missing data in frames at
fixed locations.

We additionally transformed the gestures temporally
by displacing frames within the input temporal volume
(Fig. 5). Temporal augmentation consisted of three stages:
(a) scaling the duration of a sequence by ±20%, (b) tempo-
rally translating them by±4 frames, and (c) applying elastic
deformation to the temporal domain.

While spatial elastic deformation has been employed
previously [18], we extended it to the temporal domain as
follows. Temporal elastic deformation (TED) shrinks and
stretches a video without altering its length. Fig. 4 shows
how temporal deformation is applied to a video sequence.
The key characteristic of TED is determined by its princi-
pal point g = [n,m], which is randomly sampled from the
distributions:

n ∈ N (M, 4), m ∈ N
(
n, 4 ∗ (1− |n−M |/M)

)
, (6)

where N (a, b) is a normal distribution with mean a and

Input frame number

5 10 15 20 25 30

O
u
tp

u
t
fr

a
m

e
 n

u
m

b
e
r

5

10

15

20

25

30

No temporal elastic deformation

Temporal elastic deformation

First frame

Principal point

Last frame

Figure 4: Temporal Elastic Deformation TED temporally
warps video sequences while maintaining the order of its
frames and the size of its volume. Its key characteristic is
the principal point. After the deformation, the frames are
re-mapped according to the temporal elastic deformation
curve.

standard deviation b, and M is half of the gesture’s tem-
poral length. The elastic deformation function χ(g) is ap-
proximated as a polynomial of order 2 that fits the posi-
tions of three points: the first frame [1, 1], the principal
point g = [n,m] and the last frame [T, T]. Finally, the
frames within the gesture’s volume are interpolated using
the function χ(g) via nearest-neighbor interpolation. The
parameters of spatial and temporal data augmentation were
randomly sampled from the corresponding distributions as
described above. After each epoch, all the spatial and tem-
poral transformations were re-applied to the gesture in the
training dataset.

3. RESULTS

We evaluated the performance of our dynamic hand ges-
ture recognition system using leave-one-subject-out cross-
validation on the VIVA challenge’s dataset [14]. We used
data from one of the 8 subjects for testing and trained the
classifier with data from the 7 remaining subjects; we re-
peated this process for each of the 8 subjects and averaged
the accuracy. Fig. 6 shows the performance of the LRN
during training. We applied various forms of regularization
to the network in order to prevent overfitting even after a
large number of training epochs. Data augmentation and
drop-out were key components to successful generalization
of the classifier.

The correct classification rates for our gesture recogni-
tion system are listed in Table 1. We compared our classifier
to the baseline method proposed by Ohn-Bar and Trivedi
[14], which employs HOG+HOG2 features. Both the low
and high resolution convolutional neural networks that we
proposed, outperformed Ohn-Bar and Trivedi’s method by
9.8% and 5.5%, respectively. Furthermore, the final clas-
sifier that combined the outputs of LRN and HRN outper-

epoch

0 50 100 150 200 250 300

P
ro

b
a
b
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

training error

test error

test confidence

Figure 6: LRN Training The curves show average values
for leave-one-subject-out cross-validation. Observe that the
network does not overfit even after a very large number of
epochs.

Method HOG [14] LRN HRN LRN+HRN

Mean 64.5% 74.4% 70.0% 77.5%
Std 16.9% 8.9% 7.8% 7.9%

Table 1: The classification results for leave-one-subject-
out cross-validation Both the LRN and the HRN outper-
formed the HOG-based approach [14]. Our final classifier,
which combined the LRN and the HRN resulted in the best
performance.

formed the baseline method by 13.0%. Moreover, 52% of
the final classifier’s errors were associated with the second
most probable class. The results indicate that our CNN-
based classifier for in-car dynamic hand gesture recognition
considerably outperforms approaches that employ hand-
crafted features.

CNNs have been shown to be effective at combining data
from different sensors [12]. We compared the performance
of early and late fusion of sensors in the CNN architecture.
In Table 2, we present the correct classification rates for
the LRN trained with different input modalities. Observe
that, individually, the depth data (accuracy = 65%) per-
formed better than the intensity data (accuracy = 57%). On
element-wise late multiplying the class-membership proba-
bilities of the two LRNs trained individually with the two
modalities, the accuracy improved to 70.4%. However, the
highest accuracy of 74.4% was obtained when the LRN was
trained with interleaved depth and image gradient frames as
input.

In Table 3, we present the correct classification rates for
the low resolution network with different forms of data aug-
mentation. We observed that the training error increased
on enabling data augmentation. However, the test error
decreased. This demonstrates that the proposed data aug-

frame #
original 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

temporal elastic deformation 1 2 4 5 7 8 9 10 12 13 14 15 16 17 19 20 21 22 22 23 24 25 26 27 27 28 29 30 30 31 31 32

scaling 1 1 1 2 4 5 7 9 10 12 13 14 16 17 19 20 21 22 23 24 25 26 27 28 29 30 30 31 32 32 32 32

translation 1 1 1 1 1 1 1 2 4 5 7 9 10 12 13 14 16 17 19 20 21 22 23 24 25 26 27 28 29 30 30 31

Figure 5: Examples of temporal data augmentation. The numbers in each row correspond to the frame IDs in the original
sequence (top row). Note how the order and the occurrence of frames is changed by incrementally applying temporal elastic
deformation (TED) (2nd row), TED + scaling (3rd row) and TED + scaling + translation (4th row) to the original input.

