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Figure 1: Few-shot viewpoint estimation. Given only a few images of a novel category with
annotated viewpoints (left images with rendered CAD models2), we aim to learn to predict
the viewpoint of arbitrary objects from the same category.

Abstract
Viewpoint estimation for known categories of objects has been improved significantly

thanks to deep networks and large datasets, but generalization to unknown categories is
still very challenging. With an aim towards improving performance on unknown cate-
gories, we introduce the problem of category-level few-shot viewpoint estimation. We
design a novel framework to successfully train viewpoint networks for new categories
with few examples (10 or less). We formulate the problem as one of learning to estimate
category-specific 3D canonical shapes, their associated depth estimates, and semantic 2D
keypoints. We apply meta-learning to learn weights for our network that are amenable to
category-specific few-shot fine-tuning. Furthermore, we design a flexible meta-Siamese
network that maximizes information sharing during meta-learning. Through extensive
experimentation on the ObjectNet3D and Pascal3D+ benchmark datasets, we demon-
strate that our framework, which we call MetaView, significantly outperforms fine-tuning
the state-of-the-art models with few examples, and that the specific architectural innova-
tions of our method are crucial to achieving good performance.

c© 2019. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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1 Introduction
Estimating the viewpoint (azimuth, elevation, and cyclorotation) of rigid objects, relative to
the camera, is a fundamental problem in three-dimensional (3D) computer vision. It is vi-
tal to applications such as robotics [34], 3D model retrieval [5], and reconstruction [11].
With convolutional neural networks (CNNs) and the availability of many labeled exam-
ples [3, 41, 42], much progress has been made in estimating the viewpoint of known cate-
gories of objects [5, 15, 20]. However, it remains challenging for even the best methods [43]
to generalize well to unknown categories that the system has not encountered during train-
ing [12, 37, 43]. In such a case, re-training the viewpoint estimation network on an unknown
category would require annotating thousands of new examples, which is labor-intensive.

To improve the performance of viewpoint estimation on unknown categories with little
annotation effort, we introduce the problem of few-shot viewpoint estimation, in which a few
(10 or less) labeled training examples are used to train a viewpoint estimation network for
each novel category. We are inspired by the facts that (a) humans are able to perform mental
rotations of objects [28] and can successfully learn novel views from a few examples [18];
and (b) recently, successful few-shot learning methods for several other vision tasks have
been proposed [4, 6, 19].

However, merely fine-tuning a viewpoint estimation network with a few examples of a
new category can easily lead to over-fitting. To overcome this problem, we formulate the
viewpoint estimation problem as one of learning to estimate category-specific 3D canonical
keypoints, their 2D projections, and associated depth values from which viewpoint can be
estimated. We use meta-learning [1, 4] to learn weights for our viewpoint network that are
optimal for category-specific few-shot learning. Furthermore, we propose meta-Siamese,
which is a flexible network design that maximizes information sharing during meta-learning
and adapts to an arbitrary number of keypoints. Through extensive evaluation on the Ob-
jectNet3D [42] and Pascal3D+ [41] benchmark datasets, we show that our proposed method
helps to significantly improve performance on unknown categories and outperforms fine-
tuning the state-of-the-art models with a few examples of new categories.

To summarize, the main scientific contributions of our work are:
• We introduce the problem of category-level few-shot viewpoint estimation, thus bridg-

ing viewpoint estimation and few-shot learning.
• We design a novel meta-Siamese architecture and adapt meta-learning to learn weights

for it that are optimal for category-level few-shot learning.

2 Related work
Viewpoint estimation. Many viewpoint estimation networks have been proposed for sin-
gle [11, 30, 36] or multiple [5, 43] categories; or individual instances [22, 31] of ob-
jects. They use different network architectures, including those that estimate angular val-
ues directly [10, 15, 30, 36, 40]; encode images in latent spaces to match them against
a dictionary of ground truth viewpoints [14, 31]; or detect projections of 3D bounding
boxes [5, 21, 33, 34] or of semantic keypoints [20, 43], which along with known [20] or
estimated [5, 43] 3D object structures are used to compute viewpoint. Zhou et al. propose
the state-of-the-art StarMap method that detects multiple visible general keypoints [43] sim-
ilar to SIFT [13] or SURF [2] via a learned CNN, and estimates category-level canonical 3D
shapes. The existing viewpoint estimation methods are designed for known object categories

2We do not use the CAD models in our method, and we show them here for the purpose of illustrating viewpoint.
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and hence very few works report performance on unknown ones [12, 37, 43]. Even highly
successful techniques such as [43] perform significantly worse on unknown categories ver-
sus known ones. To our knowledge, no prior work has explored few-shot learning as a means
to improve performance on novel categories and our work is the first to do so.

