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1 Flexibility, Code Reuse, and Implementation Details

In Algorithm 1 we show the pseudo-code of our system. This pseudo-code can be readily converted to Matlab code. Note that switching
the application essentially corresponds to replacing the matrix A that is given to the system, yielding a very flexible system, details are
below.

Algorithm 1: Algorithm of our unified pipeline.
Data: z, A, M, ¢p, ¢1, 2, Y=40,0 =1,N

Result: x
Ky O 0
Ko=V. K =LKs=| 0 Ky 0 [,K=[KIKKI];
0 0 Ky
70 = x0 = initial_guess(z);
yO _ K)CO;
=Mz
t=09/(y| K| ;// Ensure yt|K|?<1
k=0;

while k < N do
Y = proxye- (% + YK&: o, 91, 62):
= prox . (xF — tKTy*+1;7,A);
)fk+1 :xk+1 + 9(xk+1 _xk);
k=k+1;

In the algorithm 1 above the cross-channel matrix K| contains Ky, which, when multiplied with the red channel, computes the cross-channel
gradients for it:

Bra (diag(xg)Vx — diag(Vixg))
Kop — |PRG (diag(xg)Vy — d.iag( G))
Bre (diag (xp) Vi — diag(V.xz))
Bra (diag(xp)Vy — diag(V,

x5 and Kjg, K»p analogously. D
X5 ) 4nxn

Data term weight There are different ways to weight regularization versus the data term. When solving for prox g, see Eq. 6 and 7 in the
paper, we scale the matrix A by the (application-specific) data-term weight %:

(EATA+H>x: (EATZ+V). @
n n

CG and on-demand computation of A CG does not require the full matrix A to be in memory, but only requires particular entries to be
evaluated. So in our implementation, rather than explicitly expressing the full matrix A, we evaluate it procedurally where needed. This allows
us to exploit its structure, i.e., as a series of convolutions (using a convolution kernel, instead of explicitly building the convolution matrix B)
and per-pixel operators (decimation D, mask matrix M, or warp S, expressed as procedural functions). Therefore, the representation itself is
very compact, and there is no need to store the full matrix in memory.

Calibration of A Depending on the application, the matrix A maybe slightly inaccurate; e.g., the blur matrix might be imperfect even when
calibrated from data [Xu and Jia 2010]. Fortunately, given our powerful priors, FlexISP is not very sensitive to such slight inaccuracies. For
instance, for the color array camera we simply assume a 2 x 2 box blur, yet no artifacts are introduced.

1.1 “Plug-and-play” Applications
Switching to a different application simply means plugging in a different matrix A and M (data term) from Table 1 into Algorithm 1 and

changing a small set of parameters, see below, due to application-specific noise, chromatic aberrations, and so forth. In our optimization
scheme, where the data-term proximal operator is computed via conjugate gradients, the observation matrix can be formulated in a matrix-free,



procedural way, rather than be explicitly created. Therefore, one simply needs to provide functions that compute the matrix and its transpose.
The “plug-and-play” manner of our system is therefore also reflected in the code itself.

Application A M
Demosaicking D I
Deblurring B I

iHDR MDB reliable pixels
Color Array M;DBS; reliable flow
Burst M;DS; good alignment
JPEG Deblocking | MDBJ ™! ]

Table 1: Configuring the matrices for our different applications.

The data term has different characteristics in different applications (noise characteristics, etc.), but a small set of parameters (stated at the very
top of Algorithm 1 is enough to handle these data-specific changes—no image-dependent modifications are necessary.

Parameters Table 2 shows the parameters which we have optimized on a representative training set of images. The change of matrix A and
these few parameters then completely define our algorithm for each application.

[ Application [ @0 (TV) [ ¢ BM3D) [ ¢, (cross) [ n (inverse data) ]
Demosaicking 0.1 1.0 0.25 0.002
Deblur 0.2 1.0 1.0 0.001
iHDR 0.1 1.0 0.1 0.001
Color Array 0.1 1.0 0.25 0.01
Burst 0.15 1.0 0.1 2.0
JPEG Deblocking 0.05 1.0 0.0 0.0005

Table 2: Optimization weights for our applications.



2 Convergence of Optimization

‘We present convergence glots for two different examples in Figure 1. The first example is demosaicking of a Bayer image, where we initialize
our optimization with: x = 0, x% = average of neighboring pixels, xX° = Malvar [2004] demosaicking. The second example is reconstructing
an image from the interlaced HDR sensor. We use three different initializations: x° = 0, x” = long exposure, X’ = short exposure, X’ = mean
of long and short exposure. Notice how in all cases, we converge to the same low final error (or conversely the same high PSNR), no matter
how we initialized the optimization. This indicates, that in practice our optimization converges, even though there are no theoretical guarantees
due to our use of non-convex priors.
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Figure 1: Effects of different initial iterates x° on the convergence for a simple synthetic demosaicking example (top) and an interlaced HDR
example with ground truth captured through a bracketed sequence (bottom). We compare here the convergence plots for different initial iterates
(which are described in the text in detail). These plots are given here for (log of) mean squared error (left) and PSNR (right). While a naive
initialization requires 30 or so iterations, with a good initialization 4-5 iterations suffice for good results.

There are examples where our optimization might not converge (but neither would other methods). For instance, if the set of unknowns is large
enough, even with the priors there are many possible solutions. This can occur, e.g., if the image data is missing from so large an area that the
self-similarity prior cannot recover the signal, and the result of any method strongly depends on the initial guess. In those cases even global
gradient priors would not help much, and still stronger priors would be needed.