LRNRGB LRND LRNRGB+LRND LRNRGBD

57.0% 65.0% 70.4% 74.4%

Table 2: The accuracy of LRN with different in-
puts Leave-one-subject-out cross-validation results of LRN
trained with different inputs. The best results were obtained
when we interleaved the intensity and depth frames and in-
put them to the CNN.

None Offline Online Both

Train 99.9% 99.8% 93.0% 91.1%

Test 48.3% 56.2% 59.1% 74.4%

Table 3: Classification results with data augmentation
The average correct classification rates for LRN with differ-
ent forms of data augmentation. When we employed both
forms of data augmentation the accuracy for the test set in-
creased considerably.

mentation method successfully reduced over-fitting and im-
proved generalization of the gesture classifier. Additionally,
we observed that image gradients increased the final correct
classification rate by 1.1%, and spatial and temporal elas-
tic deformations applied to the training data increased it by
1.2% and 1.72%, respectively.

Table 4 shows the confusion matrix of our proposed fi-
nal classifier. Our classifier often confused between the
Swipe and Scroll gestures performed along the same direc-
tion. Many gestures were mis-classified as the Swipe down
gesture. The Rotate CW/CCW gestures were difficult for
the classifier. The classifier also had difficulties with dis-
tinguishing between the Swipe + and the Swipe X gestures.
The Tap-3 gesture produced 38% of the miss-classifications.

The classifier’s less confident decisions can be rejected
by setting an empirical threshold. This helps to increase the
correct classification rate, but at the cost of a greater number
of missed gestures. Fig. 7 demonstrates this tradeoff for our
gesture classifier at various confidence threshold values.

It took 1.83 and 2.5 hours to train the LRN and the HRN,
respectively, on an NVIDIA Tesla K20m GPU for a single
fold of the leave-one-subject-out cross-validation. To prop-
agate a gesture forward though the LRN it took 20ms on

C
la

ss

1.
Sw

ip
e

R

2.
Sw

ip
e

L

3.
Sw

ip
e

D

4.
Sw

ip
e

U

5.
Sw

ip
e

V

6.
Sw

ip
e

X

7.
Sw

ip
e

+

8.
Sc

ro
ll

R

9.
Sc

ro
ll

L

10
.S

cr
ol

lD

11
.S

cr
ol

lU

12
.T

ap
-1

13
.T

ap
-3

14
.P

in
ch

15
.E

xp
an

d

16
.R

ot
at

e
C

C
W

17
.R

ot
at

e
C

W

18
.O

pe
n

19
.C

lo
se

1. 77 12 2 2 7
2. 74 2 7 7 2 4 2 2
3. 66 9 9 2 4 4 2 4
4. 90 2 4 2 2
5. 12 80 2 6
6. 2 5 70 9 5 2 2 5
7. 2 2 21 62 2 11
8. 9 91
9. 8 90 2
10. 11 82 7
11. 96 4
12. 7 82 7 4
13. 8 10 2 2 6 64 2 2 2 2
14. 19 2 75 2 2
15. 4 4 74 6 10 2
16. 11 7 2 2 2 4 65 7
17. 4 10 2 2 2 8 70 2
18. 2 88 10
19. 2 4 10 84

Table 4: The confusion matrix for our proposed gesture
classifier. Abbreviations: L - left, R - right, D - down, U -
up, CW/CCW - clock/counter-clock wise.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Rejection threshold

0.00

0.05

0.10

0.15

0.20

0.25

Te
st
 e
rr
o
r

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls
e
 n
e
g
a
ti
v
e
 r
a
te

Figure 7: Accuracy versus False negative rate The classi-
fication error for the test set and the false negative rate as a
function of the rejection threshold. On increasing the rejec-
tion threshold, the accuracy of the classifier increases at the
cost of increased falsely rejected gestures.

the GPU and 78ms on an Intel Core i5-3210m CPU. For
the HRN, it took 68ms on the GPU and 196ms on the CPU.
On dividing by the number of frames in each gesture (32)

we get 400 FPS for LRN, 160 FPS for HRN and 110 FPS
for their combination. The decision making time for our
classifier is nearly half of that of the baseline HOG+HOG2

features-based method (50 FPS) [14].

4. CONCLUSIONS
We developed an effective method for dynamic hand ges-

ture recognition with 3D convolutional neural networks.
The proposed classifier uses a fused motion volume of
normalized depth and image gradient values, and utilizes
spatio-temporal data augmentation to avoid overfitting.