The existing viewpoint estimation networks also require large training datasets and two
of them: Pascal3D+ [41] and ObjectNet3D [42] with 12 and 100 categories, respectively,
have helped to move the field forward. At the instance level, the LineMOD [8], T-LESS [9],
OPT [39], and YCB-Video [40] datasets that contain images of no more than 30 known 3D
objects are widely used. Manual annotation of object viewpoint by aligning 3D CAD models
to images (e.g., Figure (1)); or of 2D keypoints is a significant undertaking. To overcome
this limitation, viewpoint estimation methods based on unsupervised learning [32]; general
keypoints [43]; and synthetic images [22, 30, 31, 35, 40] have been proposed.

Few-shot learning. Successful few-shot learning algorithms for several vision tasks, besides
viewpoint estimation, have been proposed recently. These include object recognition [4, 24,
25, 26, 29, 38], segmentation [23, 27], online adaptation of trackers [19], and human motion
prediction [6]. Several of these methods use meta-learning [1] to learn a “learner” that is
amenable to few-shot learning of a specific task from a set of closely related tasks. The
learner may take the form of (a) a training algorithm [4, 17, 24]; (b) a metric-space for
representing tasks [29, 38]; or (c) a meta-recurrent network [25, 26]. The MAML [4] meta-
learning algorithm that learns a set of network initialization weights that are optimal for
few-shot fine-tuning, is shown to be useful for many vision tasks.

Relative to the existing work, in this work we train networks for category-level viewpoint
estimation. We further assume that we do not have access to 3D CAD models of any object
or category. Lastly, we endeavor to train viewpoint networks for new categories with very
few examples—a task that has not been attempted previously.

3 Few-shot Viewpoint Estimation
Our proposed MetaView framework for category-level few-shot viewpoint estimation is
shown in the top row of Figure 2. It consists of two main components: a category-agnostic
feature extraction block designed to extract general features from images that help to im-
prove the accuracy of the downstream viewpoint estimation task; and a category-specific
viewpoint estimation block designed to compute the viewpoint of all objects of a specific
category. The latter block, in turn, computes viewpoint by detecting a unique set of semantic
keypoints (containing 3D, 2D and depth values) via a category-specific feature extraction
module ( fθcat ) and a category-specific keypoint detection module ( fθkey ).

Our system operates in the following manner. We first train each of our feature extraction
and viewpoint estimation blocks using a training set Strain containing a finite set of object cat-
egories. We use standard supervised learning to train the feature extraction block and fix its
weights for all subsequent training stages. We then use meta-learning to train our viewpoint
estimation block. It uses an alternative training procedure designed to make the viewpoint
estimation block an effective few-shot “learner”. This means that when our trained view-
point estimation block is further fine-tuned with a few examples of an unknown category, it
can generalize well to other examples of that category.

At inference time, we assume that our system encounters a new category (not present
during training) along with a few of its labeled examples from another set Stest (e.g., the
category “monitor” shown in the lower part of Figure 2). We construct a unique viewpoint
estimation network for it, initialize its weights with the optimal weights θ ∗cat and θ ∗key learned
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Figure 2: Method overview. Our MetaView framework is composed of a category-agnostic
feature extraction (top-left) and category-specific viewpoint estimation (top-right) blocks.
The bottom components show the different steps for training our viewpoint estimation block
via meta-learning or for adapting it to a new category (bottom left only), which are described
in detail in Section 3.
during meta-learning, and fine-tune it with the new category’s few labeled examples (lower
left of Figure 2). This results in a category-specific viewpoint network that generalizes well
to other examples of this new category (lower right of Figure 2). In the following sections,
we describe the architecture and the training procedure of each component in more detail.

3.1 Feature Extraction
The first stage of our pipeline is a feature extraction block (top left of Figure 2), which
we train and use to extract features without regard to an object’s category. It consists of
two ResNet-18-style [7] networks: one trained as described in [43] to extract a multi-peak
heatmap for the locations of many visible general keypoints (see examples in the supple-
mentary material); and another whose first four convolutional blocks compute an identically-
sized set of high-level convolutional features and is trained to detect 8 semantic keypoints
for all categories by optimizing the loss in Eq. (6) described later in Section 3.2.2. We
concatenate the multi-peak heatmap and high-level features and input them to the viewpoint
estimation block. We train the feature extraction block via standard supervised SGD learning
and once trained, we fix its weights for all subsequent steps.

