
Locally Non-rigid Registration for Mobile HDR Photography

Orazio Gallo1 Alejandro Troccoli1 Jun Hu1,2 Kari Pulli1,3 Jan Kautz1
1NVIDIA 2Duke University 3Light

(a) Our HDR result (b) Single homography (c) Bao et al. (d) Our result

Figure 1: When capturing HDR stacks without a tripod, parallax and non-rigid scene changes are the main sources of artifacts. The picture
in (a) is an HDR image generated by our algorithm from a stack of two pictures taken with a hand-held camera (notice that the volleyball
is hand-held as well). A common and efficient method to register the images is to use a single homography, but parallax will still cause
ghosting artifacts, see (b). One can then resort to non-rigid registration methods; here we use the fastest method of which we are aware,
but artifacts due to erroneous registration are still visible (c). Our method is several times faster and, for scenes with parallax and small
non-rigid displacements, produces better results (d).

Abstract

Image registration for stack-based HDR photography is
challenging. If not properly accounted for, camera motion
and scene changes result in artifacts in the composite im-
age. Unfortunately, existing methods to address this prob-
lem are either accurate, but too slow for mobile devices, or
fast, but prone to failing. We propose a method that fills this
void: our approach is extremely fast—under 700ms on a
commercial tablet for a pair of 5MP images—and prevents
the artifacts that arise from insufficient registration quality.

1. Introduction
High-Dynamic-Range (HDR) imaging has become an

essential feature for camera phones and point-and-shoot
cameras—even some DSLR cameras now offer it as a
shooting mode. To date, the most popular strategy for cap-
turing HDR images is to take multiple pictures of the same
scene with different exposure times, which is usually re-
ferred to as stack-based HDR. Over the last decade, the
research community also proposed several hardware solu-
tions to sidestep the need for multiple images, but the trade-
off between cost and picture quality still makes stack-based
strategies more appealing to camera manufacturers.

Combining multiple low-dynamic-range (LDR) images
into a single HDR irradiance map is relatively straightfor-
ward, provided that each pixel samples the exact same irra-

diance in each picture of the stack. In practice, however,
any viable strategy to merge LDR images needs to cope
with both camera motion and scene changes. Indeed there
is a rich literature on the subject, with different methods of-
fering a different compromise between computational com-
plexity and reconstruction accuracy.

On one end of the spectrum there are light-weight meth-
ods, generally well-suited to run on mobile devices. These
methods address the problem of camera motion by estimat-
ing a global transformation in a robust fashion [19, 17]. Af-
ter image alignment, scene changes can be addressed with
some flavor of outlier rejection, often called deghosting.
This can be achieved by picking one image of the stack to
act as a reference and only merging consistent pixels from
the other images [4, 15]. Alternatively, for sufficiently large
stacks, one can merge only the irradiance values most often
seen for a given pixel [20, 14]. The price for the compu-
tational efficiency of rigid-registration methods is their se-
vere limitation in terms of accuracy: even the most general
global transformation, i.e., a homography, cannot correct
for parallax, which occurs for non-planar scenes every time
the camera undergoes even a small amount of translation.

On the other end of the spectrum lie methods that allow
for a completely non-rigid transformation between the im-
ages in the stack [16, 9]. Rather than separating camera mo-
tion and scene changes, these algorithms attempt to “move”
any given pixel in one shot of the stack to its corresponding
location in the reference image. These methods have shown
impressive results, essentially with any amount and type of

1



motion in the scene, but generally require minutes on desk-
top computers: they are simply impractical for deployment
on mobile devices.

We fill the gap between these two extreme points in the
space of registration accuracy versus computational com-
plexity. Our work builds on the observation that most
modern devices, such as the NVIDIA SHIELD Tablet or
the Google Nexus 6 phone, are capable of streaming full-
resolution YUV frames at 30fps. Given an exposure time t,
the delay between consecutive shots is then (33 − t)ms <
33ms1, which prevents large displacements of moving ob-
jects. Parallax, however, remains an issue even for small
camera translations. Figure 1(b) shows the extent of these
artifacts. (Note that, for better visualization, all the insets in
Figure 1 were generated with a simple blending.)

