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Figure 1. GLAMR (Left) recovers human meshes in consistent global coordinates and infills missing poses (transparent) due to various
occlusions (obstruction, missed detection, outside field of view), while standard human mesh recovery methods (Right) fail to do so.

Abstract

We present an approach for 3D global human mesh re-
covery from monocular videos recorded with dynamic cam-
eras. Our approach is robust to severe and long-term occlu-
sions and tracks human bodies even when they go outside
the camera’s field of view. To achieve this, we first propose
a deep generative motion infiller, which autoregressively in-
fills the body motions of occluded humans based on visi-
ble motions. Additionally, in contrast to prior work, our
approach reconstructs human meshes in consistent global
coordinates even with dynamic cameras. Since the joint re-
construction of human motions and camera poses is under-
constrained, we propose a global trajectory predictor that
generates global human trajectories based on local body
movements. Using the predicted trajectories as anchors,
we present a global optimization framework that refines the
predicted trajectories and optimizes the camera poses to
match the video evidence such as 2D keypoints. Experi-
ments on challenging indoor and in-the-wild datasets with
dynamic cameras demonstrate that the proposed approach
outperforms prior methods significantly in terms of motion
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infilling and global mesh recovery.

1. Introduction

Recovering fine-grained 3D human meshes from monoc-
ular videos is essential for understanding human behaviors
and interactions, which can be the cornerstone for numer-
ous applications including virtual or augmented reality, as-
sistive living, autonomous driving, etc. Many of these ap-
plications use dynamic cameras to capture human behaviors
yet also require estimating human motions in global coor-
dinates consistent with their surroundings. For instance,
assistive robots and autonomous vehicles need a holistic
understanding of human behaviors and interactions in the
world to safely plan their actions even when they are mov-
ing. Therefore, our goal in this paper is to tackle the impor-
tant task of recovering global human meshes from monocu-
lar videos captured by dynamic cameras.

However, this task is highly challenging for two main
reasons. First, dynamic cameras make it difficult to estimate
human motions in consistent global coordinates. Existing
human mesh recovery methods estimate human meshes in
the camera coordinates [71, 123] or even in the root-relative
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coordinates [49, 72]. Hence, they can only recover global
human meshes from dynamic cameras by using SLAM to
estimate camera poses [602]. However, SLAM can often fail
for in-the-wild videos due to moving and dynamic objects.
It also has the problem of scale ambiguity, which often leads
to camera poses that are inconsistent with the human mo-
tions. Second, videos captured by dynamic cameras often
contain severe and long-term occlusions of humans, which
can be caused by missed detection, complete obstruction by
objects and other people, or the person going outside the
camera’s field of view (FoV). These occlusions pose seri-
ous challenges to standard human mesh recovery methods,
which rely on detections or visible parts to estimate human
meshes. Only a few works have attempted to tackle the oc-
clusion problem in human mesh recovery [19,40]. How-
ever, these methods can only address partial occlusions of a
person and fail to handle severe occlusions when the person
is completely invisible for an extended period of time.

To tackle the above challenges, we propose Global
Occlusion-Aware Human Mesh Recovery (GLAMR),
which can handle severe occlusions and estimate human
meshes in consistent global coordinates — even for videos
recorded with dynamic cameras. We start by using off-the-
shelf methods (e.g., KAMA [37] or SPEC [51]) to estimate
the shape and pose sequences (motions) of visible people in
the camera coordinates. These methods also rely on multi-
object tracking and re-identification, which provide occlu-
sion information, and the motion of occluded frames is not
estimated. To tackle potentially severe occlusions, we pro-
pose a deep generative motion infiller that autoregressively
infills the local body motions of occluded people based on
visible motions. The motion infiller leverages human dy-
namics learned from a large motion database, AMASS [66].
Next, to obtain global motions, we propose a global trajec-
tory predictor that can generate global human trajectories
based on local body motions. It is motivated by the obser-
vation that the global root trajectory of a person is highly
correlated with the local body movements. Finally, using
the predicted trajectories as anchors to constrain the solu-
tion space, we further propose a global optimization frame-
work that jointly optimizes the global motions and camera
poses to match the video evidence such as 2D keypoints.

The contributions of this paper are as follows: (1) We
propose the first approach to address long-term occlusions
and estimate global 3D human pose and shape from videos
captured by dynamic cameras; (2) We propose a novel gen-
erative Transformer-based motion infiller that autoregres-
sively infills long-term missing motions, which consider-
ably outperforms state-of-the-art motion infilling methods;
(3) We propose a method to generate global human trajec-
tories from local body motions and use the generated tra-
jectories as anchors to constrain global motion and camera
optimization; (4) Extensive experiments on challenging in-

door and in-the-wild datasets demonstrate that our approach
outperforms prior state-of-the-art methods significantly in
tackling occlusions and estimating global human meshes.

2. Related Work

Camera-Relative Pose Estimation. 3D human mesh re-
covery from RGB images or videos is an ill-posed prob-
lem due to the depth ambiguity. Most existing meth-
ods simplify the problem by estimating human poses rel-
ative to the pelvis (root) of the human body [I, 6, 9-11,

, 96, ) s s s s ]. These methods as-
sume an orthographic camera projection model and ne-
glect the absolute 3D translation of the person w.r.t. the
camera. To address the lack of translation, recent meth-
ods start to estimate human meshes in the camera coordi-
nates [37,40,57,62,80, 83,90, s , , ]. Several
approaches recover the absolute translation of the person
using an optimization framework [68-70, 86, 1. A few
methods exploit various scene constraints during the opti-
mization process to improve depth prediction [102, 1.
Alternatively, recent approaches use physics-based con-
straints to ensure the physical plausibility of the estimated
poses [13,38,90, s ]. Igbal et al. [36] exploit a limb-
length constraint to recover the absolute translation of the
person using a 2.5D representation. Some approaches ap-
proximate the depth of the person using the bounding box
size [40, 71, ]. HybrIK [57] and KAMA [37] employ
inverse kinematics to estimate human meshes with abso-
lute translations in the camera coordinates. Several meth-
ods directly predict the absolute depth of each person using
a heatmap representation [18, ]. Recently, SPEC [51]
learns to predict the camera parameters (pitch, yaw, FoV)
from the image, which are used for absolute pose regres-
sion in the camera coordinates. THUNDR [ ! 16] also adopts
a similar strategy but uses known camera parameters. While
these methods show impressive results, they cannot esti-
mate global human motions from videos captured by dy-
namic cameras. In contrast, our approach can recover hu-
man meshes in consistent global coordinates for dynamic
cameras and handle severe and long-term occlusions.

