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1 Flexibility, Code Reuse, and Implementation Details

In Algorithm 1 we show the pseudo-code of our system. This pseudo-code can be readily converted to Matlab code. Note that switching
the application essentially corresponds to replacing the matrix A that is given to the system, yielding a very flexible system, details are
below.

Algorithm 1: Algorithm of our unified pipeline.
Data: z, A, M, φ0, φ1, φ2, γ = 40, θ = 1, N
Result: x

K0 = ∇, K1 = I, K2 =

K2R 0 0
0 K2G 0
0 0 K2B

, K = [KT
0 KT

1 KT
2 ];

x̄0 = x0 = initial_guess(z);
y0 = Kx0;
z̄ = Mz;
τ = 0.9/(γ ‖K ‖2) ; // Ensure γτ ‖K ‖2<1
k = 0;
while k < N do

yk+1 = proxγF∗(y
k + γKx̄k;φ0,φ1,φ2);

xk+1 = proxτG(x
k− τKT yk+1; z̄,A);

x̄k+1 = xk+1 +θ(xk+1− xk);
k = k+1;

In the algorithm 1 above the cross-channel matrix K1 contains K2R, which, when multiplied with the red channel, computes the cross-channel
gradients for it:

K2R =


βRG (diag(xG)∇x−diag(∇xxG))
βRG

(
diag(xG)∇y−diag(∇yxG)

)
βRB (diag(xB)∇x−diag(∇xxB))
βRB

(
diag(xB)∇y−diag(∇yxB)

)


4n×n

and K2G, K2B analogously. (1)

Data term weight There are different ways to weight regularization versus the data term. When solving for proxτG, see Eq. 6 and 7 in the
paper, we scale the matrix A by the (application-specific) data-term weight 1

η
:(

τ

η
AT A+ I

)
x =

(
τ

η
AT z+v

)
. (2)

CG and on-demand computation of A CG does not require the full matrix A to be in memory, but only requires particular entries to be
evaluated. So in our implementation, rather than explicitly expressing the full matrix A, we evaluate it procedurally where needed. This allows
us to exploit its structure, i.e., as a series of convolutions (using a convolution kernel, instead of explicitly building the convolution matrix B)
and per-pixel operators (decimation D, mask matrix M, or warp S, expressed as procedural functions). Therefore, the representation itself is
very compact, and there is no need to store the full matrix in memory.

Calibration of A Depending on the application, the matrix A maybe slightly inaccurate; e.g., the blur matrix might be imperfect even when
calibrated from data [Xu and Jia 2010]. Fortunately, given our powerful priors, FlexISP is not very sensitive to such slight inaccuracies. For
instance, for the color array camera we simply assume a 2×2 box blur, yet no artifacts are introduced.

1.1 “Plug-and-play” Applications

Switching to a different application simply means plugging in a different matrix A and M (data term) from Table 1 into Algorithm 1 and
changing a small set of parameters, see below, due to application-specific noise, chromatic aberrations, and so forth. In our optimization
scheme, where the data-term proximal operator is computed via conjugate gradients, the observation matrix can be formulated in a matrix-free,



procedural way, rather than be explicitly created. Therefore, one simply needs to provide functions that compute the matrix and its transpose.
The “plug-and-play” manner of our system is therefore also reflected in the code itself.

Application A M
Demosaicking D I
Deblurring B I
iHDR MDB reliable pixels
Color Array MiDBSi reliable flow
Burst MiDSi good alignment
JPEG Deblocking MDBJ−1 I

Table 1: Configuring the matrices for our different applications.

The data term has different characteristics in different applications (noise characteristics, etc.), but a small set of parameters (stated at the very
top of Algorithm 1 is enough to handle these data-specific changes—no image-dependent modifications are necessary.

Parameters Table 2 shows the parameters which we have optimized on a representative training set of images. The change of matrix A and
these few parameters then completely define our algorithm for each application.

Application φ0 (TV) φ1 (BM3D) φ2 (cross) η (inverse data)
Demosaicking 0.1 1.0 0.25 0.002
Deblur 0.2 1.0 1.0 0.001
iHDR 0.1 1.0 0.1 0.001
Color Array 0.1 1.0 0.25 0.01
Burst 0.15 1.0 0.1 2.0
JPEG Deblocking 0.05 1.0 0.0 0.0005

Table 2: Optimization weights for our applications.
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2 Convergence of Optimization

We present convergence plots for two different examples in Figure 1. The first example is demosaicking of a Bayer image, where we initialize
our optimization with: x0 = 0, x0 = average of neighboring pixels, x0 = Malvar [2004] demosaicking. The second example is reconstructing
an image from the interlaced HDR sensor. We use three different initializations: x0 = 0, x0 = long exposure, x0 = short exposure, x0 = mean
of long and short exposure. Notice how in all cases, we converge to the same low final error (or conversely the same high PSNR), no matter
how we initialized the optimization. This indicates, that in practice our optimization converges, even though there are no theoretical guarantees
due to our use of non-convex priors.

Demosaicking Example
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Interlaced HDR Example
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Figure 1: Effects of different initial iterates x0 on the convergence for a simple synthetic demosaicking example (top) and an interlaced HDR
example with ground truth captured through a bracketed sequence (bottom). We compare here the convergence plots for different initial iterates
(which are described in the text in detail). These plots are given here for (log of) mean squared error (left) and PSNR (right). While a naive
initialization requires 30 or so iterations, with a good initialization 4-5 iterations suffice for good results.

There are examples where our optimization might not converge (but neither would other methods). For instance, if the set of unknowns is large
enough, even with the priors there are many possible solutions. This can occur, e.g., if the image data is missing from so large an area that the
self-similarity prior cannot recover the signal, and the result of any method strongly depends on the initial guess. In those cases even global
gradient priors would not help much, and still stronger priors would be needed.
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2.1 Accelerating Convergence Using TV

We motivated the choice of TV as an external prior by it making the problem more convex. This convexification is a core benefit of using TV in
addition to BM3D, and can give gains over just using BM3D as a prior. In Figure 2 we quantify this effect with convergence plots for the
interlaced HDR example from Table 3 of the main paper.
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Figure 2: Convergence for the comparison in Table 3 (main paper) with σ = 1.83. The x-axis represents iterations and the y-axis represents
the quality of the estimate at a given iteration.