2.1 Accelerating Convergence Using TV

‘We motivated the choice of TV as an external prior by it making the problem more convex. This convexification is a core benefit of using TV in
addition to BM3D, and can give gains over just using BM3D as a prior. In Figure 2 we quantify this effect with convergence plots for the
interlaced HDR example from Table 3 of the main paper.
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Figure 2: Convergence for the comparison in Table 3 (main paper) with ¢ = 1.83. The x-axis represents iterations and the y-axis represents
the quality of the estimate at a given iteration.

The plots in Figure 2 demonstrate that adding TV stabilizes the solver so that it converges faster than just using the non-linear non-convex
BM3D prior.



3 Demosaicking

3.1 Pure Demosaicking

In Table 3 we show the PSNR values for all images (and for each channel) of the McMaster color image dataset [Zhang et al. 2011]. We
compare our results against recent state-of-the-art demosaicking techniques: SOLC, AHD, SA, DLMMSE, SSD, LDI-NLM and LDI-NAT. See
Zhang et al. [2011] for a description of each method. Note that several demosaicking example images are included in the supplemental web
page. We show visual comparisons on selected image patches of both the McMaster dataset and real-world examples in Figure 3.

McMaster

McMaster

Canon EOS 650D

Canon EOS 650D

Ground Truth DCRaw Adobe LDI-NAT Ours

Figure 3: Demosaicking examples. Note how our method produces results virtually indistinguishable from ground truth (top two rows),
whereas competing methods contain visible artifacts (please zoom in to the pdf). In the two real-world examples at the bottom one can see
artifacts in the images computed with competing methods (structural patterns, color fringing). Our method produces clean images that are
more truthful to the original scene (via visual inspection of the actual objects, since ground truth is not available for these real-world captures).



Image | Channel | SOLC | AHD | SA | DLMMSE | SSD | LDI-NLM | LDI-NAT CPhOtOSh"p DCRAW | Ours
ameraRAW

R | 2826 | 2602 | 2353 | 2694 | 2728 | 288l 29.29 2747 2781 | 3107

1 G [ 31.22 [ 2982 [ 2517 | 3063 | 3068 | 3231 32.67 30.39 3168 | 33.93
B | 2634 | 24.04 | 2205 | 2482 | 25.12 | 2647 26.71 26.13 2555 | 28.85

R | 33.68 | 3247 | 31.63 | 3330 | 3361 | 3466 35.02 32.44 3392 | 35.78

2 G [ 3762 | 3720 | 3400 | 3766 | 3781 | 3901 39.08 37.89 3855 | 40.52
B 3211 | 3126 | 3074 | 3186 | 32.01 | 32.79 3292 3220 3213 | 3379

R | 3064 | 31.10 | 3147 | 3260 | 32.81 | 3341 33.05 31.25 3200 | 36.52

3 G | 3373 | 3349 | 3275 | 3528 | 3505 | 3530 3551 33.92 3422 | 38.84
B | 28.60 | 20.67 | 29.80 | 30.70 | 30.93 | 30.99 3031 2745 2983 | 33.16

R | 32.80 | 33.76 | 3459 | 3470 | 3636 | 3741 36.25 33.20 3620 | 41.63

4 G | 37.16 | 3566 | 3405 | 3699 | 3898 | 3901 4033 39.53 39.79 | 44.49
B 3089 | 3148 [ 32.19 | 3207 | 3349 | 34.02 3330 30.40 3335 | 3171

R | 33.61 | 29.52 | 2860 | 3038 | 3110 | 34.50 35.05 28.53 3232 | 38.80

5 G [ 3628 | 3473 | 3097 | 3511 | 3543 | 3767 38.15 36.00 3705 | 40.87
B 3047 | 2878 | 2808 | 2941 | 2948 | 31.02 3116 3030 3071 | 3291

R | 37.14 | 3392 | 32.23 | 3498 | 3609 | 38.59 39.40 36.38 3701 | 4147

6 G [ 4030 | 37.72 | 3250 | 3861 | 3885 | 41.70 4342 4144 4125 | 45.64
B 34.00 | 2996 | 29.14 | 3115 | 31.72 | 3421 34.97 34.28 33.08 | 38.04

R | 33.85 | 35.64 | 37.03 | 3830 | 3661 | 36.8 36.00 33.58 3444 | 40.86

7 G | 3634 | 37.36 | 4039 | 4070 | 37.62 | 3766 3741 36.19 36.06 | 42.80
B 3245 | 3507 | 3622 | 3729 | 3638 | 3459 34.49 3352 3342 | 38.69

R | 3487 | 3415 | 3531 | 3545 | 3531 | 3689 3631 33.60 3623 | 39.98

8 G [ 39.09 | 3945 | 3849 | 4143 | 4034 | 4044 40.29 38.45 39.46 | 43.97
B 35.04 | 3579 | 3582 | 3699 | 36.76 | 36.84 36.67 35.72 36.04 | 39.42

R | 3436 | 31.54 | 3071 | 3239 | 3372 | 354 35.49 30.88 3472 | 38.62

9 G | 39.62 | 3799 | 3383 | 38.73 | 39.52 | 4156 4173 40.46 4114 | 43.44
B 3534 | 3400 | 3254 | 3466 | 3538 | 36.54 36.30 3454 35.74 | 38.05