3.2 Viewpoint Estimation
Our viewpoint estimation block (top right in Figure 2) is specific to each category. It com-
putes a 3D canonical shape for each category, along with its 2D image projection and depth
values; and relates these quantities to compute an object’s viewpoint. Furthermore, it is
trained via meta-learning to be an optimal few-shot “learner” for any new category. We
describe its architecture and training procedure in the following sections.

3.2.1 Architecture

Viewpoint estimation via semantic keypoints. We assume that we have no knowledge of
the 3D shape of any object in a category. So, to compute viewpoint, inspired by [43], we
train our viewpoint estimation block to estimate a set of 3D points {(xk,yk,zk)|k = 1 . . .Nc},
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which together represent a canonical shape for the entire category Tc in an object-centric
coordinate system (e.g., for the category “chairs” it may comprise of the corners of a stick-
figure representation of a prototypical chair with a back, a seat, and 4 legs). Additionally,
for each 3D point k, our network detects its 2D image projection (uk,vk) and estimates its
associated depth dk. We refer collectively to the values (xk,yk,zk), (uk,vk), dk of a point k as
a “semantic keypoint”. Finally, we obtain the viewpoint (rotation) of an object by solving the
set of equations that relate each of the k rotated and projected 3D canonical points (xk,yk,zk)
to its 2D image location and depth estimate (uk,vk,dk), via orthogonal Procrustes. Note that
our viewpoint estimation block is different from that of Zhou et al.’s [43] as they detect the
2D projections of only the visible 3D canonical points, whereas we detect projections of all
visible and invisible ones, thus providing more data for estimating viewpoint.

Semantic keypoint estimation. To locate the 2D image projection (uk,vk) of each 3D key-
point k, the output of our network is a 2D heatmap hk(u,v), which predicts the probability
of the point being located at (u,v). It is produced by a spatial softmax layer. We obtain the
final image coordinates (uk,vk) via a weighted sum of the row (u) and column (v) values as:

(uk,vk) = ∑
u,v
(u,v) ·hk(u,v).. (1)

Our network similarly computes a 2D map of depth values ck(u,v) that is of the same
size as hk(u,v), along with three more maps mi={x,y,z}

k (u,v) for each dimension of its 3D
canonical keypoint. The final depth estimate dk and 3D keypoint (xk,yk,zk) is computed as:

dk = ∑
u,v

ck(u,v), (xk,yk,zk) = ∑
u,v

mi={x,y,z}
k (u,v) ·hk(u,v). (2)

Category-specific keypoints estimation. Given a category Tc, our viewpoint estimation
block must detect its unique Nc semantic keypoints via a category-specific feature extractor
fθcat followed by a set of category-specific semantic keypoint detectors { fθkeyk

|k = 1 . . .Nc}
(lower left of Figure 2). Each keypoint detector fθkeyk

detects one unique category-specific
semantic keypoint k, while the feature extractor fθcat computes the common features re-
quired by all of them. Since our viewpoint estimation block must adapt to multiple different
categories with different numbers of semantic keypoints, it cannot have a fixed number of
pre-defined keypoint detectors. To flexibly change the number of keypoint detectors for each
novel category, we propose a meta-Siamese architecture (lower left of Figure 2), which we
operate as follows. For each new category Tc, we replicate a generic pre-trained keypoint
detector ( fθkey ) Nc times and train each copy to detect one unique keypoint k of the new cat-
egory, thus creating a specialized keypoint-detector with a unique and different number of
semantic keypoints { fθkeyk

|k = 1 . . .Nc} for each new category.

3.2.2 Training
Our goal is to train the viewpoint estimation block to be an effective few-shot learner. In
other words, its learned feature extractor fθ∗cat

and semantic keypoint detector fθ∗key
, after

being fine-tuned with a few examples of a new category (lower left in Figure 2), should
effectively extract features for the new category and detect each of its unique keypoints,
respectively. To learn the optimal weights θ ∗ = {θ ∗cat,θ

∗
key} that make our viewpoint estima-

tion block amenable to few-shot fine-tuning without catastrophically over-fitting for a new
category, we adopt the MAML meta-learning algorithm [4].