Global Pose Estimation. Most existing methods that esti-
mate 3D poses in world coordinates rely on calibrated, syn-
chronized, and static multi-view capture setups [5,15,17,32,

, 82,83, , s ]. Huang et al. [7] use uncalibrated
cameras but still assume time synchronization and static
camera setups. Hasler er al. [26] handle unsynchronized
moving cameras but assume multi-view input and rely on
audio stream for synchronization. More recently, Dong et
al. [16] propose to recover 3D poses from unaligned inter-
net videos of different actors performing the same activity
from unknown cameras. However, they assume that multi-
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Figure 2. Overview of GLAMR. In Stage I, we preprocess the video with multi-object tracking, re-identification and human mesh recovery

to extract each person’s occluded motion Ql in the camera coordinates. In Stage II, we propose a generative motion infiller to infill the

occluded body motion @ to produce occlusion-free body motion @ In Stage III, we propose a global trajectory predlctor that uses the

infilled body motion ® to generate the global trajectory (T R ) of each person and obtain their global motion Q . In Stage IV, we

jointly optimize the global trajectories of all people and the camera parameters to produce global motions QZ consistent with the video.

ple viewpoints of the same pose are available in the videos.
Different from these methods, our approach estimates hu-
man meshes in global coordinates from monocular videos
recorded with dynamic cameras. Several methods rely on
additional IMU sensors or pre-scanned environments to re-
cover global human motions [24, ], which is unpracti-
cal for large-scale adoption. Recently, another line of work
starts to focus on estimating accurate human-scene interac-
tion [28, 33, 65, ]. Liu et al. [62] first obtain the cam-
era poses and dense reconstruction of the scene from dy-
namic cameras using a SLAM algorithm, COLMAP [88].
The camera poses are used for camera-to-world transfor-
mation, while the reconstructed scene is used to encourage
human-scene contacts. However, SLAM can often fail for
the in-the-wild videos and is prone to error propagation. In
contrast, our approach does not require SLAM but instead
uses global trajectory prediction to constrain the joint re-
construction of human motions and camera poses. Addi-
tionally, our approach can also handle severe and long-term
occlusions common in dynamic camera setups.

Occlusion-Aware Pose Estimation. Most existing human
pose estimation methods assume the person is fully visible
in the images and are not robust to strong occlusions. Only a
few methods address the occlusion problem in pose estima-
tion [19,50,84,85, ]. While these methods show impres-
sive results under partial occlusions, they do not address se-
vere and long-term occlusions when people are completely
obstructed or outside the camera’s FoV for a long time.
In contrast, our approach leverages deep generative human
motion models to tackle severe and long-term occlusions.

Human Motion Modeling. Extensive research has studied
3D human dynamics for various tasks including motion pre-
diction and synthesis [2,4,8,20,21,27,39,60,67,79,81, 100,

,109—111]. Recent human pose estimation methods start
to leverage learned human dynamics models to improve the
accuracy of estimated motions [49, 84, ]. Several motion
infilling approaches are also proposed to generate complete
motions from partially observed motions [25, 31, 45, 46].
Additionally, recent work on motion capture shows that
global human translations can be predicted from 3D local
joint positions [89]. In contrast to prior work, our trajec-
tory predictor does not require GT root orientations but can
predict both global root translations and orientations. Fur-
thermore, we also propose a novel generative autoregressive
motion infiller that can use noisy poses as input instead of
high-quality GT poses, and we demonstrate its effectiveness
in tackling long-term occlusions in human pose estimation.

3. Method

The input to our framework is a video I = (Iy,...,1I7)
with T' frames, which is captured by a dynamic camera,
i.e., the camera poses can change every frame. Our goal is
to estimate the global motion (pose sequence) {Q'}N, of
the IV people in the video in a consistent global coordinate
system. The global motion Q° = (T, R', ®", B") for per-
son i consists of the root translations T* = (7% ..., %),
root rotations R’ = (')/Sz .,7vL)), as well as the body mo-
tion ©° = (0;, ...,0;,) and shapes B = (,8;, . ,,Bel)
where the motion spans from the the first frame s; to the
last frame e;, when the person i is relevant in the video. In
particular, each body pose 8% € R?3*3 and shape 3. € R0
corresponds to the pose parameters (excluding root rotation)
and shape parameters of the SMPL model [63]. Using the
root translation 7 € R? and (axis-angle) rotation v € R3,
SMPL represents a human body mesh with a linear function
S(7,7, 0, 3) that maps a global pose ¢ = (7,4, 0, 3) to an
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Figure 3. Left: We autoregressively infill the motion using a sliding window, where the first h. frames are already infilled to serve as

and the last h, frames are

to guide the ending motion. Frames between the context and look-ahead are infilled. Right:

The CVAE-based motion infiller adopts a Transformer-based seq2seq architecture, where we encode only the visible frames of occluded
body motion ® into a context sequence, which is used jointly with latent code z by a decoder network to generate occlusion-free motion ©.

articulated triangle mesh & € R¥*3 with K = 6980 ver-
tices. We can therefore recover the global mesh sequence
for each person from their global motion Q* via SMPL.