R | 36.86 | 33.99 | 34.03 | 3470 | 3633 | 3764 3826 27.90 36.00 | 40.36

10 G [ 40.86 | 39.17 | 36.15 | 4000 | 4023 | 42.19 42.64 40.08 4141 | 44.18
B 36.08 | 34.88 | 3478 | 3555 | 36.13 | 36,51 36.83 35.10 36.05 | 38.66

R | 38.12 | 36.13 | 36.16 | 3691 | 38.16 | 39.25 39.82 3165 37.72 | 41.28

11 G [ 4078 | 3934 | 3711 | 4044 | 40.19 | 41.66 257 39.56 4101 | 4352
B 37.19 | 3473 | 3433 | 3575 | 3681 | 3750 37.66 37.22 36.19 | 39.84

R | 37.13 | 33.60 | 3449 | 3474 | 3537 | 3762 3836 27.08 3565 | 41.54

12 G [ 40.17 | 40.09 | 37.66 | 3959 | 39.70 | 4145 41.49 39.19 4070 | 44.11
B 35.70 | 36.24 | 3624 | 3647 | 37.11 | 3751 3759 35.47 36.81 | 39.01

R | 39.80 | 3791 | 38.11 | 3866 | 40.01 | 42.23 4177 3492 40.02 | 44.02

13 G | 4346 | 42.16 | 3990 | 4257 | 43.82 | 4555 44.89 4258 4453 | 4583
B 37.65 | 36.20 | 3651 | 3675 | 37.19 | 37.88 38.13 37.24 3755 | 39.09

R | 3785 | 37.33 | 3682 | 37.74 | 38.66 | 39.28 39.39 34.43 3867 | 40.71

14 G [ 41.37 | 4065 | 38.79 | 4113 | 4193 | 4262 4284 4116 0224 | dn
B 35.64 | 3430 | 3445 | 3478 | 35.00 | 3582 36.12 3534 3548 | 37.01

R | 3644 | 34.88 | 3487 | 3532 | 3623 | 3734 3695 2950 3629 | 38.35

15 G [ 41.20 | 4027 | 3813 | 4071 | 40.75 | 42.39 42.68 41.40 4190 | 43.27
B 38.17 | 36.84 | 3652 | 37.30 | 37.90 | 3849 38.99 3854 38.00 | 39.67

R | 3275 | 3095 | 2875 | 3195 | 3221 | 34.18 34.97 32.06 3259 | 34.90

16 G [ 3409 | 3236 | 2860 | 3322 | 3299 | 3500 35.59 32.62 3413 | 36.19
B 31.63 | 26.85 | 24.87 | 28.06 | 28.30 | 3L.12 3153 3144 2943 | 3431

R | 3124 | 27.12 | 2535 | 2832 | 2924 | 3160 32.14 2556 3053 | 33.88

17 G [ 3517 | 3213 | 2668 | 3331 | 33.62 | 3731 37.62 36.79 3655 | 39.77
B 30.69 | 26.65 | 2506 | 27.77 | 28.38 | _30.78 3091 28.69 2957 | 33.39

R | 32.69 | 3230 | 31.61 | 3332 | 3324 | 3463 34.58 3252 3323 | 35.10

18 G [ 3620 | 3569 | 33.84 | 3702 | 3591 | 3730 3727 3630 3595 | 3741
B 3343 | 3190 | 311 | 3293 | 3344 | 3487 3430 33.44 3324 | 36.78

R | 3471 | 33.05 | 32.68 | 3406 | 3471 | 36.10 3623 3127 3474 | 38.60

AVG G [ 3801 [ 37.10 | 3463 | 38.10 | 38.08 | 39.46 39.79 38.00 3876 | 41.83
B 3341 | 3230 | 3187 | 335 | 3347 | 3433 34.38 3333 3346 | 36.58
[AVG | RGB | 3541 | 3415 | 33.06 | 3510 | 3542 | 3663 | 3680 | 3420 | 3565 | 39.01 |

Table 3: PSNR values for demosaicking the McMaster dataset. The bold numbers indicate the best method.



3.2 Joint Demosaicking and Denoising

In Table 4 we compare our method for reconstructing Bayer images that contain noise to other state-of-the-art methods, as described in [Jeon
and Dubois 2013]. Note, that we did not change our method from Section 3 to account for noise, as it naturally handles this case. Our method
beats all state-of-the-art methods in virtually every case. Figure 4 shows a few examples for comparison.

Condat 9x9 | Condat 13x13 | GT5x5 | GT 7x7 | GT9x0 | GT TixI1 | GT 13x13 | GT I5x15 | GT T1x11

No. | ‘¢ | JDD | Zhangl | LASIP | Zhang2 | ~ gy s BM3D BM3D | BM3D | BM3D | BM3D | BM3D | BM3D | h (LN} | Ours
o [ 3835 [ 3943 | 3344 | 3635 3691 37.65 3656 | 3799 | 3850 | 3881 38.05 39.01 3881 | 40.68

1154 | 1.047 [ 1907 | 1271 1427 1362 1280 | LI75 | Li3%2 | LII3 1.104 1.100 T3 | 0786

L | 3473 3514 | 3189 | 3402 3434 3468 3389 | 3483 | 3500 | 3521 3529 3533 3381 [ 35.19

1768 | 1.630 | 2238 | L.710 912 1858 1867 | 1727 | 1689 1672 1662 1,656 1763 | 1329

o [ 3114 [ 3141 | 2978 | 3097 3137 3154 3073 | 3146 | 3165 | 3172 3177 31,79 3056 | 31.93