The plots in Figure 2 demonstrate that adding TV stabilizes the solver so that it converges faster than just using the non-linear non-convex
BM3D prior.
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3 Demosaicking

3.1 Pure Demosaicking

In Table 3 we show the PSNR values for all images (and for each channel) of the McMaster color image dataset [Zhang et al. 2011]. We
compare our results against recent state-of-the-art demosaicking techniques: SOLC, AHD, SA, DLMMSE, SSD, LDI-NLM and LDI-NAT. See
Zhang et al. [2011] for a description of each method. Note that several demosaicking example images are included in the supplemental web
page. We show visual comparisons on selected image patches of both the McMaster dataset and real-world examples in Figure 3.
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Figure 3: Demosaicking examples. Note how our method produces results virtually indistinguishable from ground truth (top two rows),
whereas competing methods contain visible artifacts (please zoom in to the pdf). In the two real-world examples at the bottom one can see
artifacts in the images computed with competing methods (structural patterns, color fringing). Our method produces clean images that are
more truthful to the original scene (via visual inspection of the actual objects, since ground truth is not available for these real-world captures).
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Image Channel SOLC AHD SA DLMMSE SSD LDI-NLM LDI-NAT Photoshop
CameraRAW DCRAW Ours

1
R 28.26 26.02 23.53 26.94 27.28 28.81 29.29 27.47 27.81 31.07
G 31.22 29.82 25.17 30.63 30.68 32.31 32.67 30.39 31.68 33.93
B 26.34 24.04 22.05 24.82 25.12 26.47 26.71 26.13 25.55 28.85

2
R 33.68 32.47 31.63 33.30 33.61 34.66 35.02 32.44 33.92 35.78
G 37.62 37.20 34.00 37.66 37.81 39.01 39.08 37.89 38.55 40.52
B 32.11 31.26 30.74 31.86 32.01 32.79 32.92 32.20 32.13 33.79

3
R 30.64 31.10 31.47 32.60 32.81 33.41 33.05 31.25 32.00 36.52
G 33.73 33.49 32.75 35.28 35.05 35.50 35.51 33.92 34.22 38.84
B 28.60 29.67 29.80 30.70 30.93 30.99 30.31 27.45 29.83 33.16

4
R 32.80 33.76 34.59 34.70 36.36 37.41 36.25 33.20 36.20 41.63
G 37.16 35.66 34.05 36.99 38.98 39.01 40.33 39.53 39.79 44.49
B 30.89 31.48 32.19 32.07 33.49 34.02 33.30 30.40 33.35 37.71

5
R 33.61 29.52 28.60 30.38 31.10 34.50 35.05 28.53 32.32 38.80
G 36.28 34.73 30.97 35.11 35.43 37.67 38.15 36.09 37.05 40.87
B 30.47 28.78 28.08 29.41 29.48 31.02 31.16 30.30 30.71 32.91

6
R 37.14 33.92 32.23 34.98 36.09 38.59 39.40 36.38 37.01 41.47
G 40.30 37.72 32.50 38.61 38.85 41.70 43.42 41.44 41.25 45.64
B 34.00 29.96 29.14 31.15 31.72 34.21 34.97 34.28 33.08 38.04

7
R 33.85 35.64 37.03 38.30 36.61 36.28 36.09 33.58 34.44 40.86
G 36.34 37.36 40.39 40.70 37.62 37.66 37.41 36.19 36.06 42.80
B 32.45 35.07 36.22 37.29 36.38 34.59 34.49 33.52 33.42 38.69

8
R 34.87 34.15 35.31 35.45 35.31 36.89 36.31 33.60 36.23 39.98
G 39.09 39.45 38.49 41.43 40.34 40.44 40.29 38.45 39.46 43.97
B 35.04 35.79 35.82 36.99 36.76 36.84 36.67 35.72 36.04 39.42

9
R 34.36 31.54 30.71 32.39 33.72 35.54 35.49 30.88 34.72 38.62
G 39.62 37.99 33.83 38.73 39.52 41.56 41.73 40.46 41.14 43.44
B 35.34 34.00 32.54 34.66 35.38 36.54 36.30 34.54 35.74 38.15

10
R 36.86 33.99 34.03 34.70 36.33 37.64 38.26 27.90 36.00 40.36
G 40.86 39.17 36.15 40.00 40.23 42.19 42.64 40.08 41.41 44.18
B 36.08 34.88 34.78 35.55 36.13 36.51 36.83 35.10 36.05 38.66

11
R 38.12 36.13 36.16 36.91 38.16 39.25 39.82 31.65 37.72 41.28
G 40.78 39.34 37.11 40.44 40.19 41.66 42.57 39.56 41.01 43.52
B 37.19 34.73 34.33 35.75 36.81 37.50 37.66 37.22 36.19 39.84

12
R 37.13 33.60 34.49 34.74 35.37 37.62 38.36 27.08 35.65 41.54
G 40.17 40.09 37.66 39.59 39.70 41.45 41.49 39.19 40.70 44.11
B 35.70 36.24 36.24 36.47 37.11 37.51 37.59 35.47 36.81 39.01

13
R 39.80 37.91 38.11 38.66 40.01 42.23 41.77 34.92 40.02 44.02
G 43.46 42.16 39.90 42.57 43.82 45.55 44.89 42.58 44.53 45.83
B 37.65 36.20 36.51 36.75 37.19 37.88 38.13 37.24 37.55 39.09

14
R 37.85 37.33 36.82 37.74 38.66 39.28 39.39 34.43 38.67 40.71
G 41.37 40.65 38.79 41.13 41.93 42.62 42.84 41.16 42.24 44.22
B 35.64 34.30 34.45 34.78 35.00 35.82 36.12 35.34 35.48 37.01

15
R 36.44 34.88 34.87 35.32 36.23 37.34 36.95 29.50 36.29 38.35
G 41.20 40.27 38.13 40.71 40.75 42.39 42.68 41.40 41.90 43.27
B 38.17 36.84 36.52 37.30 37.90 38.49 38.99 38.54 38.00 39.67

16
R 32.75 30.95 28.75 31.95 32.21 34.18 34.97 32.06 32.59 34.90
G 34.09 32.36 28.60 33.22 32.99 35.00 35.59 32.62 34.13 36.19
B 31.63 26.85 24.87 28.06 28.30 31.12 31.53 34.44 29.43 34.31

17
R 31.24 27.12 25.35 28.32 29.24 31.60 32.14 25.56 30.53 33.88
G 35.17 32.13 26.68 33.31 33.62 37.31 37.62 36.79 36.55 39.77
B 30.69 26.65 25.06 27.77 28.38 30.78 30.91 28.69 29.57 33.39

18
R 32.69 32.30 31.61 33.32 33.24 34.63 34.58 32.52 33.23 35.10
G 36.20 35.69 33.84 37.02 35.91 37.30 37.27 36.30 35.95 37.41
B 33.43 31.90 31.11 32.93 33.44 34.87 34.30 33.44 33.24 36.78

AVG
R 34.71 33.05 32.68 34.06 34.71 36.10 36.23 31.27 34.74 38.60
G 38.11 37.10 34.63 38.10 38.08 39.46 39.79 38.00 38.76 41.83
B 33.41 32.30 31.87 33.15 33.47 34.33 34.38 33.33 33.46 36.58

AVG RGB 35.41 34.15 33.06 35.10 35.42 36.63 36.80 34.20 35.65 39.01

Table 3: PSNR values for demosaicking the McMaster dataset. The bold numbers indicate the best method.
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3.2 Joint Demosaicking and Denoising

In Table 4 we compare our method for reconstructing Bayer images that contain noise to other state-of-the-art methods, as described in [Jeon
and Dubois 2013]. Note, that we did not change our method from Section 3 to account for noise, as it naturally handles this case. Our method
beats all state-of-the-art methods in virtually every case. Figure 4 shows a few examples for comparison.