By means of extensive evaluation, we demonstrated that
the combination of low and high resolution sub-networks
improves classification accuracy considerably. We further
demonstrated that the proposed data augmentation tech-
nique plays an important role in achieving superior perfor-
mance. For the challenging VIVA dataset, our proposed
system achieved a classification rate of 77.5%. Our future
work will include more adaptive selection of the optimal hy-
perparameters of the CNNs, and investigating robust classi-
fiers that can classify higher level dynamic gestures includ-
ing activities and motion contexts.

References
[1] F. Althoff, R. Lindl, and L. Walchshäusl. Robust multimodal

hand-and head gesture recognition for controlling automo-
tive infotainment systems. In VDI-Tagung: Der Fahrer im
21. Jahrhundert, 2005. 1

[2] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella,
and J. Schmidhuber. Flexible, high performance convolu-
tional neural networks for image classification. In Inter-
national Joint Conference on Artificial Intelligence, pages
1237–1242, 2011. 1

[3] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column
deep neural networks for image classification. In CVPR,
pages 3642–3649, 2012. 1

[4] N. Dardas and N. D. Georganas. Real-time hand gesture
detection and recognition using bag-of-features and support
vector machine techniques. IEEE Transactions on Instru-
mentation and Measurement, 60(11):3592–3607, 2011. 1

[5] S. Escalera, X. Bar, J. Gonzlez, M. A. Bautista, M. Madadi,
M. Reyes, V. Ponce, H. J. Escalante, J. Shotton, and
I. Guyon. Chalearn looking at people challenge 2014:
Dataset and results. In ECCVW, 2014. 1

[6] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov. Improving neural networks by prevent-
ing co-adaptation of feature detectors. arXiv, 2012. 3

[7] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei. Large-scale video classification with convo-
lutional neural networks. In CVPR, pages 1725–1732, 2014.
1

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, pages 1097–1105. 2012. 1, 2, 4

[9] J. J. LaViola Jr. An introduction to 3D gestural interfaces. In
SIGGRAPH Course, 2014. 1

[10] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. In Proceed-
ings of the IEEE, pages 2278–2324, 1998. 1

[11] S. Mitra and T. Acharya. Gesture recognition: A survey.
IEEE Systems, Man, and Cybernetics, 37:311–324, 2007. 1

[12] P. Molchanov, S. Gupta, K. Kim, and K. Pulli. Multi-sensor
System for Driver’s Hand-gesture Recognition. In AFGR,
2015. 1, 2, 5

[13] N. Neverova, C. Wolf, G. W. Taylor, and F. Nebout. Multi-
scale deep learning for gesture detection and localization. In
ECCVW, 2014. 1

[14] E. Ohn-Bar and M. Trivedi. Hand gesture recognition in real
time for automotive interfaces: A multimodal vision-based
approach and evaluations. IEEE Trans. on Intelligent Trans-
portation Systems, 15(6):1–10, 2014. 1, 2, 5, 7

[15] F. Parada-Loira, E. Gonzalez-Agulla, and J. Alba-Castro.
Hand gestures to control infotainment equipment in cars. In
IEEE Intelligent Vehicles Symposium, pages 1–6, 2014. 1

[16] V. I. Pavlovic, R. Sharma, and T. S. Huang. Visual interpre-
tation of hand gestures for human-computer interaction: A
review. PAMI, 19:677–695, 1997. 1

[17] L. Pigou, S. Dieleman, P.-J. Kindermans, and B. Schrauwen.
Sign language recognition using convolutional neural net-
works. In ECCVW, 2014. 1

[18] P. Y. Simard, D. Steinkraus, and J. C. Platt. J.c.: Best prac-
tices for convolutional neural networks applied to visual doc-
ument analysis. In Int. Conference on Document Analysis
and Recognition, pages 958–963, 2003. 1, 4

[19] K. Simonyan and A. Zisserman. Two-stream convolutional
networks for action recognition in videos. In NIPS, pages
568–576, 2014. 1, 4

[20] T. Starner, A. Pentland, and J. Weaver. Real-time american
sign language recognition using desk and wearable computer
based video. PAMI, 20(12):1371–1375, 1998. 1

[21] J. Suarez and R. R. Murphy. Hand gesture recognition with
depth images: A review. In ROMAN, pages 411–417, 2012.
1

[22] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the
importance of initialization and momentum in deep learning.
In ICML, pages 1139–1147, 2013. 3

[23] P. Trindade, J. Lobo, and J. Barreto. Hand gesture recogni-
tion using color and depth images enhanced with hand an-
gular pose data. In IEEE Conf. on Multisensor Fusion and
Integration for Intelligent Systems, pages 71–76, 2012. 1

[24] S. B. Wang, A. Quattoni, L. Morency, D. Demirdjian, and
T. Darrell. Hidden conditional random fields for gesture
recognition. In CVPR, pages 1521–1527, 2006. 1

[25] M. Zobl, R. Nieschulz, M. Geiger, M. Lang, and G. Rigoll.
Gesture components for natural interaction with in-car
devices. In Gesture-Based Communication in Human-
Computer Interaction, pages 448–459. Springer, 2004. 1