X 2667 | 2475 | 2798 | 2413 2619 2562 28020 | 2.546 | 2460 | 2440 2473 2413 2627 [ 1927
15 [ 2884 [ 2909 | 2817 | 872 2031 72946 7853 | 2923 | 2944 | 2952 2957 7959 2845 | 30.09

3565 | 3310 | 3335 | 3.144 3322 3220 3782 | 3369 | 3225 | 3.059 3125 3107 3446 | 2476

1o [ 2721 [ 2749 | 2694 | 2710 2784 28.04 2698 | 2760 | 2792 | 2804 28.09 2812 2699 | 28.74

4442 | 4104 | 3856 | 3.834 3002 3825 3750 | 4165 | 3943 | 3821 3761 3725 4195 | 3.004

2o 2595 | 2629 | 3597 | 2587 72676 27.01 2583 | 2655 | 2681 26.97 27.04 27.08 2592 [ 27.65

5300 | 4862 | 4360 | 4472 3654 4385 ST23 | 4934 | 4623 | 4439 3344 4281 4895 | 3515

o | 3598 | 3662 | 3219 | 3443 33.07 3347 3204 | 3530 | 3568 | 3585 3592 35.05 3585 | 38.63

1395 | 1315 | 2.165 | 1542 1933 1.893 1571 | 1479 | 1435 1424 1419 1417 1424 0.967

L [ 3351 | 3385 | 3111 | 3284 32.02 232 24T | 3345 | B2 | 3B 3388 33.92 3153 | 35.19

1988 | 1.875 | 2510 | 1951 2360 7319 2114 | 2.008 | 1966 | 1951 1.04% 1041 2115 | 1.449

o [ 3067 [ 3082 | 2937 | 3045 3051 30.75 3036 | 3016 | 3138 | 3146 3051 3154 2884 | 3248

¢ 2873 | 2724 | 3.099 | 2.643 2,969 2914 2934 | 2756 | 2.601 2.669 2654 2.646 3014 | 2015
1 | 2857 | 2868 | 2786 | 2852 79.16 29.40 2863 | 2940 | 2062 | 29.71 29.77 29.80 2677 | 30.61

3768 | 3560 | 3.700 | 3362 3579 3484 3760 | 3495 | 3378 | 333 3306 389 3919 | 2.569

T [ 2697 [ 2711 3661 | 2700 28.00 7827 7726 | 2802 | 2828 | 2839 7846 2849 2524 2915

3656 | 4371 | 4295 | 4055 3187 3023 3577 [ 4200 | 4031 | 3952 3.900 3873 3784 | 3.006

2o 2568 | 3588 | 3557 | 2576 27.01 2733 2616 | 2692 | 2720 | 2735 2742 2746 2407 | 2794

5533 | 5.146 | 4872 | 4719 3794 3546 5344 | 4893 | 4657 | 4536 3457 3412 5609 | 3.660

o [ 4005 [ 4113 | 3715 | 3899 37.99 3871 3937 | 4042 | 4078 | 4093 31,00 02 3093 | 4176

0815 | 0.763 | 1212 | 0.904 0.969 0932 0831 | 0777 | 0755 | 0.749 0.746 0.746 0749 | 0.723

L [ 3608 | 3656 | 3470 | 3600 3552 3587 3584 | 3651 | 3668 | 3673 36.77 36.78 3484 [ 37.18

1490 | 1383 | 1714 | 1.427 1564 1539 1533 | 1435 | 1413 1408 1406 1404 1522 | 1241

o | 3273 [ 3321 | 3227 | 3288 33.09 3329 362 | 3335 | 3355 | 3361 3365 33.66 3144 | 34.19

" 2363 | 2130 | 2.300 | 2.084 2251 2.200 2451 | 2233 | 2153 | 2.126 2117 2113 2404 | L.T79
[ [3054 [ 3110 | 3058 | 3076 3139 3163 3049 | 3134 | 3163 | 3176 3180 3183 2038 | 3234

3210 [ 2834 | 2777 | 267 7,889 2778 3338 | 2979 | 2821 2745 2714 2.697 3184 | 2276

1o [ 2892 | 2960 | 2935 | 2935 30.16 30.50 2000 | 2996 | 3032 | 3052 30.61 30.65 2797 | 3090

4033 | 3500 | 3.197 | 3.200 3.488 3381 4172 [ 3676 | 3439 | 3304 3235 3.19 3886 | 2.762

S0 2761 [ 2844 | 2835 | 1804 2920 29.65 7790 | 2889 | 2933 | 29.60 2972 29.79 2692 | 29.68

4840 | 4.138 | 3.593 | 3.697 3.065 3753 3963 | 4334 | 4015 | 3826 3717 3647 3532 | 3251

o [ 3548 [ 3549 | 3370 | 3451 35010 3529 3500 | 3557 | 3562 | 3568 3571 33572 3568 | 36.99

1022 | 1122 | 1601 | L.168 1071 1055 1043 | 1001 | 0973 | 0969 0.963 0.967 0969 | 0.887

L | 3365 | 3338 | 3240 | 33.12 372 3377 3334 | 3388 | 3393 | 3396 3398 34.00 3288 | 34.90

T680 | 1755 | 2.025 | 1.668 7636 1679 1727 | 1.651 | 1.634 1631 1627 1626 1727 [ 1473

o [ 3128 [ 3124 | 3053 | 3101 3170 3176 3007 | 3166 | 3177 | 3081 3183 3184 2004 | 3237

9 2547 | 2554 | 2794 | 2359 2471 7401 7633 | 2450 | 2396 | 2379 7.360 2365 2630 | 2.010
1 [2937 [ 2946 | 2903 | 97 30.03 30.14 2923 | 2989 | 3005 | 30.13 30.16 30.18 2794 | 30.66