No. σ JDD Zhang1 LASIP Zhang2 Condat 9x9
BM3D

Condat 13x13
BM3D

GT 5x5
BM3D

GT 7x7
BM3D

GT 9x9
BM3D

GT 11x11
BM3D

GT 13x13
BM3D

GT 15x15
BM3D

GT 11x11
h_{LN} Ours

1

0 38.55 39.43 33.44 36.35 36.91 37.65 36.56 37.99 38.50 38.81 38.95 39.01 38.81 40.68
1.154 1.047 1.907 1.271 1.427 1.362 1.280 1.175 1.132 1.113 1.104 1.100 1.113 0.786

4 34.73 35.14 31.89 34.02 34.34 34.68 33.89 34.83 35.09 35.21 35.29 35.33 33.81 35.19
1.768 1.630 2.238 1.711 1.912 1.858 1.867 1.727 1.689 1.672 1.662 1.656 1.763 1.329

8 31.14 31.41 29.78 30.97 31.37 31.54 30.73 31.46 31.65 31.72 31.77 31.79 30.56 31.93
2.667 2.475 2.798 2.413 2.619 2.562 2.802 2.546 2.469 2.440 2.423 2.413 2.627 1.927

12 28.84 29.09 28.17 28.72 29.31 29.46 28.53 29.23 29.44 29.52 29.57 29.59 28.45 30.09
3.565 3.310 3.335 3.144 3.322 3.220 3.782 3.369 3.225 3.159 3.125 3.107 3.446 2.476

16 27.21 27.49 26.94 27.10 27.84 28.04 26.98 27.69 27.92 28.04 28.09 28.12 26.99 28.74
4.442 4.104 3.856 3.834 4.002 3.825 4.759 4.165 3.943 3.821 3.761 3.725 4.198 3.004

20 25.95 26.29 25.97 25.87 26.76 27.01 25.83 26.55 26.81 26.97 27.04 27.08 25.92 27.65
5.300 4.862 4.360 4.472 4.654 4.385 5.723 4.934 4.623 4.439 4.344 4.281 4.895 3.515

8

0 35.98 36.62 32.19 34.43 33.07 33.47 34.04 35.30 35.68 35.85 35.92 35.95 35.85 38.63
1.395 1.315 2.165 1.542 1.933 1.893 1.571 1.479 1.435 1.424 1.419 1.417 1.424 0.967

4 33.51 33.85 31.11 32.84 32.02 32.32 32.47 33.45 33.72 33.82 33.88 33.92 31.53 35.19
1.988 1.875 2.510 1.951 2.360 2.319 2.114 2.008 1.966 1.951 1.944 1.941 2.115 1.449

8 30.67 30.82 29.37 30.45 30.51 30.75 30.36 31.16 31.38 31.46 31.51 31.54 28.84 32.48
2.873 2.724 3.099 2.643 2.969 2.914 2.934 2.756 2.691 2.669 2.654 2.646 3.014 2.015

12 28.57 28.68 27.86 28.52 29.16 29.40 28.63 29.40 29.62 29.71 29.77 29.80 26.77 30.61
3.768 3.569 3.700 3.362 3.579 3.484 3.769 3.495 3.378 3.334 3.306 3.289 3.919 2.569

16 26.97 27.11 26.61 27.00 28.00 28.27 27.26 28.02 28.28 28.39 28.46 28.49 25.24 29.15
4.656 4.371 4.295 4.055 4.187 4.023 4.577 4.209 4.031 3.952 3.900 3.873 4.784 3.116

20 25.68 25.88 25.57 25.76 27.01 27.33 26.16 26.92 27.20 27.35 27.42 27.46 24.07 27.94
5.533 5.146 4.872 4.719 4.794 4.546 5.344 4.893 4.657 4.536 4.457 4.412 5.609 3.660

19

0 40.05 41.13 37.15 38.99 37.99 38.71 39.37 40.42 40.78 40.93 41.00 41.02 40.93 41.76
0.815 0.763 1.212 0.904 0.969 0.932 0.831 0.777 0.755 0.749 0.746 0.746 0.749 0.723

4 36.08 36.56 34.70 36.00 35.52 35.87 35.84 36.51 36.68 36.73 36.77 36.78 34.84 37.18
1.490 1.383 1.714 1.427 1.564 1.539 1.533 1.435 1.413 1.408 1.406 1.404 1.522 1.241

8 32.73 33.21 32.22 32.88 33.09 33.29 32.62 33.35 33.55 33.61 33.65 33.66 31.44 34.19
2.363 2.130 2.300 2.084 2.251 2.209 2.451 2.233 2.153 2.126 2.117 2.113 2.404 1.779

12 30.54 31.10 30.58 30.76 31.39 31.63 30.49 31.34 31.63 31.76 31.80 31.83 29.38 32.34
3.210 2.834 2.777 2.679 2.889 2.778 3.338 2.979 2.821 2.745 2.714 2.697 3.184 2.276

16 28.92 29.60 29.35 29.25 30.16 30.50 29.01 29.96 30.32 30.52 30.61 30.65 27.97 30.90
4.033 3.500 3.197 3.209 3.488 3.281 4.172 3.676 3.439 3.304 3.235 3.196 3.886 2.762

20 27.61 28.44 28.35 28.04 29.20 29.65 27.90 28.89 29.33 29.60 29.72 29.79 26.92 29.68
4.840 4.138 3.593 3.697 4.065 3.753 4.963 4.334 4.015 3.826 3.717 3.647 4.532 3.251

24

0 35.48 35.49 33.70 34.51 35.21 35.29 35.01 35.57 35.62 35.68 35.71 35.72 35.68 36.99
1.022 1.122 1.601 1.168 1.071 1.055 1.043 1.001 0.973 0.969 0.968 0.967 0.969 0.887

4 33.65 33.58 32.40 33.12 33.72 33.77 33.34 33.88 33.93 33.96 33.98 34.00 32.88 34.90
1.680 1.755 2.125 1.668 1.686 1.679 1.727 1.651 1.634 1.631 1.627 1.626 1.727 1.473

8 31.28 31.24 30.53 31.01 31.70 31.76 31.07 31.66 31.77 31.81 31.83 31.84 29.94 32.37
2.547 2.554 2.794 2.359 2.421 2.401 2.633 2.450 2.396 2.379 2.369 2.365 2.630 2.110

12 29.37 29.46 29.03 29.22 30.03 30.14 29.23 29.89 30.05 30.13 30.16 30.18 27.94 30.66
3.425 3.315 3.379 3.050 3.120 3.045 3.536 3.223 3.104 3.051 3.025 3.012 3.448 2.686