As outlined in Fig. 2, our framework consists of four
stages. In Stage I, we first use multi-object tracking (MOT)
and re-identification algorithms to obtain the bounding box
sequence of each person, which is input to a human mesh
recovery method (e.g., KAMA [37] or SPEC [51]) to extract

~1
the motion @ of each person (including translation) in the

camera coordinates. The motion Ql may be incomplete due
to various occlusions (e.g., obstruction, missed detection,
going outside FoV), where bounding boxes from MOT are
missing for some frames. In Stage II (Sec. 3.1), we pro-
pose a generative motion infiller to tackle the occlusions

~1
in the estimated body motion ® and produce occlusion-

free body motion ®'. In Stage III (Sec. 3.2), we propose
a global trajectory predictor that uses the infilled body mo-

~1
tion ® to generate the global trajectory (root translations
and rotations) of each person and obtain their global motion

@l. In Stage IV (Sec. 3.3), we jointly optimize the global
trajectories of all people and the camera parameters to pro-

. ~1 . . . .
duce global motions @@ consistent with the video evidence.

3.1. Generative Motion Infiller

The task of the generative motion infiller M is to in-
fill the occluded body motion e of each person to pro-

~1
duce occlusion-free body motion ® . Here, we do not use
the motion infiller M to infill other components in the es-
~i ~i i

timated motion @ , i.e., root trajectory (T' , R ) and shapes
~

B . This is because it is difficult to infill the root trajectory

~i ~i

(T ,R) using learned human dynamics, since it resides
in the camera coordinates rather than a consistent coordi-

nate system due to the dynamic camera. In Sec. 3.2, we
will use the proposed global trajectory predictor to generate

occlusion-free global trajectory (fz, ﬁz) from the infilled

body motion ®'. The trajectory (fl, I?Il) from the pose
estimator is not discarded and will be used in the global op-
timization (Sec. 3.3). We use linear interpolation to produce

occlusion-free shapes E’L, which can be time-varying to be
compatible with per-frame pose estimators such as KAMA.
Given a general occluded human body motion ® =
(61,...,6)) of h frames and its visibility mask V =
(Va, ..., V) as input, the motion infiller M outputs a com-
plete occlusion-free motion 0 = (51, . ,§h). The visi-
bility mask V' encodes the visibility of the occluded motion
©, where Vi = 1 if the body pose 5,5 is visible in frame ¢
and V; = 0 otherwise. Since the human pose for occluded
frames can be highly uncertain and stochastic, we formu-
late the motion infiller M using the conditional variational
autoencoder (CVAE) [48]:
©=M(0.V,z), (1)
where the motion infiller M corresponds to the CVAE de-
coder and z is a Gaussian latent code. We can obtain differ-
ent occlusion-free motions ® by varying z.

Autoregressive Motion Infilling. To ensure that the motion
infiller M can handle much longer test motions than the
training motions, we propose an autoregressive motion in-
filling process at test time as illustrated in Fig. 3 (Left). The
key idea is to use a sliding window of h frames, where we
assume the first h. frames of motion are already occlusion-
free or infilled and serve as context, and we also use the last
h; frames as look-ahead. The look-ahead is essential to the
motion infiller since it may contain visible poses that can
guide the ending motion and avoid generating discontinu-
ous motions. Excluding the context and look-ahead frames,
only the middle h, = h — h. — h; frames of motion are
infilled. We iteratively infill the motion using the sliding
window and advance the window by h, frames every step.



Motion Infiller Network. The overall network design of
the CVAE-based motion infiller is outlined in Fig. 3 (Right).
In particular, we employ a Transformer-based seq2seq ar-
chitecture, which consists of three parts: (1) a context net-
work that uses a Transformer encoder to encode the visi-
ble poses from the occluded motion ® into a context se-
quence, which serves as the condition for other networks;
(2) a decoder network that uses the latent code z aild con-
text sequence to generate occlusion-free motion ® via a
Transformer decoder and a multilayer perceptron (MLP);
(3) prior and posterior networks that generate the prior and
posterior distributions for the latent code z. In the net-
works, we adopt a time-based encoding that replaces the
position in the original positional encoding [99] with the
time index. Unlike prior CNN-based methods [31,45], our
Transformer-based motion infiller does not require padding
missing frames, but instead restricts its attention to visible
frames to achieve effective temporal modeling.

Training. We train the motion infiller M using a large mo-
tion capture dataset, AMASS [66]. To synthesize occluded

motions é, for any GT training motion é/ of h frames,
we randomly occlude H,.. consecutive frames of motion
where H,.. is uniformly sampled from [Hy,, H,:]. Note
that we do not occlude the first h. frames which are re-
served as context. We use the standard CVAE objective to
train the motion infiller M:

h
~ ~
Lav=Y_110:— 6,3+ L, , )

t=1

where L%, is the KL divergence between the prior and pos-
terior distributions of the CVAE latent code z.

3.2. Global Trajectory Predictor

~i
After we obtain occlusion-free body motion @ for each
person using the motion infiller, a key problem still remains:

the estimated trajectory (’_:FVZ, 1?) of the person is still oc-
cluded and not in a consistent global coordinate system. To
tackle this problem, we propose to learn a global trajectory
predictor 7 that generates a person’s occlusion-free global

trajectory (’f L, ﬁz) from the local body motion e

Given a general occlusion-free body motion ® =
(01,...,0,,) as input, the trajectory predictor 7 outputs
its corresponding global trajectory (T, R) including the
root translations T' = (71,...,Ty,) and rotations R =
(Y15-++»Ym)- To address any potential ambiguity in the
global trajectory, we also formulate the global trajectory
predictor using the CVAE:

¥ =T(0,v), 3)
(T, R) = EgoToGlobal(¥), 4)

where the global trajectory predictor 7 corresponds to the
CVAE decoder and v is the latent code for the CVAE. In
Eq. (3), the immediate output of the global trajectory pre-
dictor T is an egocentric trajectory ¥ = (¢1,...,,,),
which by design can be converted to a global trajectory
(T, R) using a conversion function EgoToGlobal.