3425 3315 | 3379 | 3050 3.120 3.045 3536 | 3223 | 3.004 | 3051 3.005 3012 3448 | 2.686

1o | 2787 [ 2808 | 2787 | 2782 3871 28.89 2781 | 2851 | 2873 | 2885 2890 2893 2656 | 29.32

3294 | 4050 | 3901 | 3.604 3795 3.636 3407 [ 3965 | 3773 | 3673 3618 3.590 4186 | 3233

2o [ 2664 | 2697 | 2695 | 26.68 27,64 27.90 2660 | 2741 | 2766 | 2784 27.90 2795 7556 [ 28.17

5154 | 4757 | 4372 | 4292 3450 4192 S240 | 4679 | 4412 | 4259 4170 2120 4861 | 3771

Table 4: PSNR and S-CIELAB values for the Kodak dataset containing Gaussian noise with varying ¢. The bold numbers indicate the best
method. See [Jeon and Dubois 2013] for a description of the competing methods.
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Figure 4: Joint demosaicking and denoising comparison (Kodak dataset). Please zoom into the PDF. In terms of PSNR, we achieve better

results in all cases. With our method (c), the house image is visually crisper and has no low-frequency color noise, unlike in (b). In fact, our
result is almost too crisp, lowering the weight for the data term would yield a smoother result (see Fig. 14 for a related discussion).



4 Deconvolution

‘We compare our method against several other state-of-the-art methods, following the procedure presented by Schuler et al. [2013]. The images
and blur kernels used in this comparison are visualized in Figure 5. The PSNR for each image and each technique are given in Table 5. The
average PSNR can be found in the main paper. The images can also be inspected in the supplemental web-pages. Figure 6 shows a few results
comparing our technique with other state-of-the-art methods. Even more examples can be found in the supplemental web-pages.

11 kernel

Case (d) Case(c) Case(b) Case(a) Original

Case (e)

Figure 5: The dataset used for comparing our deconvolution to 4 other state-of-the-art methods. The procedure follows Schuler et al. [2013].
We achieve better deblurring quality than these previous methods. The full PSNR table can be found in Table 5. The deconvolution results can
be browsed in the supplemental web-pages.

Original Blurred Krishnan et al. [2009] IDD-BM3D [2012] MLP [2013] Ours

Figure 6: We first compare deconvolution of two artificially blurred color images (using measured real-world camera shake [Levin et al.
2007]). As can be seen, our method produces the least artifacts (e.g., see smooth backgrounds). In the last row, we show a real-world example
from Levin et al’s [2007] database. Similarly, our method produces the least artifacts. Please zoom into the PDF. (Images courtesy of
Wikipedia user Hans Hillewaert and Pierre Dalous, and [Levin et al. 2009].)



Method I 2 3 7 5 6 7 3 9 10 1T
Blurred 20.8004 | 22.9252 | 22.6989 | 20.9770 | 22.2170 | 22.7570 | 21.9489 | 17.0763 | 22.3771 | 22.1460 | 23.2252

F| Levinetal. [2007] | 23.2871 | 26.6641 | 262106 | 22.7202 | 24.8653 | 25.7623 | 24.2881 | 17.4262 | 24.8001 | 24.1561 | 25.7881
3 | Krishnan et al. [2009] | 23.4305 | 26.6857 | 26.3295 | 22.8015 | 24.9406 | 25.7638 | 24.3204 | 17.4299 | 24.8236 | 24.1149 | 25.7402
8| IDD-BM3D[2012] | 24.0598 | 28.2769 | 26.9892 | 23.0866 | 25.6261 | 26.3341 | 24.4639 | 17.4885 | 25.1974 | 243742 | 26.0144
MLP [2013] 242612 | 27.9809 | 26.9226 | 23.2296 | 25.7352 | 26.4476 | 24.5986 | 17.4818 | 25.2033 | 24.4735 | 26.1373

Ours 243327 | 28.1724 | 27.0898 | 232373 | 257423 | 26.5471 | 24.6379 | 17.4776 | 25.2369 | 24.4837 | 26.1792

Method I 2 3 7 5 6 7 3 9 10 11

Blurred 21.6800 | 24.5071 | 24.0912 | 21.9366 | 23.5426 | 24.1519 | 23.1112 | 174307 | 23.6457 | 23.3993 | 24.8902

3| Levinetal [2007] | 255349 | 30.3812 | 29.3241 | 24.2647 | 27.5837 | 28.6523 | 26.4336 | 17.8144 | 27.2379 | 26.4546 | 28.6267
3 | Krishnan etal. [2009] | 25.6175 | 30.4072 | 29.4425 | 24.3384 | 27.5730 | 28.6867 | 26.4346 | 17.8007 | 27.2834 | 26.4274 | 28.4925
&| IDD-BM3D[2012] | 264792 | 321151 | 30.0156 | 25.0356 | 28.1461 | 29.4461 | 26.7580 | 17.8489 | 27.6420 | 26.7408 | 28.9194
MLP [2013] 26.6398 | 31.5943 | 30.1033 | 25.1391 | 28.3716 | 29.6208 | 26.9048 | 17.8866 | 27.7148 | 26.8471 | 28.8552

Ours 26.7439 | 32.0813 | 30.2243 | 25.1202 | 28.4192 | 29.6550 | 26.9002 | 17.8455 | 27.7121 | 26.8100 | 28.9167