Citation
Citation
{Zhou, Karpur, Luo, and Huang} 2018

Citation
Citation
{Finn, Abbeel, and Levine} 2017



6 TSENG ET AL.: FEW-SHOT VIEWPOINT ESTIMATION

MAML optimizes a special meta-objective using a standard optimization algorithm,
e.g., SGD. In standard supervised learning the objective is to minimize only the train-
ing loss for a task during each iteration of optimization. However, the meta-objective in
MAML is to explicitly minimize, during each training iteration, the generalization loss for
a task after a network has been trained with a few of its labeled examples. Furthermore, it
samples a random task from a set of many such related tasks available for training during
each iteration. We describe our specific meta-traning algorithm to learn the optimal weights
θ ∗ = {θ ∗cat,θ

∗
key} for our viewpoint estimation block as follows.

During each iteration of meta-training, we sample a random task from Strain. A task
comprises of a support set Ds

c and a query set Dq
c , each containing 10 and 3 labeled examples,

respectively, of a category Tc. The term “shot” refers to the number of examples in the
support set Ds

c. For this category, containing Nc semantic keypoints, we replicate our generic
keypoint detector ( fθkey ) Nc times to construct its unique meta-Siamese keypoints detector

with the parameters θ̃ ←
[
θcat,θkey1 ,θkey2 , . . . ,θkeyNc

]
(lower left in Figure 2) and initialize

each θkeyk with θkey. We use the category-specific keypoint detector to estimate its support
set’s semantic keypoints and given their ground truth values, we compute the following loss:

Ls
Tc = λ2DL2D +λ3DL3D +λdLd, (3)

where L2D, L3D, and Ld are the average L2 regression losses for correctly estimating the se-
mantic keypoints’ 2D and 3D positions, and depth estimates, respectively. The λ parameters
control the relative importance of each loss term. We compute the gradient of this loss Ls

Tc

w.r.t. to the network’s parameters θ̃ and use a single step of SGD to update θ̃ to θ̃ ′ with a
learning rate of α:

θ̃
′← θ̃ −α∇

θ̃
Ls
Tc . (4)

Next, with the updated model parameters θ̃ ′, we compute the loss Lq
Tc

for the query set
Dq

c of this category (lower right in Figure 2). To compute the query loss, in addition to the
loss terms described in (3), we also use a weighted concentration loss term:

Lcon =
1

Nc

Nc

∑
k=1

∑
u,v

hk(u,v)‖ [uk,vk]
>− [u,v]> ‖2, (5)

which forces the distribution of a 2D keypoint’s heatmap hk(u,v) to be peaky around the
predicted position (uk,vk). We find that this concentration loss term helps to improve the
accuracy of 2D keypoint detection. Our final query loss is:

Lq
Tc

= λ2DL2D +λ3DL3D +λdLd +λconLcon. (6)

The generalization loss of our network Lq
Tc

, after it has been trained with just a few examples
of a specific category, serves as the final meta-objective that is minimized in each iteration
of meta-training and we optimize the network’s initial parameters θ w.r.t. its query loss Lq

Tc
using:

θcat← θcat−β∇θcatL
q
Tc

(
f
θ̃ ′
)
, (7)

θkey← θkey−β
1

Nc
∑

k=1..Nc

[
∇θkeyk

Lq
Tc

(
f
θ̃ ′
)]

. (8)

We repeat the meta-training iterations until our viewpoint estimation block converges to
fθ∗ , as presented in Algorithm 1. Notice that in Eq. (8) we compute the optimal weights for
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the generic keypoint detector θkey by averaging the gradients of all the duplicated keypoint
detectors θkeyk . We find that this novel design feature of our network along with its shared
category-level feature extractor with parameters θcat help to improve accuracy. They enable
efficient use of all the available keypoints to learn the optimal values for θcat and θkey during
meta-training, which is especially important when training data is scarce.

Algorithm 1 MetaView Meta-training

1: Require: a set of tasks Strain

2: randomly initialize θkey and θcat
3: while training do
4: sample one task Tc ∼ Strain

5: . meta-Siamese keypoint detectors
6: θkey1 ,θkey2 , . . . ,θkeyNc

← θkey
7: . viewpoint estimator
8: θ̃ ←

[
θcat,θkey1 ,θkey2 , . . . ,θkeyNc

]
9: . update viewpoint estimator using support set

10: θ̃ ′← θ̃ −α∇
θ̃
Ls
Tc

(
f
θ̃

)
11: . meta learning optimization using query set
12: θcat← θcat−β∇θcatL

q
Tc

(
f
θ̃ ′
)

13: θkey← θkey−β
1

Nc
∑

k=1..Nc

[
∇θkeyk

Lq
Tc

(
f
θ̃ ′
)]

14: end while

3.2.3 Inference
We evaluate the performance of how well our viewpoint estimation block fθ∗ , which is
learned via meta-learning performs at the task of adapting to unseen categories. Similar to
meta-training, we sample a category from Stest with the same shot size as used for training.
We construct its unique viewpoint estimation network f

θ̃∗ and fine-tune it with a few of
its examples by minimizing the loss in Eq. (3). This results in a optimal few-shot trained
network f

θ̃∗′ for this category. We then evaluate the generalization performance of f
θ̃∗′ on

all testing images of that category. We repeat this procedure for all categories in Stest and for
multiple randomly selected few-shot training samples per category, and average across all of
them.