Our method comprises a strategy to find sparse corre-
spondences that is particularly well-suited for HDR stacks,
where large parts of some images are extremely dark. After
detecting spurious matches, it corrects for parallax by prop-
agating the displacement computed at the discrete locations
in an edge-aware fashion. The proposed algorithm can also
correct for small non-rigid motions, but may fail for cases
where the subject simply cannot be expected to cooperate,
as is the case in sport photography. To address such cases,
we couple our locally non-rigid registration algorithm with
a modified version of the exposure fusion algorithm [13].

Our method runs in 677ms on a stack of two 5MP images
on a mobile device, which is several orders of magnitude
faster than any non-rigid registration method of which we
are aware. On a desktop machine, our method can register
the same stack in 150ms, corresponding to a speedup of
roughly 11× over the fastest optical flow methods published
to date (see Section 3).

2. Method

Several recently published methods successfully tackled
the task of non-rigid registration for large displacements by
using approximate nearest neighbor fields (NNFs) [9, 16].
While the quality of the results they produce is impressive,
even in the case of very large displacements, their compu-
tational cost is prohibitive, in particular for mobile devices.
Moreover, given the frame rate at which bursts of images
can be acquired, the tolerance to large displacements that
those methods offer is most often unnecessary.

The problem of large displacements is further attenu-
ated by the dynamic range of modern sensors, which al-
lows to capture most scenes with only two shots; leverag-
ing on this observation, we focus on two-image exposure
stacks, although the extension to more images only requires
to run the algorithm n− 1 times for a stack of n images, as

1If t > 33ms, the limiting factor will likely be blur, and the delay
between shots will still be (33− mod(33, t))ms < 33ms.

shown in Figure 5, where we register a stack of three im-
ages. Rather than computing an expensive NNF, which, for
the vast majority of stacks, would mostly consist of small
and relatively uniform displacements, we find sparse cor-
respondences between the two images. While extremely
fast, the matcher we designed for this purpose produces
accurate matches, even in extremely dark regions—a par-
ticularly important feature for HDR stacks. To solve the
parallax problem, rather than registering the images with a
single homography, we propose to propagate the sparse flow
from the matches computed in the previous stage in an edge-
aware fashion. To merge the images we modified exposure
fusion [13] to compensate for potential errors in the com-
putation of the flow. We implemented the full pipeline—
stack capture, image registration, and image fusion—on an
NVIDIA SHIELD Tablet.

In the remainder of this section we describe in detail the
different components of our algorithm.

2.1. Stack capture and reference selection

Metering for HDR, i.e., the selection of the exposure
times and number of pictures required to sample the irra-
diance distribution for a particular scene, has been an ac-
tive area of research [5, 7, 8]. We observe that the dynamic
range of modern sensors allows to capture most real-world
scenes with as little as two exposures, and devise a sim-
ple strategy that works well in our experiments: we use the
Expose-To-The-Right (ETTR) paradigm [8] for the first im-
age in the stack, and select the second exposure time to be
2, 3, or 4 stops brighter, based on the number of under-
exposed pixels (the more under-exposed pixels, the longer
the second exposure). Limiting the number of candidate ex-
posures to three allows for a faster metering; moreover, the
advantage of a higher granularity is difficult to appreciate
by visually inspecting the HDR result.

Then, rather than picking the reference image for our
registration algorithm to be the one with the least saturated
and underexposed pixels [4], we always use the shortest
(darkest) exposure as the reference; this is because, while
the noise in the dark regions of a scene makes it difficult to
find reliable matches, saturation makes it impossible. In the
rest of the paper we will refer to the two images in the stack
as reference and source, indicating our final goal to warp
the source to the reference.