Method I 2 3 7 5 6 7 3 9 10 11

Blurred TSAT8T | 203912 | 19.7602 | 19.1161 | 19.8073 | 19.9180 | 19.6269 | 16.6636 | 20.0568 | 20.2844 | 21.1414

S| Levinetal. [2007] | 20.8330 | 22.9116 | 22.9228 | 21.0982 | 22.2095 | 22.8548 | 22.0417 | 17.0863 | 22.3855 | 22.0516 | 23.1149
3 | Krishnan et al. [2009] | 20.9051 | 22.8331 | 22.9553 | 21.1030 | 222017 | 22.8760 | 22.0736 | 17.0853 | 223858 | 22.0320 | 23.0646
&| IDD-BM3D[2012] | 213769 | 23.9549 | 235163 | 21.4466 | 22.5074 | 23.2325 | 22.0854 | 17.0706 | 22.6135 | 22.0592 | 22.9649
MLP [2013] 21.6310 | 23.7254 | 23.5725 | 21.5824 | 22.8560 | 23.4280 | 22.2240 | 17.0649 | 22.7725 | 22.0889 | 23.1754

Ours 21.6872 | 23.8816 | 23.6601 | 21.6353 | 22.8711 | 23.4863 | 22.2813 | 17.0651 | 227894 | 221232 | 23.1865

Method 1 2 3 7 5 6 7 3 9 10 1T

Blurred 16.8031 | 18.9516 | 169155 | 17.3676 | 17.5742 | 17.2539 | 17.9952 | 16.6595 | 18.0498 | 18.9830 | 20.0871

S| Levinetal. [2007] | 21.5498 | 24.2228 | 22.7576 | 21.8379 | 22.3233 | 223097 | 22.8016 | 17.3923 | 22.4392 | 23.0497 | 23.8854
3 | Krishnan etal. [2009] | 21.5314 | 23.9764 | 22.5647 | 21.7492 | 22.1105 | 22.0626 | 22.6357 | 17.3962 | 223222 | 22.9274 | 23.7383
&| IDD-BM3D[2012] | 22.4549 | 259946 | 233068 | 22.5330 | 23.0620 | 22.8314 | 22.9284 | 17.5784 | 22.6407 | 23.1095 | 23.8031
MLP [2013] 223413 | 254975 | 233611 | 22.7092 | 23.1639 | 22.9836 | 23.0197 | 17.5717 | 22.7843 | 23.0835 | 23.9968

Ours 224753 | 25.8235 | 23.5300 | 22.8066 | 23.2219 | 23.0827 | 23.1123 | 17.5587 | 22.8476 | 23.2187 | 24.1608

Method I 2 3 7 5 6 7 3 9 10 11

Blurred 16,5474 | 183706 | 17.0932 | 173106 | 18.3226 | 17.5564 | 17.3743 | 163046 | 17.8504 | 18.5884 | 19.5888

©| Levinetal. [2007] | 28.8203 | 31.1460 | 30.5573 | 29.0254 | 29.3529 | 29.7022 | 28.2596 | 19.9890 | 28.6898 | 27.9337 | 29.1433
3 | Krishnan et al. [2009] | 28.8109 | 30.8978 | 30.2445 | 29.6337 | 29.0727 | 29.1271 | 28.0234 | 20.0545 | 28.4969 | 27.6901 | 28.7134
&| IDD-BM3D[2012] | 202354 | 333616 | 31.2619 | 31.3124 | 30.0871 | 30.6419 | 28.8559 | 22.5893 | 28.9051 | 28.5393 | 29.6615
MLP [2013] 297103 | 32.1443 | 31.0668 | 31.4754 | 30.0463 | 30.5153 | 28.8545 | 23.1308 | 28.7937 | 28.4798 | 29.4480

Ours 30.1910 | 32.9455 | 31.4396 | 32.5486 | 30.2806 | 30.7379 | 29.0791 | 23.1161 | 28.9991 | 28.6535 | 29.6015

Table 5: We compare our method to four other state-of-the-art methods. PSNR (in dB) is given for each image in the dataset, for all 5 cases.
The average numbers are given in the main paper.
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5 Interlaced HDR

Table 6 lists detailed PSNR numbers of our interlaced HDR (iHDR) reconstructions for different denoisers and different images. The images

are shown in Figure 7.

Image 1 2 3 4 5 6 7 8
Missingdata | 38% 26% 25% 21% 31% 27% 22% 22%
BM3D | 4651 3629 4598 4649 4422 4206 40.69 42.17
NLM | 39.79 34.14 4522 4503 4228 39.63 39.29 40.22
Patchwise NLM | 46.70 3559 45.81 4641 4390 41.83 4096 42.20
Sliding DCT | 43.03 30.30 44.67 4275 4159 2995 3927 38.03
Averaging | 46.26 3597 4543 46.08 43779 42.10 39.52 41.79

Table 6: PSNR values for different interlaced HDR images using different denoisers.

Figure 7: Images used for the interlaced HDR reconstruction evaluation.

5.1 User-defined exposure weight mask

Although by default the matrix M discards only useless pixel data, it can be also used to bias the solution towards the short- or long-exposure
parts. We demonstrate this in Fig. 8, where the user marked the surfer and limited the reconstruction of the underlying image to only use the
short-exposure data, to prefer a sharper, less blurry (but also noisier) result. The selection mask can be created manually, as in Fig. 8 (b), or
with a stroke-based edit propagation framework, such as the one introduced by Baek et al. [2013].