4 Results

Implementation details. We provide detailed descriptions of our CNN architectures, and
their training procedures in the supplementary material, to limit the number of pages.

Experiments. We evaluate our method for two different experimental settings. First, we
follow the intra-dataset experiment of [43] and split the categories in ObjectNet3D [42]
into 76 and 17 for training and testing, respectively. Secondly, we conduct an inter-dataset
experiment. From ObjectNet3D, we exclude the 12 categories that are also present in Pas-
cal3D+ [41]. We then use the remaining 88 categories in ObjectNet3D for training and test
on Pascal3D+. Complying with [36], we discard the images with occluded or truncated ob-
jects from the test set in both experiments. We use two metrics for evaluation: 1) Acc30,
which is the percentage of views with a rotational error less than 30◦ and 2) MedErr, which
is the median rotational error across a dataset, measured in degrees. We compute the rota-
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Table 1: Intra-dataset experiment. We report Acc30(↑)/MedErr(↓). All models are trained
and evaluated on 76 and 17 categories from ObjectNet3D, respectively. The “zero” methods
don’t use images of unknown categories for training and all others involve few-shot learning.

Method bed bookshelf calculator cellphone computer f_cabinet guitar iron knife microwave

StarMap (zero) 0.37 / 45.1 0.69 / 18.5 0.19 / 61.8 0.51 / 29.8 0.74 / 15.6 0.78 / 14.1 0.64 / 20.4 0.02 / 142 0.08 / 136 0.89 / 12.2
StarMap* (zero) 0.31 / 45.0 0.63 / 22.2 0.27 / 52.2 0.51 / 29.8 0.64 / 24.2 0.78 / 15.8 0.52 / 28.0 0.00 / 134 0.06 / 124 0.82 / 16.9
Baseline (zero) 0.26 / 49.1 0.57 / 25.0 0.78 / 53.3 0.38 / 45.5 0.66 / 20.3 0.73 / 18.7 0.39 / 44.6 0.06 / 135 0.08 / 127 0.82 / 16.8

StarMap* + fine-tune 0.32 / 47.2 0.61 / 21.0 0.26 / 50.6 0.56 / 26.8 0.59 / 24.4 0.76 / 17.1 0.54 / 27.9 0.00 / 128 0.05 / 120 0.82 / 19.0
Baseline + fine-tune 0.28 / 43.7 0.67 / 22.0 0.77 / 18.4 0.45 / 34.6 0.67 / 22.7 0.67 / 21.5 0.27 / 52.1 0.02 / 127 0.06 / 108 0.85 / 16.6
StarMap* + MAML 0.32 / 42.2 0.76 / 15.7 0.58 / 26.8 0.59 / 22.2 0.69 / 19.2 0.76 / 15.5 0.59 / 21.5 0.00 / 136 0.08 / 117 0.82 / 17.3
Ours 0.36 / 37.5 0.76 / 17.2 0.92 / 12.3 0.58 / 25.1 0.70 / 22.2 0.66 / 22.9 0.63 / 24.0 0.20 / 76.9 0.05 / 97.9 0.77 / 17.9

Method pot rifle slipper stove toilet tub wheelchair TOTAL

StarMap (zero) 0.50 / 30.0 0.00 / 104 0.11 / 146 0.82 / 12.0 0.43 / 35.8 0.49 / 31.8 0.14 / 93.8 0.44 / 39.3
StarMap* (zero) 0.51 / 29.2 0.02 / 97.4 0.10 / 130 0.81 / 13.9 0.44 / 34.4 0.37 / 37.0 0.17 / 74.4 0.43 / 39.4
Baseline (zero) 0.46 / 38.8 0.00 / 98.6 0.09 / 123 0.82 / 14.8 0.32 / 39.5 0.29 / 50.4 0.14 / 71.6 0.38 / 44.6