2.2. A fast, robust matcher

In order to produce fast and reliable correspondences,
even in the presence of the noise the potentially short ex-
posure time induces, we propose a novel matcher. To this
end, we efficiently find distinct features, i.e., corners, in the
reference image, which we then match in the second image
with a patch-based search. First, we define a simple mea-



1 2

34

Figure 2: After dividing the reference image in tiles, our
matcher looks at the center of each tile (red dot) and a set
of predefined locations around it (green dots). It then com-
putes a measure of cornerness based on the average lumi-
nance in the four quadrants around each candidate corner.

sure of cornerness:

C(p) =

4∑
j=1

|µmod(j+1,4) − µj | (1)

where p is the pixel location, and µj is the average lumi-
nance value in the jth quadrant around p, marked in black in
Figure 2. Equation 1 simply measures the change in the av-
erage luminance in the four quadrants around p. However,
for p to be a good corner candidate, we also require that the
minimum difference of average luminance between any two
contiguous quadrants be large:

min
j∈{1,...,4}

|µmod(j+1,4) − µj | > T (2)

where T is a given threshold. Essentially, Equation 2 pre-
vents situations in which a point on an edge is promoted to
a corner. Note that, regardless of the number of pixels in
each quadrants, µj can be computed very efficiently using
integral images.

To encourage a uniform distribution of corners over the
image, we first divide the reference image in tiles. Then,
we look at a predefined set of locations (and not at all pixels
for computational efficiency) around the center of each tile
(Figure 2), and retain the one with the highest cornerness
value. Note that Equation 2 also prevents finding corners in
flat regions, therefore tiles that are completely flat may not
be assigned a corner.

Although the proposed algorithm to search for corners is
extremely efficient, we do not run it on both reference and
source images, as it only serves as a feature detector. Hence,
we evaluate corners in the reference image only, and then
search for matches within a predefined search radius around
the corresponding position in the source image using the
sum of squared differences metric (SSD).

Finally, to minimize the computational cost while allow-
ing for a large search radius, we use a pyramidal approach.

At level ` of the pyramid, we find a set of corners x`
ref in the

reference. For each corner x`
ref we search for matches in the

source image within a search radius around

x`
src = H`+1x`

ref, (3)

where H`+1 is a single homography computed at the pre-
vious layer of the pyramid using its corners and matches.
Equation 3 holds if both xsrc and xref are represented in a
normalized coordinate system such that x ∈ [−1, 1] and
y ∈ [−h/w, h/w], where x = (x, y), and w and h are
width and height of the image. We also move the origin to
the center of the image. This homography only serves as
a way to initialize the search locations in the source image
(and in turn reduces the required search radius compared to
a random initalization). Note that x`

ref are computed directly
on layer `, and not upsampled from layer `+ 1, as relevant
features at layer ` may have not been present at layer `+ 1
and may not be visible in layer `− 1.

2.3. Weeding out spurious matches

The matcher we describe in Section 2.2 generally pro-
duces robust matches even in very low light conditions (see
Section 3 for a more detailed evaluation). However, to
detect and remove potential spurious matches, we run an
additional filtering stage. The key idea is that we require
matches to be locally consistent with a homography; those
that are not, are likely to be incorrect, because we expect
small displacements. The consistent matches can be deter-
mined by means of a robust method, such as RANSAC [3].
A straightforward application of RANSAC, however, is too
expensive. Instead, we developed a fast filtering strategy
to weed out spurious matches that are not consistent with a
homography.

The goal of our novel filter is to efficiently obtain the set
M of reliable matches. We consider a match to be reliable if
there exists a large number of matches that are mapped from
the source image to the reference image by the same local
homography H; in other words, we aim at finding all the
matches that induce any homography supported by a large
set of inliers.

The filter, inspired by RANSAC, works iteratively.
Specifically, at the ith iteration, we randomly sample 4
points from our set of matches, fit a homography Hi, and
find the subset of inliers Ii with respect to Hi. Then, rather
than saving the homography supported by the largest set of
inliers, we simply update M using the following rule:

M i =

{
M i−1 ∪ Ii if |Ii| > δ

M i−1 otherwise
, (4)

where | · | indicates the cardinality of a set, and δ is a thresh-
old. To understand the idea behind Equation 4, consider a
toy scene where most of the corners are distributed on two



static planar surfaces at different distances from the camera,
with a few other moving non rigidly. We would like our al-
gorithm to weed out the non-rigid corners, as well as the
corners on the two surfaces that are incorrectly matched. At
each iteration, one of two things can happen. First, the sam-
pling may include corners from both planes or those mov-
ing non-rigidly; the resulting homography will have a small
number of inliers, and the set of reliable matchesM will not
be modified. Second, all of the points sampled at the cur-
rent iteration belong to one of the two planes. In this case
the resulting homography will explain the motion of all the
corners that are on the same plane and that move rigidly; the
set of reliable matches M will be updated to include these
inliers. Note that we do not remove the inliers of the ith

iteration from the original set of corners.
We further speed up the process by running n instances

of our filter on separate threads, with each instance running
only 1/n iterations; because we take the union of the ac-
ceptable inliers from previous iterations, running our filter
n times for 1/n iterations is exactly equivalent to a single
run on n iterations. After each run k terminates, we simply
merge the resulting sets Mk.