Egocentric Trajectory Representation. The egocentric
trajectory W is just an alternative representation of the
global trajectory (1", R). It converts the global trajectory
into relative local differences and represents rotations and
translations in the heading coordinates (y-axis aligned with
the heading, i.e., the person’s facing direction). In this way,
the egocentric trajectory representation is invariant of the
absolute zy translation and heading. It is more suitable for
the prediction of long trajectories, since the network only
needs to output the local trajectory change of every frame
instead of the potentially large global trajectory offset.

The conversion from the global trajectory to the ego-
centric trajectory is given by another function: ¥ =
GlobalToEgo(T, R), which is the inverse of the func-
tion EgoToGlobal. In particular, the egocentric trajec-
tory 1, = (0x¢, 0ys, 2¢, db¢, M, ) at time ¢ is computed as:

(0w, 0y;) = ToHeading(7y¥ — 77Y,), 5)
w=Ti, =7 -1, 6)
n, = ToHeading(v,), (N

where 77 is the xy component of the translation 7, 77
is the z component (height) of 7, 'yf is the heading angle
of the rotation ~,, ToHeading is a function that converts
translations or rotations to the heading coordinates defined
by the heading *yf , and 7, is the local rotation. As an ex-
ception, (dzg, dyp) and d¢q are used to store the initial xy
translation 7(” and heading Tg’ . These initial values are set
to the GT during training and arbitrary values during infer-
ence (as the trajectory can start from any position and head-
ing). The inverse process of Eq. (5)-(7) defines the inverse
conversion EgoToGlobal used in Eq. (4), which accumu-
lates the egocentric trajectory to obtain the global trajectory.
To correct potential drifts in the trajectory, in Sec. 3.3, we
will optimize the global trajectory of each person to match
the video evidence, which also solves the trajectory’s start-
ing point (dz, dyo, d¢dp). More details about the egocentric
trajectory are given in Appendix D.

Network and Training. The trajectory predictor adopts a
similar network design as the motion infiller with one main
difference: we use LSTMs for temporal modeling instead of
Transformers since the output of each frame is the local tra-
jectory change in our egocentric trajectory representation,
which mainly depends on the body motion of nearby frames
and does not require long-range temporal modeling. We
will show in Sec. 4.2 that the egocentric trajectory and use



of LSTMs instead of Transformers are crucial for accurate
trajectory prediction. Please refer to Appendix D for the
detailed network architectures. We use the standard CVAE
objective to train the trajectory predictor 7 :

S (lr—TB+ v evl2) + L%, ®
t=1

where 7, and -} denote the GT translation and rotation, ©
computes the relative rotation, || - ||, computes the rotation
angle, and Lg; is the KL divergence between the prior and
posterior distributions of the CVAE latent code v. We again
use AMASS [66] to train the trajectory predictor 7.

3.3. Global Optimization

After using the generative motion infiller and global tra-
jectory pred1ct0r we have obtained an occlusion-free global

motion Q" = (T R0 B ) for each person in the
video. However, the global trajectory predictor generates
trajectories for each person independently, which may not
be consistent with the video evidence. To tackle this prob-
lem, we propose a global optimization process that jointly
optimizes the global trajectories of all people and the ex-
trinsic camera parameters to match the video evidence such
as 2D keypoints. The final output of the global Optllea-

tion and our framework is Q (T R .6 B ) where

(G) B ) = (@ B’ ), Le., we directly use the occlusion-
free body motion and shapes from the previous stages.

Optimization Variables. The first set of variables we opti-
mize is the egocentric representation {\ff}l\il of the global

trajectories {(T R )}N.,. We adopt the egocentric repre-
sentation since it allows corrections of the translation and
heading at one frame to propagate to all future frames.
Therefore, it enables optimizing the trajectories of occluded
frames since they will impact future visible frames under
the egocentric trajectory representation. We will empiri-
cally demonstrate its effectiveness in Sec. 4.2.

The second set of optimization variables is the extrinsic
camera parameters C = (C1,...,Cr) where C; € R**4
is the camera extrinsic matrix at frame ¢ of the video.

Energy Function. The energy function we aim to minimize
is defined as

E({‘f’z}i]\;h C) = AopEop + AcraiBreras

+ AregEreg + )\camEcam + /\penEpen )

€))

where we use five energy terms with their corresponding
coefficients A\op, Acrais Aregr Acam, Apen-
The first term F,, measures the error between the 2D

projection &. of the optimized 3D keypoints X, € R7*3

and the estimated 2D keypoints %i from a keypoint detector:

B NTJZZVt”:Bt_xtHFv (10)

=1 t=1

i ~1 ~1 wi ~i ~1 ~1
z, =11 (XtactaK) , Xy =J(T4,7,0,,8,) (11

where V! is person i’s visibility at frame ¢, IT is the camera
projection with extrinsics C; and approximated intrinsics

K, and X is computed using the SMPL JOlIlt function J

from the optimized global pose §. = (¥.,¥.,8,, Bt) cq'.
The second term F ., measures the difference between

the optimized global trajectory (IV“Z, Iv%z) viewed in the cam-

era coordinates and the trajectory (Tz, INEZ) output by the
pose estimator (e.g., KAMA [37]) in Stage I:

N T
1 i ~i )2
Bes = 577 20 222 (10676 €O @ 71l "

+w|[T(FLC) = F13)

where the function F( C}) transforms the global rotation
4; or translation 7; to the camera coordinates defined by
C', and w; is a weighting factor for the translation term.

The third term F,.4 regularizes the egocentric trajectory

~1 ~1
W to stay close to the output ¥ of the trajectory predictor:

) 9| AR

i=1 t=1

\ (13)

where o denotes the element-wise product and w, is a
weighting vector for each element inside the egocentric tra-
jectory. As an exception, we do not regularize each per—

son’s initial xy position and heading (5%, 0%, (5¢0) C wo
as they need to be inferred from the video.