StarMap* + fine-tune 0.51 / 29.9 0.02 / 100 0.08 / 128 0.80 / 16.1 0.38 / 36.8 0.35 / 39.8 0.18 / 80.4 0.41 ± 0.00 / 41.0 ± 0.22
Baseline + fine-tune 0.38 / 39.1 0.01 / 107 0.03 / 123 0.72 / 21.6 0.31 / 39.9 0.28 / 48.5 0.15 / 70.8 0.40 ± 0.02 / 39.1 ± 1.79
StarMap* + MAML 0.51 / 28.2 0.01 / 100 0.15 / 128 0.83 / 15.6 0.39 / 35.5 0.41 / 38.5 0.24 / 71.5 0.46 ± 0.01 / 33.9 ± 0.16
Ours 0.49 / 31.6 0.21 / 80.9 0.07 / 115 0.74 / 21.7 0.50 / 32.0 0.29 / 46.5 0.27 / 55.8 0.48 ± 0.01 / 31.5 ± 0.72

Table 2: Inter-dataset experiment. We report Acc30(↑)/MedErr(↓). All models are trained
on ObjectNet3D and evaluated on Pascal3D+. The “zero” methods don’t use images of
unknown categories for training and all others involve few-shot learning.

Method aero bike boat bottle bus car chair

StarMap (zero) 0.04 / 97.7 0.10 / 90.42 0.14 / 78.42 0.81 / 16.7 0.54 / 29.4 0.25 / 67.8 0.19 / 97.3
StarMap* (zero) 0.02 / 112 0.02 / 102 0.06 / 110 0.44 / 34.3 0.48 / 32.7 0.18 / 87.0 0.29 / 70.0
Baseline (zero) 0.03 / 114 0.06 / 101 0.10 / 95 0.41 / 36.6 0.36 / 42.0 0.14 / 93.7 0.26 / 71.5

StarMap* + fine-tune 0.03 / 102 0.05 / 98.8 0.07 / 98.9 0.48 / 31.9 0.46 / 33.0 0.18 / 80.8 0.22 / 74.6
Baseline + fine-tune 0.02 / 113 0.04 / 112 0.11 / 93.4 0.39 / 37.1 0.35 / 39.9 0.11 / 99.0 0.21 / 75.0
StarMap* + MAML 0.03 / 99.2 0.08 / 88.4 0.11 / 92.2 0.55 / 28.0 0.49 / 31.0 0.21 / 81.4 0.21 / 80.2
Ours 0.12 / 104 0.08 / 91.3 0.09 / 108 0.71 / 24.0 0.64 / 22.8 0.22 / 73.3 0.20 / 89.1

Method table mbike sofa train tv TOTAL

StarMap (zero) 0.62 / 23.3 0.15 / 70.0 0.23 / 49.0 0.63 / 25.7 0.46 / 31.3 0.32 / 50.1
StarMap* (zero) 0.43 / 31.7 0.09 / 86.7 0.26 / 42.5 0.30 / 46.8 0.59 / 24.7 0.25 / 71.2
Baseline (zero) 0.38 / 39.0 0.11 / 82.3 0.39 / 57.5 0.29 / 50.0 0.63 / 24.3 0.24 / 70.0

StarMap* + fine-tune 0.46 / 31.4 0.09 / 91.6 0.32 / 44.7 0.36 / 41.7 0.52 / 29.1 0.25 ± 0.01 / 64.7 ± 1.07
Baseline + fine-tune 0.41 / 35.1 0.09 / 79.1 0.32 / 58.1 0.29 / 51.3 0.59 / 29.9 0.22 ± 0.02 / 69.2 ± 1.48
StarMap* + MAML 0.29 / 36.8 0.11 / 83.5 0.44 / 42.9 0.42 / 33.9 0.64 / 25.3 0.28 ± 0.00 / 60.5 ± 0.10
Ours 0.39 / 36.0 0.14 / 74.7 0.29 / 46.2 0.61 / 23.8 0.58 / 26.3 0.33 ± 0.02 / 51.3 ± 4.28

tional error as ER =
‖ log(R>gt R)‖F√

2
, where ‖ · ‖F is the Frobenius norm, and Rgt and R are the

ground truth and predicted rotation matrices, respectively.

Comparisons. We compare several viewpoint estimation networks to ours. These include:
• StarMap: The original StarMap method [43]. It contains two stages of an Hourglass

network [16] as the backbone and computes a multi-peak heatmap of general visible
keypoints, and their depth and canonical 3D points.

• StarMap*: Our re-implementation of StarMap [43] with one stage of ResNet-18 [7]
as the backbone for a fair comparison to ours.