2.4. Sparse-to-dense flow

So far, we have described a method to efficiently find
a set of robust matches between the images, constituting
sparse flow. To be able to warp the source image to the
reference, however, we need to compute the displacement
at every pixel. A simple interpolation of the sparse flow
would produce artifacts similar to those caused by using a
single homography: depth discontinuities and boundaries of
moving objects would not be aligned accurately.

Instead, we would like to interpolate the sparse flow in
an edge-aware fashion. The problem is similar to that of
image colorization [10], where colors are propagated from
a handful of sparse pixels that have been assigned a color
manually. In our case, we propagate the flow components
(u, v) computed at discrete locations.

For this purpose, we employ an efficient CUDA im-
plementation of the algorithm proposed by Gastal and
Oliveira [6], and use it to cross-bilateral filter the flow. Simi-
larly to how they propose to propagate colors, we first create
two maps Pu and Pv

Pf (p) =

{
f(p) if p is a corner
0 elsewhere

, (5)

where f = {u, v}. We then use the reference image to
cross-bilateral filter the maps. However, while this propa-
gates the flow in an edge-aware fashion generating the two
maps P̃f , it will affect the value of the flow at the location
of the corners, which should not change. Therefore, we use

(a) Blended stack (b) Source warped (c) Final HDR

Figure 3: A failure case of the flow propagation stage. The
input images are first blended to show the original displace-
ment (a). The warped source produced by our algorithm
presents a few artifacts, a couple of which are marked.
However, our error-tolerant exposure fusion can detect and
correct for those errors.

a normalization map

N(p) =

{
1 if p is a corner
0 elsewhere

. (6)

The final flow F can then be computed as Ff = P̃f/Ñ ,
where Ñ is the cross-bilateral filtered version of N .

2.5. Error-tolerant image fusion

If the number of matches between reference and source
images is low, or if a particular area of the scene is texture-
less, the quality of the flow propagation described in Sec-
tion 2.4 can deteriorate because the accuracy of the flow is
affected by the spatial distance over which it needs to prop-
agate. To detect and compensate for errors that may arise
in such cases, we propose a simple modification of the ex-
posure fusion algorithm proposed by Mertens et al. [13]. In
addition to weights for contrast, color saturation, and well-
exposedness, we add a fourth weight that reflects the quality
of the registration. Specifically, we choose to use the struc-
tural similarity index (SSIM) [18]. Note that computing
the SSIM map only requires to perform five convolutions
with Gaussian kernels and a few other parallelizable opera-
tions, such as pixel-wise image multiplication and sum; this
makes a GPU implementation of SSIM extremely efficient,
see Section 3 for an analysis of its runtime.

Figure 3 shows an example of failure of the edge-aware
propagation stage, and how our error-tolerant fusion can de-
tect and compensate for it.

2.6. Implementation details

For the matcher, we create up to 5 pyramid layers (we
stop early if the coarsest level falls below 100 pixels in ei-
ther height or width). The patch comparison is computed
on 21× 21 patches, and the maximum search radius at each
level is 10. We evaluate the cornerness within a patch on
a regular grid of points spaced by 1/16th of the tile size.
We implemented the method described here—from capture
to generation of the HDR image, with a mixture of C++



and CUDA code. Specifically, the matcher and the weeding
stage run on the CPU, with the weeding stage being multi-
threaded. The remaining parts are heavily CUDA-based.
Finally, for the sparse-to-dense stage, it is important to use
a large spatial standard deviation to make sure that the flow
can be propagated to regions poor in number of correspon-
dences; we use σs = 400 .

3. Evaluation and Results

In this section we evaluate the performance of our algo-
rithm, both in terms of quality of the result and execution
time, by means of comparisons with state-of-the-art meth-
ods. Note that we perform histogram equalization on all the
input images to attenuate brightness differences.