16 27.87 28.08 27.87 27.82 28.71 28.89 27.81 28.51 28.73 28.85 28.90 28.93 26.56 29.32
4.294 4.050 3.901 3.694 3.795 3.636 4.407 3.965 3.773 3.673 3.618 3.590 4.186 3.233

20 26.64 26.97 26.95 26.68 27.64 27.90 26.69 27.41 27.66 27.84 27.90 27.95 25.56 28.17
5.154 4.757 4.372 4.292 4.450 4.192 5.240 4.679 4.412 4.259 4.170 4.120 4.861 3.771

Table 4: PSNR and S-CIELAB values for the Kodak dataset containing Gaussian noise with varying σ . The bold numbers indicate the best
method. See [Jeon and Dubois 2013] for a description of the competing methods.
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Ground TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround Truth 29.59dB (σ = 12)29.59dB (σ = 12)29.59dB (σ = 12)29.59dB (σ = 12)29.59dB (σ = 12)29.59dB (σ = 12)29.59dB (σ = 12)29.59dB (σ = 12)29.59dB (σ = 12)29.59dB (σ = 12)29.59dB (σ = 12)29.59dB (σ = 12)29.59dB (σ = 12)29.59dB (σ = 12)29.59dB (σ = 12)29.59dB (σ = 12)29.59dB (σ = 12) 30.09dB (σ = 12)30.09dB (σ = 12)30.09dB (σ = 12)30.09dB (σ = 12)30.09dB (σ = 12)30.09dB (σ = 12)30.09dB (σ = 12)30.09dB (σ = 12)30.09dB (σ = 12)30.09dB (σ = 12)30.09dB (σ = 12)30.09dB (σ = 12)30.09dB (σ = 12)30.09dB (σ = 12)30.09dB (σ = 12)30.09dB (σ = 12)30.09dB (σ = 12)

Ground TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround Truth 31.54dB (σ = 8)31.54dB (σ = 8)31.54dB (σ = 8)31.54dB (σ = 8)31.54dB (σ = 8)31.54dB (σ = 8)31.54dB (σ = 8)31.54dB (σ = 8)31.54dB (σ = 8)31.54dB (σ = 8)31.54dB (σ = 8)31.54dB (σ = 8)31.54dB (σ = 8)31.54dB (σ = 8)31.54dB (σ = 8)31.54dB (σ = 8)31.54dB (σ = 8) 32.48dB (σ = 8)32.48dB (σ = 8)32.48dB (σ = 8)32.48dB (σ = 8)32.48dB (σ = 8)32.48dB (σ = 8)32.48dB (σ = 8)32.48dB (σ = 8)32.48dB (σ = 8)32.48dB (σ = 8)32.48dB (σ = 8)32.48dB (σ = 8)32.48dB (σ = 8)32.48dB (σ = 8)32.48dB (σ = 8)32.48dB (σ = 8)32.48dB (σ = 8)

Ground TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround Truth 34.00dB (σ = 4)34.00dB (σ = 4)34.00dB (σ = 4)34.00dB (σ = 4)34.00dB (σ = 4)34.00dB (σ = 4)34.00dB (σ = 4)34.00dB (σ = 4)34.00dB (σ = 4)34.00dB (σ = 4)34.00dB (σ = 4)34.00dB (σ = 4)34.00dB (σ = 4)34.00dB (σ = 4)34.00dB (σ = 4)34.00dB (σ = 4)34.00dB (σ = 4) 34.90dB (σ = 4)34.90dB (σ = 4)34.90dB (σ = 4)34.90dB (σ = 4)34.90dB (σ = 4)34.90dB (σ = 4)34.90dB (σ = 4)34.90dB (σ = 4)34.90dB (σ = 4)34.90dB (σ = 4)34.90dB (σ = 4)34.90dB (σ = 4)34.90dB (σ = 4)34.90dB (σ = 4)34.90dB (σ = 4)34.90dB (σ = 4)34.90dB (σ = 4)

(a) Ground Truth (b) [Jeon and Dubois 2013] (GT 15×15) (c) Ours

Figure 4: Joint demosaicking and denoising comparison (Kodak dataset). Please zoom into the PDF. In terms of PSNR, we achieve better
results in all cases. With our method (c), the house image is visually crisper and has no low-frequency color noise, unlike in (b). In fact, our
result is almost too crisp, lowering the weight for the data term would yield a smoother result (see Fig. 14 for a related discussion).
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4 Deconvolution

We compare our method against several other state-of-the-art methods, following the procedure presented by Schuler et al. [2013]. The images
and blur kernels used in this comparison are visualized in Figure 5. The PSNR for each image and each technique are given in Table 5. The
average PSNR can be found in the main paper. The images can also be inspected in the supplemental web-pages. Figure 6 shows a few results
comparing our technique with other state-of-the-art methods. Even more examples can be found in the supplemental web-pages.
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Figure 5: The dataset used for comparing our deconvolution to 4 other state-of-the-art methods. The procedure follows Schuler et al. [2013].
We achieve better deblurring quality than these previous methods. The full PSNR table can be found in Table 5. The deconvolution results can
be browsed in the supplemental web-pages.

Original Blurred Krishnan et al. [2009] IDD-BM3D [2012] MLP [2013] Ours

Figure 6: We first compare deconvolution of two artificially blurred color images (using measured real-world camera shake [Levin et al.
2007]). As can be seen, our method produces the least artifacts (e.g., see smooth backgrounds). In the last row, we show a real-world example
from Levin et al.’s [2007] database. Similarly, our method produces the least artifacts. Please zoom into the PDF. (Images courtesy of
Wikipedia user Hans Hillewaert and Pierre Dalous, and [Levin et al. 2009].)
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C
as

e
(a

)

Method 1 2 3 4 5 6 7 8 9 10 11
Blurred 20.8004 22.9252 22.6989 20.9770 22.2170 22.7570 21.9489 17.0763 22.3771 22.1460 23.2252

Levin et al. [2007] 23.2871 26.6641 26.2106 22.7202 24.8653 25.7623 24.2881 17.4262 24.8001 24.1561 25.7881
Krishnan et al. [2009] 23.4305 26.6857 26.3295 22.8015 24.9406 25.7638 24.3204 17.4299 24.8236 24.1149 25.7402
IDD-BM3D [2012] 24.0598 28.2769 26.9892 23.0866 25.6261 26.3341 24.4639 17.4885 25.1974 24.3742 26.0144

MLP [2013] 24.2612 27.9809 26.9226 23.2296 25.7352 26.4476 24.5986 17.4818 25.2033 24.4735 26.1373
Ours 24.3327 28.1724 27.0898 23.2373 25.7423 26.5471 24.6379 17.4776 25.2369 24.4837 26.1792

C
as

e
(b

)