• StarMap* + MAML: The StarMap* network trained with MAML for few-shot view-
point estimation.

• Baseline: The ResNet-18 network trained to detect a fixed number (8) of semantic
keypoints for all categories via standard supervised learning.

For methods that involve few-shot fine-tuning on unknown categories (i.e., StarMap* or
Baseline with fine-tuning, StarMap + MAML, and Ours), we use a shot size of 10. We repeat
each experiment ten times with random initial seeds and report their average performance.
Note that we also attempted to train viewpoint estimation networks that estimate angular
values directly (e.g., [40]); or those that detect projections of 3D bounding boxes (e.g., [5])
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Table 3: Ablation study. The table shows the individual contributions of our meta-Siamese
design (MS), the concentration loss (Lcon), and general keypoints heatmap (KP) on the per-
formance of MetaView in the intra-dataset experiment. We report Acc30(↑)/MedErr(↓).

Method bed bookshelf calculator cellphone computer f_cabinet guitar iron knife microwave

Ours 0.28 / 42.3 0.68 / 23.1 0.87 / 15.3 0.47 / 32.1 0.63 / 24.9 0.71 / 22.1 0.03 / 100 0.15 / 76.0 0.01 / 121 0.69 / 23.2
Ours (MS) 0.27 / 42.4 0.77 / 22.2 0.74 / 24.0 0.54 / 28.3 0.64 / 24.9 0.63 / 25.3 0.61 / 25.3 0.13 / 76.9 0.05 / 103 0.65 / 26.2
Ours (MS, Lcon) 0.31 / 41.3 0.79 / 19.0 0.84 / 17.4 0.53 / 28.0 0.62 / 25.9 0.66 / 23.6 0.35 / 35.8 0.16 / 86.5 0.05 / 101 0.81 / 17.7
Ours (MS, Lcon, KP) 0.36 / 37.5 0.76 / 17.2 0.92 / 12.3 0.58 / 25.1 0.70 / 22.2 0.66 / 22.9 0.63 / 24.0 0.20 / 76.9 0.05 / 97.9 0.77 / 17.9

Method pot rifle slipper stove toilet tub wheelchair TOTAL

Ours 0.46 / 32.1 0.04 / 119 0.02 / 125 0.81 / 19.5 0.15 / 51.2 0.26 / 45.9 0.02 / 109 0.35 ± 0.01 / 42.5 ± 1.15
Ours (MS) 0.34 / 37.4 0.18 / 78.8 0.05 / 111 0.71 / 21.5 0.37 / 35.8 0.24 / 44.8 0.10 / 76.1 0.41 ± 0.01 / 36.0 ± 0.78
Ours (MS, Lcon) 0.49 / 31.2 0.16 / 90.5 0.05 / 111 0.75 / 21.7 0.41 / 34.4 0.31 / 42.4 0.22 / 60.8 0.45 ± 0.01 / 33.6 ± 0.94
Ours (MS, Lcon, KP) 0.49 / 31.6 0.21 / 80.9 0.07 / 115 0.74 / 21.7 0.50 / 32.0 0.29 / 46.5 0.27 / 55.8 0.48 ± 0.01 / 31.5 ± 0.72

Table 4: Shot size. We report Acc30(↑)/MedErr(↓). The table shows the effect of varying the
number of support images (“shot size”) during meta-training and testing in the intra-dataset
experiments with ObjectNet3D.

Method bed bookshelf calculator cellphone computer f_cabinet guitar iron knife microwave

Ours (1 shot) 0.24 / 45.7 0.16 / 70.8 0.26 / 56.7 0.19 / 57.3 0.41 / 32.6 0.48 / 31.4 0.06 / 76.8 0.02 / 125 0.01 / 120 0.18 / 48.4
Ours (5 shots) 0.31 / 39.9 0.50 / 29.6 0.67 / 25.1 0.34 / 48.6 0.67 / 23.7 0.66 / 24.0 0.34 / 40.4 0.09 / 91.7 0.04 / 110 0.81 / 16.7
Ours (10 shots) 0.36 / 37.5 0.76 / 17.2 0.92 / 12.3 0.58 / 25.1 0.70 / 22.2 0.66 / 22.9 0.63 / 24.0 0.20 / 76.9 0.05 / 97.9 0.77 / 17.9