Figure 8: Image reconstruction with user-defined exposure weight mask. (a) Sparse observations; many short-exposure pixels are too dark to
be useful, and the long-exposure data has a lot of motion-induced blur. (b) Sparse observations with user-defined (short-)exposure preference
mask. (c¢) The output of our method without the use of the mask. The surfer and details on his board have little noise, but are both affected by
motion-blur. (d) With the exposure weight mask applied, we can trade-off motion-related artifacts for increased amount of detail (and noise).
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6 Color Camera Array

Figure 9 shows a number of scenes that were captured with the (small baseline) 2 x 2 prototype sensor. Note that there are no visible color
artifacts in the images. Note also that the lenses on this prototype sensor are not ideal, and the input images are somewhat soft (see also the
supplemental web page).

We note that our method can directly, and almost trivially handle stuck pixel masking, instead of relying on a separate part of the pipeline
(where demosaicking is typically not aware that stuck pixels were filled with averaged data). An example with 2 x 2 color array camera input is
shown in Figure 10, the same approach works just as well for Bayer images.

(a) Red channel (b) Green channel (¢) Blue channel (d) Our reconstruction

Figure 9: A few 2 x 2 example datasets reconstructed with our method. Note how there are no visible color artifacts in the results (all examples

use the cross-channel prior).

Figure 10: Stuck pixel masking can be directly incorporated into our method as well. Here we show a result image without stuck pixel masking
(left), a (conservative) mask indicating stuck pixels (middle), and our result (right). Please zoom in to see the differences.




6.1 4 x 4 Camera Array

In addition to the 2 x 2 camera array cameras, we have experimented with a simulated 4 x 4 array. For this we used the Stanford light field
dataset [Stanford Graphics Laboratory 2008] by picking views and dropping color channels in the same pattern as in PiCam [Venkataraman
et al. 2013]. Each view is first blurred using a 2 x 2 box kernel and then decimated to simulate loss in resolution. Using this simulated 4 x 4
array, we aim to achieve 2 x superresolved (w.r.t. a single tile) images, but with consistent colors. We follow the standard warp-blur-decimate
forward model for superresolution [Mitzel et al. 2009; Liu and Sun 2011] to recover some of the lost resolution by utilizing subpixel shifts
between the different color channel captures. We set A; = M;DBS; for each capture i (out of k), and get

G(x) = |[[Myzy;...;Mzi] — [MDBS;...; MDBS]x|)3 . 3)

The blur matrix B represents convolution with a 2 x 2 box kernel and models 100% fill-factor square pixels without any anti-aliasing filter on
top of the sensor, and the decimation matrix D represents the uniform 2x downsampling. To get a baseline, we first computed optical flow
between the tiles (see Section 4.4 in the main paper), and applied bicubic upsampling both to the flow and colors into a 2x denser grid. The
data was forward-warped, and normalized to create the output image (Fig. 11 left). We then ran our method, which first computes the optical
flow as before and then used our framework to get the results in the center column of Fig. 11.

Accumulated (29.2dB) Ours (32.6dB) Ground truth

Figure 11: Superresolution with light field data simulating a 4 X 4 array camera. (left) Straightforward baseline image that upsamples the
images and warps before accumulating into a 2 finer grid. (middle) Our algorithm effectively combines natural image priors for performing
a faithful superresolution. (right) Ground truth.

Figure 12 shows how the use of the cross-channel prior removes potential color artifacts. The artifacts are very evident in (b) and (c), whereas
our final result in (d) shows very few artifacts.

6.2 lterated Application

We can apply Alg. 1 iteratively to improve the quality of the superresolved RGB images. At the first iteration, we use the cross-channel scaled
gradients to initialize the flow. Reconstruction after this first iteration can show banding artifacts resulting from small alignment inaccuracies,
which get enhanced by the 2 x 2 deconvolution. In subsequent iterations (Fig. 13), we use the reconstructed superresolved image as the
reference for motion estimation, and compute the red channel flow to the red channel of the current output, and the same for the blue channel.
This achieves a better alignment and results in no banding. Note that any artifacts are not due to demosaicking, as the sensors do not use the
Bayer color pattern.
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ccumulate (¢) Ours (without cross-channel prior) (d) Ours (with cross-channel prior)
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Figure 12: Another 4 x 4 simulated dataset reconstructed with our method. Note how there are many color artifacts (e.g., around the left
helmet), when the cross-channel prior is not used. The cross-channel prior removes almost all artifacts. Please zoom into the digital version of
the supplemental for comparison.

Figure 13: Due to imprecise initial cross-channel optical flow, the first result has chromatic artifacts. Iterating between reconstruction and
Sflow estimation improves both the flow and the reconstruction.
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7 Burst Denoising and Demosaicking

We include two real-world examples and one simulated example of burst denoising and demosaicking in Figure 15. Note that all the examples
can also be browsed and compared in the supplemental web page, which provides a more intuitive interface for comparisons.

In Figure 14 we show that there are often two sets of parameters leading to high PSNR, but with different visual appeal. In this case (a) appears
very crisp, but has also slightly more noise, whereas (b) is virtually noise-free, but appears slightly softer. Which result is preferred is a matter
of personal choice. In the paper, we always include the result with the highest PSNR.