Method 1 2 3 4 5 6 7 8 9 10 11
Blurred 21.6800 24.5071 24.0912 21.9366 23.5426 24.1519 23.1112 17.4307 23.6457 23.3993 24.8902

Levin et al. [2007] 25.5349 30.3812 29.3241 24.2647 27.5837 28.6523 26.4336 17.8144 27.2379 26.4546 28.6267
Krishnan et al. [2009] 25.6175 30.4072 29.4425 24.3384 27.5730 28.6867 26.4346 17.8007 27.2834 26.4274 28.4925
IDD-BM3D [2012] 26.4792 32.1151 30.0156 25.0356 28.1461 29.4461 26.7580 17.8489 27.6420 26.7408 28.9194

MLP [2013] 26.6398 31.5943 30.1033 25.1391 28.3716 29.6208 26.9048 17.8866 27.7148 26.8471 28.8552
Ours 26.7439 32.0813 30.2243 25.1202 28.4192 29.6550 26.9002 17.8455 27.7121 26.8100 28.9167

C
as

e
(c

)

Method 1 2 3 4 5 6 7 8 9 10 11
Blurred 18.4181 20.3912 19.7602 19.1161 19.8073 19.9180 19.6269 16.6636 20.0568 20.2844 21.1414

Levin et al. [2007] 20.8330 22.9116 22.9228 21.0982 22.2095 22.8548 22.0417 17.0863 22.3855 22.0516 23.1149
Krishnan et al. [2009] 20.9051 22.8331 22.9553 21.1030 22.2017 22.8760 22.0736 17.0853 22.3858 22.0320 23.0646
IDD-BM3D [2012] 21.3769 23.9549 23.5163 21.4466 22.5074 23.2325 22.0854 17.0706 22.6135 22.0592 22.9649

MLP [2013] 21.6310 23.7254 23.5725 21.5824 22.8560 23.4280 22.2240 17.0649 22.7725 22.0889 23.1754
Ours 21.6872 23.8816 23.6601 21.6353 22.8711 23.4863 22.2813 17.0651 22.7894 22.1232 23.1865

C
as

e
(d

)

Method 1 2 3 4 5 6 7 8 9 10 11
Blurred 16.8031 18.9516 16.9155 17.3676 17.5742 17.2539 17.9952 16.6595 18.0498 18.9830 20.0871

Levin et al. [2007] 21.5498 24.2228 22.7576 21.8379 22.3233 22.3097 22.8016 17.3923 22.4392 23.0497 23.8854
Krishnan et al. [2009] 21.5314 23.9764 22.5647 21.7492 22.1105 22.0626 22.6357 17.3962 22.3222 22.9274 23.7383
IDD-BM3D [2012] 22.4549 25.9946 23.3068 22.5330 23.0620 22.8314 22.9284 17.5784 22.6407 23.1095 23.8031

MLP [2013] 22.3413 25.4975 23.3611 22.7092 23.1639 22.9836 23.0197 17.5717 22.7843 23.0835 23.9968
Ours 22.4753 25.8235 23.5300 22.8066 23.2219 23.0827 23.1123 17.5587 22.8476 23.2187 24.1608

C
as

e
(e

)

Method 1 2 3 4 5 6 7 8 9 10 11
Blurred 16.5474 18.3706 17.0932 17.3106 18.3226 17.5564 17.3743 16.3046 17.8504 18.5884 19.5888

Levin et al. [2007] 28.8203 31.1460 30.5573 29.0254 29.3529 29.7022 28.2596 19.9890 28.6898 27.9337 29.1433
Krishnan et al. [2009] 28.8109 30.8978 30.2445 29.6337 29.0727 29.1271 28.0234 20.0545 28.4969 27.6901 28.7134
IDD-BM3D [2012] 29.2354 33.3616 31.2619 31.3124 30.0871 30.6419 28.8559 22.5893 28.9051 28.5393 29.6615

MLP [2013] 29.7103 32.1443 31.0668 31.4754 30.0463 30.5153 28.8545 23.1308 28.7937 28.4798 29.4480
Ours 30.1910 32.9455 31.4396 32.5486 30.2806 30.7379 29.0791 23.1161 28.9991 28.6535 29.6015

Table 5: We compare our method to four other state-of-the-art methods. PSNR (in dB) is given for each image in the dataset, for all 5 cases.
The average numbers are given in the main paper.
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5 Interlaced HDR

Table 6 lists detailed PSNR numbers of our interlaced HDR (iHDR) reconstructions for different denoisers and different images. The images
are shown in Figure 7.

Image 1 2 3 4 5 6 7 8
Missing data 38% 26% 25% 21% 31% 27% 22% 22%

BM3D 46.51 36.29 45.98 46.49 44.22 42.06 40.69 42.17
NLM 39.79 34.14 45.22 45.03 42.28 39.63 39.29 40.22

Patchwise NLM 46.70 35.59 45.81 46.41 43.90 41.83 40.96 42.20
Sliding DCT 43.03 30.30 44.67 42.75 41.59 29.95 39.27 38.03

Averaging 46.26 35.97 45.43 46.08 43.79 42.10 39.52 41.79

Table 6: PSNR values for different interlaced HDR images using different denoisers.

11111111111111111 22222222222222222 33333333333333333 44444444444444444

55555555555555555 66666666666666666 77777777777777777 88888888888888888

Figure 7: Images used for the interlaced HDR reconstruction evaluation.

5.1 User-defined exposure weight mask

Although by default the matrix M discards only useless pixel data, it can be also used to bias the solution towards the short- or long-exposure
parts. We demonstrate this in Fig. 8, where the user marked the surfer and limited the reconstruction of the underlying image to only use the
short-exposure data, to prefer a sharper, less blurry (but also noisier) result. The selection mask can be created manually, as in Fig. 8 (b), or
with a stroke-based edit propagation framework, such as the one introduced by Baek et al. [2013].

(a) (b) (c) (d)

Sparse observation User-de�ned mask Result - without mask Result - with mask

Figure 8: Image reconstruction with user-defined exposure weight mask. (a) Sparse observations; many short-exposure pixels are too dark to
be useful, and the long-exposure data has a lot of motion-induced blur. (b) Sparse observations with user-defined (short-)exposure preference
mask. (c) The output of our method without the use of the mask. The surfer and details on his board have little noise, but are both affected by
motion-blur. (d) With the exposure weight mask applied, we can trade-off motion-related artifacts for increased amount of detail (and noise).
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6 Color Camera Array

Figure 9 shows a number of scenes that were captured with the (small baseline) 2×2 prototype sensor. Note that there are no visible color
artifacts in the images. Note also that the lenses on this prototype sensor are not ideal, and the input images are somewhat soft (see also the
supplemental web page).

We note that our method can directly, and almost trivially handle stuck pixel masking, instead of relying on a separate part of the pipeline
(where demosaicking is typically not aware that stuck pixels were filled with averaged data). An example with 2×2 color array camera input is
shown in Figure 10, the same approach works just as well for Bayer images.