3.1. Quality comparisons

We are particularly interested in evaluating the quality of
our matcher, and the quality of the final result when com-
pared against other non-rigid registration methods.

The matcher—One of our claims pertains to the robustness
of our matcher in particularly low-light situations. Figure 4
shows a comparison between our matcher and SIFT [11].
In terms of robustness, SIFT is arguably the state-of-the-
art method for finding correspondences between images.
And indeed it can produce reliable correspondences even
in the presence of large displacements, where our matcher
would fail. However, when one of the two images is ex-
tremely dark, SIFT may fail dramatically, as shown in Fig-
ures 4c and 4h. One can filter them in a manner similar to
the one we propose in Section 2.3. Nevertheless, in extreme
cases such as those shown in the figure, the correspondences
may be so poor that after the filtering stage, too few are left
to perform an accurate warp; the low number and quality
of the correspondences shown in Figures 4d and 4i for in-
stance, are the cause of the artifacts visible in the first and
second row of Figure 8d. On the contrary, our method still
produces high-quality correspondences. This ability is key
to the success of the registration of HDR stacks.

Non-rigid registration algorithms—The context of our
method is different from that of algorithms that aim at
achieving a high-quality result, even in the presence of large
displacements. However, we still compare on cases that are
within the scope of our paper; for the comparison we pick
the algorithms that can deliver the best quality [16, 9], and
the fastest non-rigid registration algorithm of which we are
aware [1].

Figure 5 shows a comparison with competitors that de-
liver the highest quality. To perform it, we registered the im-
ages in the stack to the shortest exposure. Note that “Source
2” is 4 stops brighter than the reference, and yet our method
correctly warps it; the other two methods use the middle

(a) Reference (d) Sen et al. [16]

(b) Source 1 (e) Hu et al. [16]

(c) Source 2 (f) Our result

Figure 5: Comparison with the state-of-the-art methods for
non-rigid registration. To produce a result that is visually
comparable to the related work, we use the tonemapping
operator proposed by Mantiuk et al. [12], rather than our
modified exposure fusion, see Section 3.1; however, the
color differences that are still visible are solely due to the
tonemapper parameters.

exposure as the reference. Also, to simplify the task of vi-
sually comparing the results of the three approaches, rather
than using the modified version of exposure fusion that we
described in Section 2.5, we output the warped images, cre-
ate an HDR irradiance map, and use the tonemapper pro-
posed by Mantiuk et al. [12]. The quality of the sky in our
result is comparable with that of Hu et al., and better than
that of Sen et al.—the sun is still present and there are no
halos. Note that some of the people walking under the dome
are not correctly registered by our method; both the other re-
sults correctly register that region. However, as mentioned
above, in this example we did not run our error-tolerant fu-
sion, which would take care of that problem.

A method more similar in spirit to ours, is the flow algo-
rithm recently proposed by Bao et al. [1]. While not specif-
ically designed for HDR registration, their algorithm is im-
pressively fast (see Section 3.2). At its core, the method
by Bao and colleagues uses PatchMatch to deal with large
displacements [2]. To ameliorate the flow accuracy in oc-
clusion and disocclusion regions, they compute the match-
ing cost in an edge-aware fashion; at the same time they
improve on speed by computing the cost only at a wisely



(a) Reference (b) Source (c) SIFT (d) SIFT clean (e) Ours

(f) Reference (g) Source (h) SIFT (i) SIFT clean (j) Ours

Figure 4: The matcher we propose performs particularly well when searching for correspondences in extremely dark areas,
as is needed for large portions of the two stacks shown here. SIFT fails to find reliable correspondences; a solution could be
to only retain the matches that support a homography, here indicated as “SIFT clean”. However, if the quality of the original
matches is too low, very few correspondences survive the cleaning stage, as is the case shown in (d) and (i). Our method
produces a uniformly distributed set of matches. Note that both methods were fed images that were histogram equalized.

selected subset of pixels. Note that, despite being sev-
eral times faster than the competitors, the method by Bao
and colleagues ranks within the top ten positions in all of
the established flow benchmark datasets. We compare our
method with theirs on cases that are within the scope of both
algorithms.