Method pot rifle slipper stove toilet tub wheelchair TOTAL

Ours (1 shot) 0.39 / 36.8 0.00 / 102 0.05 / 121 0.36 / 35.8 0.33 / 39.1 0.11 / 75.1 0.12 / 81.5 0.21 ± 0.05 / 55.2 ± 6.82
Ours (5 shots) 0.51 / 29.4 0.05 / 107 0.04 / 110 0.74 / 21.1 0.38 / 35.7 0.27 / 46.7 0.23 / 61.3 0.41 ± 0.03 / 36.2 ± 1.58
Ours (10 shots) 0.49 / 31.6 0.21 / 80.9 0.07 / 115 0.74 / 21.7 0.50 / 32.0 0.29 / 46.5 0.27 / 55.8 0.48 ± 0.01 / 31.5 ± 0.72

with MAML, but they either failed to converge to performed very poorly. So, we do not
report results for them. The results of the intra-dataset and inter-dataset experiments are
presented in Table 1 and Table 2, respectively.

Zero-shot performance. For both experiments, methods trained using standard supervised
learning solely on the training categories (i.e., StarMap, StarMap* and Baseline denoted
by “zero”) are limited in their ability to generalize to unknown categories. For the original
StarMap method [43] in the intra-dataset experiment (Table 1), the overall Acc30 and MedErr
worsen from 63% and 17◦, respectively, when the test categories are known to the system to
44% and 39.3◦, respectively, when they are unknown. This indicates that the existing state-
of-the-art viewpoint estimation networks require information that is unique to each category
to infer its viewpoint. Since the original StarMap [43] uses a larger backbone network than
ResNet-18 [7] it performs better than our implementation (StarMap*) of it.

Few-shot performance. Among the methods that involve few-shot fine-tuning for un-
known categories, methods that are trained via meta-learning (StarMap + MAML and our
MetaView) perform significantly better than the methods that are not (StarMap* or Baseline
with fine-tuning) in both the intra- and inter-dataset experiments. These results are the first
demonstration of the effectiveness of meta-learning at the task of category-level few-shot
viewpoint learning. Furthermore, in both experiments, our MetaView framework results in
the best overall performance of all the zero- and few-shot learning methods. It outperforms
StarMap* + MAML, which shows the effectiveness of our novel design components that
differentiate it from merely training StarMap* with MAML. They include our network’s
ability to (a) detect the 2D locations and depth values of all 3D canonical points and not just
the visible ones; (b) share information during meta-learning via the meta-Siamese design;
and (c) flexibly construct networks with a different number of keypoints for each category.
Lastly, observe that even with a smaller backbone network, our method performs better than
the current best performance for the task of viewpoint estimation of unknown categories, i.e.
of StarMap [43] “zero” and thus helps to improve performance on unknown categories with
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Figure 3: Qualitative results of the intra-dataset experiment. We show the keypoint
detection results of MetaView on unknown categories, before and after few-shot fine-tuning.
The images from left to right are: the input image, the 2D keypoint heatmap before fine-
tuning with Eq. (3), three example heatmaps for specific keypoints after fine-tuning, all the
predicted keypoints, and their ground truth values.

very little additional labeling effort.
The effectiveness of MetaView is also evident from Figure 3, which shows examples of

the 2D keypoint heatmaps hk(u,v) (described in Section 3.1) produced by it before and after
few-shot fine-tuning with examples of new categories. The keypoint detector, prior to few-
shot fine-tuning, is not specific to any keypoint and generates heatmaps that tend to have high
responses on corners, edges or regions of the foreground object. After fine-tuning, however,
it successfully learns to detect keypoints of various new categories and produces heatmaps
with more concentrated peaks.

Ablation study. To validate the effectiveness of our various novel design components in-
cluding our meta-Siamese design, concentration loss term (Lcon), and of using the general
keypoints’ multi-peak map as input, we show the results of an ablation study for the inter-
dataset experiment in Table 3. While each component individually contributes to the overall
performance, the concentration loss and the meta-Siamese design contribute the most.

Shot size. We vary the number of support images (i.e., shot size to 1, 5 and 10) for each
new category during meta-training and -testing. The results of this experiment for the intra-
dataset setting are presented in Table 4. We observe that as more training images per category
are available for training, the accuracy of our MetaView approach scales up correspondingly.

5 Conclusion
To improve performance on unknown categories, we introduce the problem of category-level
few-shot viewpoint estimation. We propose the novel MetaView framework that successfully
adapts to unknown categories with few labeled examples and helps to improve performance
on them with little additional annotation effort. Our meta-Siamese keypoint detector is gen-
eral and can be explored in the future for other few-shot tasks requiring keypoints detection.
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