PSNR =29:40 PSNR =29:41
(a) Ours — Crisp (b) Ours — Noise Free (c¢) Ground truth

Figure 14: The tables in the paper report the results with the highest PSNR. However, a visually different result with very similar PSNR may
be achievable by adjusting the parameters. In this case, the image in (a) appears crisp but contains noise, whereas (b) appears noise-free, but
Jjust a little bit softer. Both have virtually the same PSNR. Image (b) was created by slightly increasing the strength of the denoising prior.
(Image courtesy of Flickr user susan402.)
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7

S Reference

PSNR = 26.28 PSNR = 31.09 PSNR = 31.60 PSNR = 32.91 PSNR = 33.33 PSNR = 34.44 Ground Truth
(a) First frame of stack (b) BM3D (first frame) (¢) VBM3D (stack) (d) NLM-weighted stack (e) NLM stack + BM3D (f) Ours (g) Reference

Figure 15: Burst denoising and demosaicking—additional examples. The top row shows a real-world example; the stack of 8 images was captured at ISO 12800 with a Canon EOS 650D,
except for the reference image (captured at ISO 100). We note that the captured reference image cannot be considered reliable “ground truth”, as demosaicking is required. We encourage
the reader to do a qualitative comparison using the supplemental web page. The second row shows a handheld portrait captured at 30fps on a 3.2MP PointGrey Flea 3, yielding a stack of
16 noisy images. Since the scene was dynamic, it was not possible to capture a reference image, and no PSNR can be given. Again, we encourage the reader to check our supplemental web

page. The third dataset, showing the famous Cape Neddick Lighthouse, is a simulated dataset with additive white Gaussian noise (¢ = 12/255) applied to each of the 16 images in the
dataset. Our quality improvement can be clearly seen.



8 Beyond RGB

We demonstrate a few examples images in Figure 16, where we have directly reconstructed an image in YUV420 from an (simulated) interlaced
HDR image. We compare this against the ground truth image, and the pipelined approach, where we first reconstruct to RGB and then simply
convert to YUV420. Our joint reconstruction yields a visible improvement. Table 7 shows the PSNR numbers for all twelve images that were
used in our experiment.

Ground truth PSNRI=/30.28dB PSNRI=/31.00dB

(a) Ground truth (b) Pipeline (c) Ours

Figure 16: Visual comparison between first reconstructing an interlaced HDR image as RGB and then converting to YUV420 (pipeline
approach) and directly reconstructing into YUV420 using our framework. (Images courtesy Wikemedia users Ray Eye, Diego Delso, and Hans
Hillewaert.)

Biandintz | Church | Eichhorn | Gull | Houses | Cow | Rally | Yundrok | Libelle | Melinaea | Mototaxis | Platycercus
Pipeline 29.12 29.26 31.80 3457 | 26.12 | 26.10 | 26.03 26.74 27.15 30.28 28.52 25.67
Joint (Ours) 29.36 29.71 32.21 3531 | 26.15 | 26.78 | 26.03 26.60 28.21 31.00 28.86 25.74

Table 7: Comparison between first reconstructing an interlaced HDR image as RGB and then converting to YUV420 (pipeline approach) and
directly reconstructing into YUV420 using our framework (PSNR values in dB).

9 Deblocking

In Table 8 we compare our method for reconstructing JPEG compressed images to the state-of-the-art shape-adaptive DCT (SA-DCT) deblocker
[Foi et al. 2007].

Quality 0 Lena Peppers F-16 Baboon Lake Tiffany House Avg

TPEG [ SA-DCT | Ours || JPEG | SA-DCT | Ours || JPEG | SA-DCT [ Ours || JPEG | SA-DCT | Ours || JPEG | SA-DCT | Ours || JPEG [ SA-DCT | Ours || JPEG | SA-DCT | Ours || JPEG [ SA-DCT [ Ours
75 3321 | 3356 | 3375 | 3029 | 30.67 | 30.65 || 3261 | 33.18 | 3329 || 2621 | 2625 | 26.51 || 2865 | 2801 | 2899 || 31.03 | 3119 | 3150 || 31.44 | 32.00 | 31.96 || 3049 | 30.82 | 3095
50 3202 | 3263 | 3281 | 2925 | 2981 | 29.82 || 31.06 | 3183 | 31.95 || 24.85 | 2497 | 25.25 || 27.66 | 28.07 | 2813 || 2991 | 30.12 | 30.44 || 29.80 | 30.40 | 3039 || 29.22 | 29.60 | 29.83
30 3154 | 3226 | 32.44 | 2883 | 2945 | 29.46 || 3064 | 31.52 | 3159 || 24.40 | 2456 | 24.82 || 2731 | 27.78 | 27.84 || 29.57 | 2987 | 30.12 || 29.51 | 30.20 | 30.17 || 28.83 | 29.38 | 29.49
30 3091 | 3179 | 31.93 | 2840 | 29.14 | 29.12 || 3006 | 31.09 | 3115 || 23.85 | 2406 | 24.29 || 2684 | 27.38 | 2744 || 2921 | 29.62 | 29.83 | 2896 | 29.76 | 29.73 || 2832 | 2898 | 2907
75 3044 | 3146 | 31.55 || 2804 | 2890 | 28385 || 29.58 | 30.71 | 30.73 || 2350 | 23.75 | 2395 || 2651 | 27.13 | 27.18 || 2891 | 2940 | 29.60 || 2855 | 29.44 | 2938 || 2793 | 2868 | 28.75
20 2983 | 3100 | 3102 || 2757 | 2853 | 2846 || 28.90 | 30.13 | 30.09 || 23.07 | 23.37 | 2353 || 2607 | _26.78 | 26.80 || 2840 | 2899 | 29.12 || 2787 | 2875 | 2868 || 27.39 | 2822 | 28.4

Table 8: PSNR value (in dB) for different JPEG quality metrics. The bold numbers indicate the best method.
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