Figure 1 shows a fairly common case for an HDR stack,
with both camera motion and slight scene motion (the
woman is holding the volleyball). In all the comparisons
with their method, we first equalize the images to com-
pensate for illumination changes. The method by Bao and
colleagues produces strong artifacts that are visible in Fig-
ure 1(c); on the contrary our method registers the images
perfectly. Note that the original images are 5MP images,
which is possibly larger than what their method was orig-
inally designed for; please see the additional material for
more comparisons, including lower resolution stacks.

Figure 6 shows another comparison, this time with both
algorithms running on a VGA stack. In order to perform a
more fair comparison, the images were taken with a small,
1-stop separation, and neither of them presents saturation;
because of the limited dynamic range and spacing of the ex-
posure times of this example, histogram equalization makes
the source and the reference essentially identical in terms of
brightness. The insets of the figure show that the method by
Bao et al. fails in preserving the local structure of the tubes.

On both examples, our algorithm produces a more ac-
curate registration. Figure 8 shows more results of our
method.

3.2. Execution time

One of the biggest strengths of our method is its compu-
tational efficiency. We first validate this claim by compar-
ing the runtime of our algorithm to three related works. For
this experiment, we used VGA images. Two preliminary

(a) The stack (b) Bao et al. [1] (c) Our result

(d) Bao et al. [1] (e) Ours

Figure 6: Comparison with the method by Bao et al. [1].
Images (b) and (c) are the source images warped with the
method by Bao et al. and by our algorithm respectively. No-
tice the artifacts affecting the results by Bao et al.

comments are in order; first, the methods by Sen et al. and
Hu et al. are implemented in a mixture of Matlab and C++
code, which makes them intrinsically slower. However, the
speedup is significant even when accounting for that. Sec-
ond, the execution times shown in Table 1 for their methods
are those reported by Oh et al. [14].

A more interesting comparison is with the method of
Bao and colleagues, both because they implemented their
algorithm very efficiently in CUDA, and because execution
speed is one of their main focuses. Indeed, recall that, to the
best of our knowledge, theirs is the fastest published method
for optical flow. And yet, our method is roughly 3.5× faster.
This, however, is only a partial evaluation: while the execu-
tion time of our algorithm grows sublinearly, theirs grows
linearly with the number of pixels, as shown in Figure 6.
On an NVIDIA GTX Titan, for a pair of 5MP images, their



Algorithm Execution time Speedup
Our algorithm 49ms —
Bao et al. [1] 171ms ≈ 3.5×
Sen et al. [16] 106∗s > 1, 900∗×
Hu et al. [9] 94∗s > 2, 000∗×

Table 1: Comparison of the execution time with different
state-of-the-art algorithms. The tests were run on VGA im-
ages. The ∗ indicates execution times for a mixture of Mat-
lab and C++ code.

Step of the algorithm Tablet Desktop
Matcher (Sec. 2.2) 132ms 49ms
Match weeding (Sec. 2.3) 23ms 20ms
Sparse-to-dense flow (Sec. 2.4) 473ms 67ms
Fusion weights (Sec. 2.5) 49ms 11ms
Total time 677ms 147ms

Table 2: Computational time for each step of the algorithm
when run on a pair of 5MP images. The reference tablet is
an NVIDIA Shield Tablet, which is equipped with a Tegra
K1 system-on-chip. The timings on desktop were measured
on an Intel I7 CPU with an NVIDIA GTX Titan graphics
card.

.05  0.2 0.45 0.8 1.3 1.8 2.5 3.2
0

200

400

600

800

1000

1200

T
im

e
(m

s)

Number of pixels (MP)

Bao et al.

Ours

Figure 7: Computational time of the algorithm by Bao et
al. [1] and ours. Note that our method grows sublin-
early. The timings were captured on an NVIDIA GTX Titan
graphics card.

code runs in 1.66s; our method registers the same images in
150ms, which translates to a speedup of 11×.

Table 2 shows the cost of each step our algorithm on a
desktop machine as well as a tablet, both for pairs of 5MP
images. Aside from rigid registration methods, we are not
aware of any published work capable of registering two
5MP images in a time even close to a second on a desk-
top. Our approach can do it in less than that (677ms) on a
commercial tablet.