The fourth term E_., measures the smoothness of the
camera parameters C' and the uprightness of the camera:

T
1
— Y
Ecam - ? t_zl<ct ’ Y>
= ) ) 4
S ller, el + ez, - ol
t=1
where (-, ) denotes the inner product, C? is the +y vector

of the camera C, and Y is the global up direction. C and

C7 denote the rotation and translation of the camera C'.
The final term E., is an signed distance field (SDF)-

based inter-person penetration loss adopted from [40].



4. Experiments

Datasets. We employ the following datasets in our exper-
iments: (1) AMASS [66], which is a large human motion
database with 11000+ human motions. We use AMASS
to train and evaluate the motion infiller and trajectory pre-
dictor. (2) 3DPW [101], which is an in-the-wild human
motion dataset that uses videos and wearable IMU sen-
sors to obtain GT poses, even when the person is occluded.
We evaluate our approach using the test split of 3DPW.
(3) Dynamic Human3.6M is a new benchmark for human
pose estimation with dynamic cameras that we create from
the Human3.6M dataset [35]. We simulate dynamic cam-
eras and occlusions by cropping each frame with a small
view window that oscillates around the person (see Fig. 5).
More details are provided in Appendix A.

Evaluation Metrics. We use the following metrics for eval-
uation: (1) G-MPJPE and G-PVE, which extend the mean
per joint position error (MPJPE) and per-vertex error (PVE)
by computing the errors in the global coordinates. As er-
rors in estimated global trajectories accumulate over time in
our dynamic camera setting, we follow standard evaluations
for open-loop reconstruction (e.g., SLAM [93] and inertial
odometry [30]) to compute errors using a sliding window
(10 seconds) and align the root translation and rotation with
the GT at the start of the window. (2) PA-MPJPE, which
is the Procrustes-aligned MPJPE for evaluating estimated
body poses. For invisible poses, since there can be many
plausible poses beside the GT, we follow prior work [3,110]
to compute the best PA-MPJPE out of multiple samples for
our probabilistic approach. (3) Accel, which computes the
mean acceleration error of each joint and is commonly used
to measure the jitter in estimated motions [49,112]. (4) FID,
which is an extension of the original Frechet Inception Dis-
tance that calculates the distribution distance between es-
timated motions and the GT. FID is a standard metric in
motion generation literature to evaluate the quality of gener-
ated motions [34,58,59,98]. Following prior work [59], we
compute FID using the well-designed kinetic motion fea-
ture extractor in the fairmotion library [22].

Implementation Details. Thorough details about the entire
framework are provided in Appendix A to E.

4.1. Evaluation of GLAMR

Baselines. Since no prior methods can estimate global
motions from dynamic cameras and address long-term oc-
clusions, we design various baselines by combining state-
of-the-art human mesh recovery methods (KAMA [37] or
SPEC [51]), motion infilling methods, and SLAM-based
camera estimation (OpenSfM [74]). In particular, we use
the estimated camera parameters to convert estimated mo-
tions from the camera coordinates to the global coordinates.
For motion infilling, we use (1) linear interpolation, (2) last

Method (All)  (All) (Invisible) (Invisible) (Visible)  (All)

G-MPIPE G-PVE  FID  PA-MPJPE PA-MPJPE Accel
KAMA [45] + Linear Interpolation 17352 1744.1 302 74.8 474 8.0
KAMA [45] + Last Pose 1318.1 13303 367 88.8 474 123
KAMA [45] + ConvAE [45] 17378 17489 289 774 56.9 75
SPEC [51] + Linear Interpolation 21133 21195 29.7 787 55.7 142
SPEC [51] + Last Pose 17825 17909 362 926 55.7 18.8
SPEC [51] + ConvAE [45] 21133 21190 285 80.1 59.9 11.9
Ours (GLAMR w/ SPEC) 899.1 9137 8.2 72.8 55.0 6.6
Ours (GLAMR w/ KAMA) 806.2 8241 114 67.7 476 6.0

Table 1. Baseline comparison on Dynamic Human3.6M. We re-
port results for visible, invisible (occluded), and all frames.

(Invisible)  (Invisible) (Visible) (All)

Method FID  PA-MPJPE PA-MPJPE Accel
KAMA [45] + Linear Interpolation 30.7 87.5 50.8 24.2
KAMA [45] + Last Pose 40.3 96.3 50.8 254
KAMA [45] + ConvAE [45] 32.0 84.5 56.4 19.6
SPEC [51] + Linear Interpolation 33.6 85.6 53.3 33.1
SPEC [51] + Last Pose 39.5 924 533 342
SPEC [51] + ConvAE [45] 354 86.9 59.3 24.0
Ours (GLAMR w/ SPEC) 24.8 79.1 54.9 9.5
Ours (GLAMR w/ KAMA) 22.6 73.6 51.1 8.9

Table 2. Baseline comparison on 3DPW. G-MPJPE and G-PVE
are not reported since 3DPW does not provide accurate GT global
human trajectories. See also the caption of Table 1.

pose, i.e., replicating the last visible pose, and (3) a state-of-
the-art CNN-based motion infilling method, ConvAE [45].
The results on Dynamic Human3.6M and 3DPW are
summarized in Table 1 and 2 respectively. We only report
G-MPJPE and G-PVE on Dynamic Human3.6M since they
require accurate GT trajectories, which 3DPW does not pro-
vide. It is evident that our approach, GLAMR, outperforms
the baselines in almost all metrics. In particular, GLAMR
achieves significantly lower G-MPJPE and G-PVE, which
demonstrates its strong ability to reconstruct global human
motions. Furthermore, GLAMR attains considerably lower
FID and PA-MPJPE (with ten samples) for occluded (invis-
ible) poses. The lower FID means GLAMR can infill more
humanlike motions, and the lower PA-MPIJPE also shows
GLAMR’s probabilistic motion samples can cover the GT
better. Finally, while GLAMR achieves almost the same
PA-MPIJPE for visible poses as the best method, it yields
much smoother motions (smaller acceleration error). This
is because our motion infiller leverages human dynamics
learned from a large motion dataset to produce motions.