(a) Red channel (b) Green channel (c) Blue channel (d) Our reconstruction

Figure 9: A few 2×2 example datasets reconstructed with our method. Note how there are no visible color artifacts in the results (all examples
use the cross-channel prior).

Figure 10: Stuck pixel masking can be directly incorporated into our method as well. Here we show a result image without stuck pixel masking
(left), a (conservative) mask indicating stuck pixels (middle), and our result (right). Please zoom in to see the differences.
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6.1 4 × 4 Camera Array

In addition to the 2×2 camera array cameras, we have experimented with a simulated 4×4 array. For this we used the Stanford light field
dataset [Stanford Graphics Laboratory 2008] by picking views and dropping color channels in the same pattern as in PiCam [Venkataraman
et al. 2013]. Each view is first blurred using a 2×2 box kernel and then decimated to simulate loss in resolution. Using this simulated 4×4
array, we aim to achieve 2× superresolved (w.r.t. a single tile) images, but with consistent colors. We follow the standard warp-blur-decimate
forward model for superresolution [Mitzel et al. 2009; Liu and Sun 2011] to recover some of the lost resolution by utilizing subpixel shifts
between the different color channel captures. We set Ai = MiDBSi for each capture i (out of k), and get

G(x) = ‖[M1z1; . . . ;Mkzk]− [M1DBS1; . . . ;MkDBSk]x‖2
2 . (3)

The blur matrix B represents convolution with a 2×2 box kernel and models 100% fill-factor square pixels without any anti-aliasing filter on
top of the sensor, and the decimation matrix D represents the uniform 2× downsampling. To get a baseline, we first computed optical flow
between the tiles (see Section 4.4 in the main paper), and applied bicubic upsampling both to the flow and colors into a 2× denser grid. The
data was forward-warped, and normalized to create the output image (Fig. 11 left). We then ran our method, which first computes the optical
flow as before and then used our framework to get the results in the center column of Fig. 11.

Accumulated (29.2dB) Ours (32.6dB) Ground truth

Ground truthGround truthOurs (32.2dB)Ours (32.2dB)Accumulated (23.5dB)Accumulated (23.5dB)

Figure 11: Superresolution with light field data simulating a 4×4 array camera. (left) Straightforward baseline image that upsamples the
images and warps before accumulating into a 2× finer grid. (middle) Our algorithm effectively combines natural image priors for performing
a faithful superresolution. (right) Ground truth.

Figure 12 shows how the use of the cross-channel prior removes potential color artifacts. The artifacts are very evident in (b) and (c), whereas
our final result in (d) shows very few artifacts.

6.2 Iterated Application

We can apply Alg. 1 iteratively to improve the quality of the superresolved RGB images. At the first iteration, we use the cross-channel scaled
gradients to initialize the flow. Reconstruction after this first iteration can show banding artifacts resulting from small alignment inaccuracies,
which get enhanced by the 2× 2 deconvolution. In subsequent iterations (Fig. 13), we use the reconstructed superresolved image as the
reference for motion estimation, and compute the red channel flow to the red channel of the current output, and the same for the blue channel.
This achieves a better alignment and results in no banding. Note that any artifacts are not due to demosaicking, as the sensors do not use the
Bayer color pattern.
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(a) Original (b) Accumulate (c) Ours (without cross-channel prior) (d) Ours (with cross-channel prior)

Figure 12: Another 4×4 simulated dataset reconstructed with our method. Note how there are many color artifacts (e.g., around the left
helmet), when the cross-channel prior is not used. The cross-channel prior removes almost all artifacts. Please zoom into the digital version of
the supplemental for comparison.

Before BeforeAfter After
Figure 13: Due to imprecise initial cross-channel optical flow, the first result has chromatic artifacts. Iterating between reconstruction and
flow estimation improves both the flow and the reconstruction.

14



7 Burst Denoising and Demosaicking

We include two real-world examples and one simulated example of burst denoising and demosaicking in Figure 15. Note that all the examples
can also be browsed and compared in the supplemental web page, which provides a more intuitive interface for comparisons.

In Figure 14 we show that there are often two sets of parameters leading to high PSNR, but with different visual appeal. In this case (a) appears
very crisp, but has also slightly more noise, whereas (b) is virtually noise-free, but appears slightly softer. Which result is preferred is a matter
of personal choice. In the paper, we always include the result with the highest PSNR.

PSNR = 29.40PSNR = 29.40PSNR = 29.40PSNR = 29.40PSNR = 29.40PSNR = 29.40PSNR = 29.40PSNR = 29.40PSNR = 29.40PSNR = 29.40PSNR = 29.40PSNR = 29.40PSNR = 29.40PSNR = 29.40PSNR = 29.40PSNR = 29.40PSNR = 29.40 PSNR = 29.41PSNR = 29.41PSNR = 29.41PSNR = 29.41PSNR = 29.41PSNR = 29.41PSNR = 29.41PSNR = 29.41PSNR = 29.41PSNR = 29.41PSNR = 29.41PSNR = 29.41PSNR = 29.41PSNR = 29.41PSNR = 29.41PSNR = 29.41PSNR = 29.41 GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT

(a) Ours – Crisp (b) Ours – Noise Free (c) Ground truth

Figure 14: The tables in the paper report the results with the highest PSNR. However, a visually different result with very similar PSNR may
be achievable by adjusting the parameters. In this case, the image in (a) appears crisp but contains noise, whereas (b) appears noise-free, but
just a little bit softer. Both have virtually the same PSNR. Image (b) was created by slightly increasing the strength of the denoising prior.
(Image courtesy of Flickr user susan402.)
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PSNR = 32.71PSNR = 32.71PSNR = 32.71PSNR = 32.71PSNR = 32.71PSNR = 32.71PSNR = 32.71PSNR = 32.71PSNR = 32.71PSNR = 32.71PSNR = 32.71PSNR = 32.71PSNR = 32.71PSNR = 32.71PSNR = 32.71PSNR = 32.71PSNR = 32.71 PSNR = 40.45PSNR = 40.45PSNR = 40.45PSNR = 40.45PSNR = 40.45PSNR = 40.45PSNR = 40.45PSNR = 40.45PSNR = 40.45PSNR = 40.45PSNR = 40.45PSNR = 40.45PSNR = 40.45PSNR = 40.45PSNR = 40.45PSNR = 40.45PSNR = 40.45 PSNR = 41.27PSNR = 41.27PSNR = 41.27PSNR = 41.27PSNR = 41.27PSNR = 41.27PSNR = 41.27PSNR = 41.27PSNR = 41.27PSNR = 41.27PSNR = 41.27PSNR = 41.27PSNR = 41.27PSNR = 41.27PSNR = 41.27PSNR = 41.27PSNR = 41.27 PSNR = 40.12PSNR = 40.12PSNR = 40.12PSNR = 40.12PSNR = 40.12PSNR = 40.12PSNR = 40.12PSNR = 40.12PSNR = 40.12PSNR = 40.12PSNR = 40.12PSNR = 40.12PSNR = 40.12PSNR = 40.12PSNR = 40.12PSNR = 40.12PSNR = 40.12 PSNR = 42.57PSNR = 42.57PSNR = 42.57PSNR = 42.57PSNR = 42.57PSNR = 42.57PSNR = 42.57PSNR = 42.57PSNR = 42.57PSNR = 42.57PSNR = 42.57PSNR = 42.57PSNR = 42.57PSNR = 42.57PSNR = 42.57PSNR = 42.57PSNR = 42.57 PSNR = 42.76PSNR = 42.76PSNR = 42.76PSNR = 42.76PSNR = 42.76PSNR = 42.76PSNR = 42.76PSNR = 42.76PSNR = 42.76PSNR = 42.76PSNR = 42.76PSNR = 42.76PSNR = 42.76PSNR = 42.76PSNR = 42.76PSNR = 42.76PSNR = 42.76 ReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReferenceReference

N/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/AN/A

PSNR = 26.28PSNR = 26.28PSNR = 26.28PSNR = 26.28PSNR = 26.28PSNR = 26.28PSNR = 26.28PSNR = 26.28PSNR = 26.28PSNR = 26.28PSNR = 26.28PSNR = 26.28PSNR = 26.28PSNR = 26.28PSNR = 26.28PSNR = 26.28PSNR = 26.28 PSNR = 31.09PSNR = 31.09PSNR = 31.09PSNR = 31.09PSNR = 31.09PSNR = 31.09PSNR = 31.09PSNR = 31.09PSNR = 31.09PSNR = 31.09PSNR = 31.09PSNR = 31.09PSNR = 31.09PSNR = 31.09PSNR = 31.09PSNR = 31.09PSNR = 31.09 PSNR = 31.60PSNR = 31.60PSNR = 31.60PSNR = 31.60PSNR = 31.60PSNR = 31.60PSNR = 31.60PSNR = 31.60PSNR = 31.60PSNR = 31.60PSNR = 31.60PSNR = 31.60PSNR = 31.60PSNR = 31.60PSNR = 31.60PSNR = 31.60PSNR = 31.60 PSNR = 32.91PSNR = 32.91PSNR = 32.91PSNR = 32.91PSNR = 32.91PSNR = 32.91PSNR = 32.91PSNR = 32.91PSNR = 32.91PSNR = 32.91PSNR = 32.91PSNR = 32.91PSNR = 32.91PSNR = 32.91PSNR = 32.91PSNR = 32.91PSNR = 32.91 PSNR = 33.33PSNR = 33.33PSNR = 33.33PSNR = 33.33PSNR = 33.33PSNR = 33.33PSNR = 33.33PSNR = 33.33PSNR = 33.33PSNR = 33.33PSNR = 33.33PSNR = 33.33PSNR = 33.33PSNR = 33.33PSNR = 33.33PSNR = 33.33PSNR = 33.33 PSNR = 34.44PSNR = 34.44PSNR = 34.44PSNR = 34.44PSNR = 34.44PSNR = 34.44PSNR = 34.44PSNR = 34.44PSNR = 34.44PSNR = 34.44PSNR = 34.44PSNR = 34.44PSNR = 34.44PSNR = 34.44PSNR = 34.44PSNR = 34.44PSNR = 34.44 Ground TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround TruthGround Truth

(a) First frame of stack (b) BM3D (first frame) (c) VBM3D (stack) (d) NLM-weighted stack (e) NLM stack + BM3D (f) Ours (g) Reference

Figure 15: Burst denoising and demosaicking—additional examples. The top row shows a real-world example; the stack of 8 images was captured at ISO 12800 with a Canon EOS 650D,
except for the reference image (captured at ISO 100). We note that the captured reference image cannot be considered reliable “ground truth”, as demosaicking is required. We encourage
the reader to do a qualitative comparison using the supplemental web page. The second row shows a handheld portrait captured at 30fps on a 3.2MP PointGrey Flea 3, yielding a stack of
16 noisy images. Since the scene was dynamic, it was not possible to capture a reference image, and no PSNR can be given. Again, we encourage the reader to check our supplemental web
page. The third dataset, showing the famous Cape Neddick Lighthouse, is a simulated dataset with additive white Gaussian noise (σ = 12/255) applied to each of the 16 images in the
dataset. Our quality improvement can be clearly seen.
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8 Beyond RGB

We demonstrate a few examples images in Figure 16, where we have directly reconstructed an image in YUV420 from an (simulated) interlaced
HDR image. We compare this against the ground truth image, and the pipelined approach, where we first reconstruct to RGB and then simply
convert to YUV420. Our joint reconstruction yields a visible improvement. Table 7 shows the PSNR numbers for all twelve images that were
used in our experiment.

Ground truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truth PSNR = 31.80 dBPSNR = 31.80 dBPSNR = 31.80 dBPSNR = 31.80 dBPSNR = 31.80 dBPSNR = 31.80 dBPSNR = 31.80 dBPSNR = 31.80 dBPSNR = 31.80 dBPSNR = 31.80 dBPSNR = 31.80 dBPSNR = 31.80 dBPSNR = 31.80 dBPSNR = 31.80 dBPSNR = 31.80 dBPSNR = 31.80 dBPSNR = 31.80 dB PSNR = 32.21 dBPSNR = 32.21 dBPSNR = 32.21 dBPSNR = 32.21 dBPSNR = 32.21 dBPSNR = 32.21 dBPSNR = 32.21 dBPSNR = 32.21 dBPSNR = 32.21 dBPSNR = 32.21 dBPSNR = 32.21 dBPSNR = 32.21 dBPSNR = 32.21 dBPSNR = 32.21 dBPSNR = 32.21 dBPSNR = 32.21 dBPSNR = 32.21 dB

Ground truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truth PSNR = 27.15 dBPSNR = 27.15 dBPSNR = 27.15 dBPSNR = 27.15 dBPSNR = 27.15 dBPSNR = 27.15 dBPSNR = 27.15 dBPSNR = 27.15 dBPSNR = 27.15 dBPSNR = 27.15 dBPSNR = 27.15 dBPSNR = 27.15 dBPSNR = 27.15 dBPSNR = 27.15 dBPSNR = 27.15 dBPSNR = 27.15 dBPSNR = 27.15 dB PSNR = 28.21 dBPSNR = 28.21 dBPSNR = 28.21 dBPSNR = 28.21 dBPSNR = 28.21 dBPSNR = 28.21 dBPSNR = 28.21 dBPSNR = 28.21 dBPSNR = 28.21 dBPSNR = 28.21 dBPSNR = 28.21 dBPSNR = 28.21 dBPSNR = 28.21 dBPSNR = 28.21 dBPSNR = 28.21 dBPSNR = 28.21 dBPSNR = 28.21 dB