Qualitative Results. Fig. 4 and 5 show qualitative com-
parisons of GLAMR against the strong baseline, KAMA
+ Linear Interpolation. Additionally, we provide abundant
qualitative results on the project page.

4.2. Evaluation of Key Components

Benchmarking Motion Infiller. We evaluate the proposed
generative motion infiller on the test split of the AMASS
dataset [06]. We compare against three motion infilling
baselines: linear interpolation, replicating the last pose, and
ConvAE [45]. As shown in Table 3, our generative mo-
tion infiller achieves significantly better PA-MPJPE for both
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Figure 4. Qualitative comparison of GLAMR with a strong baseline on 3DPW. The infilled motion (transparent) by GLAMR is more
natural especially for the legs, while the baseline has very slow leg motions due to interpolation in a large window (frame 10 to 75). On
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Figure 5. Qualitative comparison of GLAMR on Dynamic Hu-
man3.6M. GLAMR can generate natural hand motions for invisi-
ble frames instead of just doing linear interpolation.

the sampled motions (with five samples) and reconstructed
motion for the infilled frames. Our approach also achieves
considerably better FID, reducing the FID of ConvAE [45]
by half, which indicates that the infilled motions by our ap-
proach are much closer to real human motions.

Benchmarking Trajectory Predictor. We also evalu-
ate our global trajectory predictor against two variants on
the AMASS test set: (1) “Transformer”, which replaces
the LSTMs in the trajectory predictor with Transformers;
(2) “Ours w/o Ego Trajectory”, which does not use the
egocentric trajectory but instead directly outputs the 6-DoF
global trajectory. As shown in Table 4, both variants lead
to worse global trajectory prediction (higher best-of-five G-
MPIJPE and G-PVE). We believe the reasons are: (1) the po-
sitional encoding in Transformers may not generalize well
to longer motions compared to the LSTMs in our approach;
(2) directly predicting the 6-DoF global trajectory offsets in-
stead of egocentric trajectories from local body motions is
also hard to generalize since the global offsets can be large.

Ablations for Global Optimization. We further perform
ablation studies on the effect of key components in our
global optimization. Specifically, we design two variants:

(Sampled)  (Reconstructed) (Sampled)
Method PA-MPJPE  PA-MPIPE FID
Linear Interpolation 83.5 83.5 353
Last Pose 104.4 104.4 41.6
ConvAE [45] 72.8 72.8 31.4
Ours 61.4 36.1 16.7

Table 3. Benchmarking motion infiller on AMASS.

Method G-MPJPE G-PVE  Accel
Transformer 660.1 678.6 121.9
Ours w/o Ego Trajectory 763.0 780.6 8.7
Ours 466.9 472.5 5.8

Table 4. Benchmarking trajectory predictor on AMASS.

Method

Ours w/o Trajectory Predictor 1750.8 17614  12.6
Ours w/o Opt Ego Trajectory 877.3 895.0 15.5
Ours (GLAMR) 806.2 824.1 6.0

G-MPJPE G-PVE  Accel

Table 5. Global optimization ablations on Dynamic Human3.6M.

(1) “Ours w/o Trajectory Predictor”, which does not use our
trajectory predictor to generate the global human trajecto-
ries and uses camera parameters from OpenSfM [74] to ob-
tain global trajectories instead; (2) “Ours w/o Opt Ego Tra-
jectory”, which does not employ the egocentric trajectory
representation and directly optimizes the 6-DoF root trajec-
tory instead. As shown in Table 5, both variants lead to sig-
nificantly worse global trajectory reconstruction with large
increases in G-MPJPE, G-PVE, and Accel. This demon-
strates that both the global trajectory predictor and egocen-
tric trajectory representation are vital in our approach.

5. Discussion and Limitations

In this paper, we proposed an approach for 3D human
mesh recovery in consistent global coordinates from videos
captured by dynamic cameras. We first proposed a novel
Transformer-based generative motion infiller to address se-
vere occlusions that often come with dynamic cameras. To
resolve ambiguity in the joint reconstruction of global hu-
man motions and camera poses, we proposed a new solu-



tion by predicting global human trajectories from local body
motions. Finally, we proposed a global optimization frame-
work to refine the predicted trajectories, which serve as an-
chors for camera optimization. Our method achieves SOTA
results on challenging datasets and marks a significant step
towards global human mesh recovery in the wild.

As the first paper on this new problem, our method has
a few limitations: propagation of errors in multiple stages,
limited body shape estimation, not being real-time, not in-
cluding scene information, efc. A detailed discussion is pro-
vided in Appendix H. We believe these limitations are ex-
citing avenues for future work to explore.
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A. Details for the Datasets

AMASS [66] is a large human motion database with 11000+ human motions. We use AMASS to train and evaluate the
motion infiller and trajectory predictor. Specifically, we use the Transitions, SSM, and HumanEva [91] subsets for testing
and all other subsets for training.

3DPW [101] is an in-the-wild human motion dataset that consists of 60 videos recorded with dynamic cameras in diverse
environments. The GT 3D poses are obtained using wearable IMU sensors. Since non-optical sensors are used to obtain
GT data, the dataset also provides body pose information when the persons go outside the FoV of the camera. 3DPW also
provides the global trajectories of people in the dataset. However, the global trajectories are quite inaccurate since they are
estimated from IMU data. Therefore, we do not use 3DPW to evaluate global trajectory reconstruction in the paper. Since we
do not use 3DPW for training, we use sequences from the entire 3DPW dataset for visualization. We use the official 3DPW
test split to report quantitative results in the paper.