Ground truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truth PSNR = 30.28 dBPSNR = 30.28 dBPSNR = 30.28 dBPSNR = 30.28 dBPSNR = 30.28 dBPSNR = 30.28 dBPSNR = 30.28 dBPSNR = 30.28 dBPSNR = 30.28 dBPSNR = 30.28 dBPSNR = 30.28 dBPSNR = 30.28 dBPSNR = 30.28 dBPSNR = 30.28 dBPSNR = 30.28 dBPSNR = 30.28 dBPSNR = 30.28 dB PSNR = 31.00 dBPSNR = 31.00 dBPSNR = 31.00 dBPSNR = 31.00 dBPSNR = 31.00 dBPSNR = 31.00 dBPSNR = 31.00 dBPSNR = 31.00 dBPSNR = 31.00 dBPSNR = 31.00 dBPSNR = 31.00 dBPSNR = 31.00 dBPSNR = 31.00 dBPSNR = 31.00 dBPSNR = 31.00 dBPSNR = 31.00 dBPSNR = 31.00 dB

(a) Ground truth (b) Pipeline (c) Ours

Figure 16: Visual comparison between first reconstructing an interlaced HDR image as RGB and then converting to YUV420 (pipeline
approach) and directly reconstructing into YUV420 using our framework. (Images courtesy Wikemedia users Ray Eye, Diego Delso, and Hans
Hillewaert.)

Biandintz Church Eichhorn Gull Houses Cow Rally Yundrok Libelle Melinaea Mototaxis Platycercus
Pipeline 29.12 29.26 31.80 34.57 26.12 26.10 26.03 26.74 27.15 30.28 28.52 25.67
Joint (Ours) 29.36 29.71 32.21 35.31 26.15 26.78 26.03 26.60 28.21 31.00 28.86 25.74

Table 7: Comparison between first reconstructing an interlaced HDR image as RGB and then converting to YUV420 (pipeline approach) and
directly reconstructing into YUV420 using our framework (PSNR values in dB).

9 Deblocking

In Table 8 we compare our method for reconstructing JPEG compressed images to the state-of-the-art shape-adaptive DCT (SA-DCT) deblocker
[Foi et al. 2007].

Quality Q Lena Peppers F-16 Baboon Lake Tiffany House Avg
JPEG SA-DCT Ours JPEG SA-DCT Ours JPEG SA-DCT Ours JPEG SA-DCT Ours JPEG SA-DCT Ours JPEG SA-DCT Ours JPEG SA-DCT Ours JPEG SA-DCT Ours

75 33.21 33.56 33.75 30.29 30.67 30.65 32.61 33.18 33.29 26.21 26.25 26.51 28.65 28.91 28.99 31.03 31.19 31.50 31.44 32.00 31.96 30.49 30.82 30.95
50 32.02 32.63 32.81 29.25 29.81 29.82 31.06 31.83 31.95 24.85 24.97 25.25 27.66 28.07 28.13 29.91 30.12 30.44 29.80 30.40 30.39 29.22 29.69 29.83
40 31.54 32.26 32.44 28.83 29.45 29.46 30.64 31.52 31.59 24.40 24.56 24.82 27.31 27.78 27.84 29.57 29.87 30.12 29.51 30.20 30.17 28.83 29.38 29.49
30 30.91 31.79 31.93 28.40 29.14 29.12 30.06 31.09 31.15 23.85 24.06 24.29 26.84 27.38 27.44 29.21 29.62 29.83 28.96 29.76 29.73 28.32 28.98 29.07
25 30.44 31.46 31.55 28.04 28.90 28.85 29.58 30.71 30.73 23.50 23.75 23.95 26.51 27.13 27.18 28.91 29.40 29.60 28.55 29.44 29.38 27.93 28.68 28.75
20 29.83 31.00 31.02 27.57 28.53 28.46 28.90 30.13 30.09 23.07 23.37 23.53 26.07 26.78 26.80 28.40 28.99 29.12 27.87 28.75 28.68 27.39 28.22 28.24

Table 8: PSNR value (in dB) for different JPEG quality metrics. The bold numbers indicate the best method.
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BAEK, J., PAJĄK, D., KIM, K., PULLI, K., AND LEVOY, M. 2013. Wysiwyg computational photography via viewfinder editing. ACM Trans.
Graph. 32, 6.

DANIELYAN, A., KATKOVNIK, V., AND EGIAZARIAN, K. 2012. BM3D frames and variational image deblurring. IEEE TIP 21, 4.

FOI, A., KATKOVNIK, V., AND EGIAZARIAN, K. 2007. Pointwise shape-adaptive DCT for high-quality denoising and deblocking of
grayscale and color images. IEEE TIP 16, 5.

JEON, G., AND DUBOIS, E. 2013. Demosaicking of noisy Bayer-sampled color images with least-squares luma-chroma demultiplexing and
noise level estimation. IEEE TIP 22, 1.

KRISHNAN, D., AND FERGUS, R. 2009. Fast image deconvolution using hyper-laplacian priors. In NIPS.

LEVIN, A., FERGUS, R., DURAND, F., AND FREEMAN, W. T. 2007. Deconvolution using natural image priors. ACM Transactions on
Graphics (TOG) 26, 3.

LEVIN, A., WEISS, Y., DURAND, F., AND FREEMAN, W. T. 2009. Understanding and evaluating blind deconvolution algorithms. In IEEE
CVPR.

LIU, C., AND SUN, D. 2011. A Bayesian approach to adaptive video super resolution. In CVPR.

MALVAR, H. S., HE, L.-W., AND CUTLER, R. 2004. High-quality linear interpolation for demosaicing of bayer-patterned color images. In
ICASS.

MITZEL, D., POCK, T., SCHOENEMANN, T., AND CREMERS, D. 2009. Video super resolution using duality based TV-L1 optical flow. In
Pattern Recognition. Springer.

SCHULER, C. J., BURGER, H. C., HARMELING, S., AND SCHÖLKOPF, B. 2013. A machine learning approach for non-blind image
deconvolution. In CVPR.

STANFORD GRAPHICS LABORATORY, 2008. The (new) stanford light field archive. http://lightfield.stanford.edu/.

VENKATARAMAN, K., LELESCU, D., DUPARRÉ, J., MCMAHON, A., MOLINA, G., CHATTERJEE, P., MULLIS, R., AND NAYAR, S. 2013.
Picam: an ultra-thin high performance monolithic camera array. ACM TOG 32, 6.

XU, L., AND JIA, J. 2010. Two-phase kernel estimation for robust motion deblurring. In ECCV.

ZHANG, L., WU, X., BUADES, A., AND LI, X. 2011. Color demosaicking by local directional interpolation and nonlocal adaptive
thresholding. Journal of Electronic Imaging 20, 2.

18

http://lightfield.stanford.edu/