Dynamic Human3.6M is a new benchmark for global human pose estimation with dynamic cameras that we create from the
Human3.6M dataset [35]. We simulate dynamic cameras and occlusions by cropping each frame with a view window of 300 x
600 that horizontally oscillates around the person’s bounding box center with a period of 4.8 seconds and a magnitude of 200
pixels. In this way, we synthesize large camera motions and severe occlusions where the person is occluded for almost half
of the time, which makes it very challenging for existing 3D human pose and shape estimation methods. Additionally, since
Human3.6M provides accurate global human trajectories and human poses, we use Dynamic Human3.6M to evaluate global
trajectory reconstruction and pose estimation for occluded frames. We follow the standard protocol [43] and use the official
test split (subjects 9 and 11) for evaluation. Please refer to the [supplementary video](https://youtu.be/wpObDXcYueo) for
an example sequence of the Dynamic Human3.6M dataset. Code for generating Dynamic Human3.6M are available here for
users who have downloaded the original Human3.6M dataset [35].

B. Implementation Details for Preprocessing

3D Multi-Object Tracking and Re-identification. We use DeepSORT [103] with ResNet-50 [29] in the MMTracking
package [12] for 3D multi-object tracking (MOT) and re-identification. We use the GT tracks to evaluate our approach and
the baselines, following the standard protocol for human pose estimation.

Initial Human Pose and Shape Estimation. As mentioned in the main paper, we use KAMA [37] or SPEC [51] to provide
the initial human pose and shape estimation from the bounding boxes extracted by 3D MOT. We choose these two methods
since both KAMA and SPEC estimate 3D human poses in the camera coordinates with absolute root translations, while many
state-of-the-art human pose estimation methods do not provide the root translations. We also use HRNet [94] to extract 2D
human keypoints from the video, which are used in the proposed global optimization framework.

C. Implementation Details for Generative Motion Infiller
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Figure 6. The detailed network architecture of the CVAE-based generative motion infiller. For all the Transformer modules, the dimensions
for keys, queries, and values are set to 256, the number of transformer blocks is 2, the hidden dimensions of the feedforwards layers are
512, the dropout rate is 0.1, and 8 heads are used for the multi-head attention. Two hidden layers (512, 256) with ReLU activations are
used for all the token-wise MLPs.
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Network Architecture. The detailed network architecture of the CVAE-based generative motion infiller is outlined in Fig. 6.
For all the Transformer [99] modules, the dimensions for keys, queries, and values are set to 256, the number of transformer
blocks is 2, the hidden dimensions of the feedforwards layers are 512, the dropout rate is 0.1, and 8 heads are used for the
multi-head attention. The time-based encoding takes the same sinusoidal form as the original positional encoding [99] but
replaces the position with the time index. We use two hidden layers (512, 256) with ReLU activations for all the token-wise
MLPs. In the prior network, two learnable tokens are used to form queries to produce the mean 2 and standard deviation
o? of the prior distribution of the latent code z. Similarly, in the posterior network, two learnable tokens are appended to the

~/
GT pose sequence ® to output the mean p? and standard deviation o of the posterior distribution of the latent code z.

Hyperparameters and Training. The dimension of the latent code z is 128. The sliding window size h of the autoregressive
motion infilling is 50. Both the number of context frames h. and the number of look-ahead h; frames are 10. When
synthesizing occluded motions, for any GT training motion of h = 50 frames, we randomly occlude H,.. consecutive
frames of motion where H,.. is uniformly sampled from [10,40]. Note that we do not occlude the first h. = 10 frames
which are reserved as context. The KL divergence term in Eq. (2) uses a weighting factor of 0.001. We train the networks for
2000 epochs with a batch size of 1024 where each epoch uses a total of 10 million frames of motion. For optimization, we use
the Adam optimizer [47] with a learning rate of 0.001 and clip the gradient if its norm is larger than 5. We use PyTorch [75]
to implement and train the networks.

D. Implementation Details for Global Trajectory Predictor

Heading Coordinate and Egocentric Trajectory Representation. The heading vector of a person points towards where
the person is facing and is parallel to the ground. We obtain the heading vector by aligning the z-axis of the person’s root
coordinate with the world z-axis and use the resulting y-axis of the aligned root coordinate as the heading vector. This way of
obtaining the heading is more stable than using the yaw of the Euler angle representation, which suffers from singularities and
can be quite unstable. The heading coordinate is defined by first placing the world coordinate at the root position of the person
and then rotating the world coordinate around the z-axis (vertical) to align the y-axis with the heading vector. By definition,
representing and predicting human trajectories in the heading coordinate allows the predicted trajectory to be invariant of the
person’s absolute xy translation and heading. In the egocentric trajectory representation v, = (dx, dys, 2¢, ddt, 1), We use
absolute height z; since the height of a person relative to the ground does not vary a lot and is highly correlated with the body
motion of the person. For the local rotation 77,, we adopt the 6D rotation representation [125] to avoid discontinuity.
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Figure 7. The network architecture of the CVAE-based global trajectory predictor. We use two bidirectional LSTM layers with hidden
dimension 256 for all the LSTM blocks, and we use two hidden layers (512, 256) with ReLU activations for all the token-wise MLPs.
Token-wise mean pooling is used in the prior and posterior networks to summary sequences into a single feature.

Network Architecture. The detailed network architecture of the CVAE-based global trajectory predictor is illustrated in

Fig. 7. We use two bidirectional LSTM layers with hidden dimension 256 for all the LSTM blocks in the networks. We use
two hidden layers (512, 256) with ReLU activations for all the token-wise MLPs. For the input poses, we first convert them to
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3D joint positions using the SMPL joint function without global rotations and translations. This is because we find that using
3D joint positions leads to better performance than using joint rotations directly. In both the prior and posterior networks,
token-wise mean pooling is used to produce a single feature from a sequence of tokens, which is then used to produce the
parameters of the prior or posterior distribution of the latent code v.

Hyperparameters and Training. The dimension of the latent code v is 128. The KL divergence term in Eq. (8) uses a
weighting factor of 0.001. We train the networks for 2000 epochs with a batch size of 256 where each epoch uses a total of
2 million frames of motion. The training sequence length is 100 frames For optimization, we use the Adam optimizer [47]
with a learning rate of 0.0001 and clip the gradient if its norm is larger than 5. We use PyTorch [75] to implement and train
the networks.

E. Implementation Details for Global Optimization

Initialization. We initialize the egocentric trajectories using the output from the global trajectory predictor. For the camera,
we approximate the camera intrinsic parameters K using the dimensions of the image [w, h] where we assume the principal
point is at the image center [w/2, h/2]. Note that the camera intrinsics are kept fixed during the optimization process. For the
camera extrinsic parameters C, we initialize them from the persons’ global trajectories using the following equations:

—1
z :V; 7global 715cam ) , (15)
<Zl Vi

Pi,global
t

C,=Q

where V! is the visibility of person i at frame ¢, € R**4 s the person’s transformation in the global coordinates

based on the predicted global trajectory (T R ) Pi’cam € R**4 is the person’s transformation in the camera coordinates

based on the estimated trajectory (T , R ) by the pose estimator (e.g., KAMA [37]),  is a projection operator that projects
the matrix into a valid transformation. If no person is visible at frame ¢, the camera extrinsics C' is initialized to the camera
extrinsics of the most recent frame with visible people. Eq. (15) is the least squares solutions of the following (transposed)

linear systems: ) ) _
Piv@flobal = P, Vi, Vi=1. (16)

Hyperparameters and Optimization. The optimization loss coefficients (A2p, Acras, Aregs Acams Apen) il Eq. (9) are set to
(1, 100000, 100, 10000, 100000) for 3DPW and (1, 100000, 100, 10000, 0) for Human3.6M. We do not use the inter-person
penetration loss for Human3.6M since it only has one person in each video. The weighting factor w; for the translation
term in Eq. (12) is set to O since the translation estimated by the pose estimator can be quite noisy. The trajectory reg-
ularization weighting factor w,, in Eq. (13) is set to (3,10,10000,5,10000) for each element in the egocentric trajectory
1, = (0, Oye, 2¢, b, ), where we use large weights to penalize changes in height z; and local rotation 7,. The global
optimization is also implemented in PyTorch [75], where we use the Adam optimizer [47] with a learning rate of 0.001 to
optimize the global trajectories and camera extrinsics.

Computation Time. The overall processing time for a 1-min scene is around 5 mins with 500 optimization iterations, which
is much faster than using OpenSfM (> 30 mins).

F. Evaluation of Global Optimization on 3DPW

Method Relative Translation Error  Relative Rotation Error
Ours w/o Global Optimization 1.92 1.07
Ours (GLAMR) 0.66 0.30

Table 6. Evaluation of our global optimization framework on 3DPW. We evaluate the relative translation error (in meters) and relative
rotation error (in angles) between pairs of humans. Here, “relative” denotes the relative spatial relationship between two humans.

We also perform experiments on 3DPW with and without our global optimization framework to study the importance
of global optimization when there are multiple people in the video. Although 3DPW does not provide accurate GT human
trajectories in the global coordinates, the relative translations and rotations between people in 3DPW are quite accurate.
Therefore, we compute the relative translations and rotations between pairs of humans and calculate their errors w.r.t. the
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ground truth. These metrics, i.e., relative translation and rotation errors, serve as an alternative way to evaluate global recon-
struction quality. As shown in Table 6, using global optimization can greatly reduce the relative translation and rotation errors
between humans, which means our global optimization framework can greatly help to reconstruct the spatial relationships of
humans in the video.

G. Effect of Sliding Window Length.

As shown in Fig. 8, when increasing the window length h (with context h. and look-ahead h; being 0.2h), the recon-
struction error increases because it is harder for the latent code z to encode a longer window which contains more motion
variations than a shorter window. In the meantime, the sample error first drops and then increases since there is a trade-off: a
longer window provides more context for better inference, but it also puts more burden on the latent code as indicated by the
increasing reconstruction error.

AMASS Motion Infilling Results

—— Sample
Reconstruction

50 100 150 200 250
Sliding Window Length

Figure 8. Sample and reconstruction PA-MPJPE vs. sliding window length h. The context h. and look-ahead h, are always 0.2h.

Motion Infilling without Visible Pose. In the extreme case, when there is no visible pose (h. = h; = 0), our motion infiller
can still produce plausible motions sampled from the prior learned from the training motion datasets. In this case, the motion
infiller essentially becomes an unconditional VAE model.

H. Discussion of Limitations

As the first paper on this new problem, our method has a few limitations that are important for future research to address.
First, our approach has five stages that are sequentially dependent. Therefore, errors in early stages can propagate to late
stages, which may lead to inaccurate global pose estimation. Future work could integrate these stages together to form an
end-to-end learnable framework. Second, like many works in human mesh recovery, our approach can only recover the SMPL
parameters which omit the fine details of human meshes such as clothing. Integrating neural articulated shapes such as [14]
into our approach could potentially address this problem. Third, our approach is not real-time due to the batch processing
and global optimization. Future work could explore a causal version of our approach where only a small window around
the incoming frame is optimized, which could substantially improve computational efficiency. Finally, the generative motion
infiller and global trajectory predictor in our approach operate for each person independently. Therefore, the generated
motions and trajectories may not capture potentially complex and nuanced interactions between occluded people such as
hugging or dancing. Future work could address this limitation by employing new generative models that produce interaction-
aware motions of multiple people.

I. Discussion of Potential Negative Impact

With its strong ability to reconstruct global human motions and tackle severe occlusions, our method marks a significant
step towards global human mesh recovery in the wild. However, misuse of this technology could lead to potential privacy
concerns and the propagation of misinformation. For instance, combined with advanced neural rendering approaches [97],
the reconstructed global human motion of our approach could be used to fabricate videos of human actions that are indistin-
guishable from real ones. To address this issue, future research should continue to study the detection of synthesized videos
with realistic human motion.
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