Moreover, as shown in Figure 7, our method scales well
with image size; this is a particularly attractive feature,
given the rate at which the number of pixels in widely avail-
able sensors is growing.

4. Conclusions
In the space of registration for HDR imaging, and stack-

based photography in general, it is difficult to find an ac-
ceptable trade-off between registration accuracy and com-
putational load. We propose a new compromise: rather
than attempting to solve the most general non-rigid regis-
tration case, we focus on the more typical case of relatively
small displacement, and propose a locally non-rigid regis-
tration technique. Specifically, we contribute a method that
is more than 11× faster than the fastest published method,
while producing a more accurate registration. Our approach
is also the only one that can perform non-rigid registra-
tion within the computational power of a mobile device.
To achieve this result, we developed a novel, fast feature
matcher that works better than the state-of-the-art when the
reference image is underexposed. Our matcher comprises
an original light-weight corner detector, and a matching
strategy based on a modification of the RANSAC algorithm.
We think that this matcher may be useful for other applica-
tions as well. Finally, we implement the complete system,
from capture to HDR generation, on an NVIDIA SHIELD
Tablet. This also involves a metering strategy, a flow prop-
agation step, and a deghosting strategy to compensate for
errors in the flow propagation.

On the tablet, our registration method takes only 677ms
on 5MP images, whereas any method attempting to perform
any sort of non-rigid registration takes far more than a sec-
ond on a desktop. Moreover, with the same image size, our
approach runs in 150ms on a desktop.

Acknowledgments
The authors would like to thank Colin Tracey and

Huairuo Tang for their help in writing part of the early
CUDA implementation.

References
[1] L. Bao, Q. Yang, and H. Jin. Fast edge-preserving Patch-

Match for large displacement optical flow. In CVPR, 2014.
5, 6, 7

[2] C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkel-
stein. The generalized PatchMatch correspondence algo-
rithm. In ECCV, 2010. 5

[3] M. A. Fischler and R. C. Bolles. Random sample consen-
sus: a paradigm for model fitting with applications to image
analysis and automated cartography. Communications of the
ACM, 1981. 3

[4] O. Gallo, N. Gelfand, W. Chen, M. Tico, and K. Pulli.
Artifact-free high dynamic range imaging. In ICCP, 2009.
1, 2

[5] O. Gallo, M. Tico, R. Manduchi, N. Gelfand, and K. Pulli.
Metering for exposure stacks. Eurographics, 2012. 2

[6] E. S. Gastal and M. M. Oliveira. Domain transform for edge-
aware image and video processing. In ACM Transactions On
Graphics, 2011. 4



(a) Reference (b) Source (c) Blended Stack (d) Homogr. + Blend (e) Our Align. + Blend (f) Our Final HDR

Figure 8: Our method works well on a variety of scenes. In (a) and (b) we show the two input images. Column (c) shows
the stack directly blended together, without further alignment. In (d), we matched SIFT features and computed a single
homography with RANSAC to align the images; to better show the displacements they are simply blended. Column (e)
shows our alignment of the two images, again visualized using a simple blend. Finally, column (f) shows the resulting HDR
image.

[7] M. Granados, B. Ajdin, M. Wand, C. Theobalt, H.-P. Sei-
del, and H. Lensch. Optimal HDR reconstruction with linear
digital cameras. In CVPR, 2010. 2

[8] S. W. Hasinoff, F. Durand, and W. T. Freeman. Noise-
optimal capture for high dynamic range photography. In
CVPR, 2010. 2

[9] J. Hu, O. Gallo, K. Pulli, and X. Sun. HDR deghosting: How
to deal with saturation? In CVPR, 2013. 1, 2, 5, 7

[10] A. Levin, D. Lischinski, and Y. Weiss. Colorization using
optimization. In ACM Transactions On Graphics, 2004. 4

[11] D. G. Lowe. Object recognition from local scale-invariant
features. In ICCV, 1999. 5

[12] R. Mantiuk, K. Myszkowski, and H.-P. Seidel. A perceptual
framework for contrast processing of high dynamic range
images. ACM Transactions on Applied Perception, 2006. 5

[13] T. Mertens, J. Kautz, and F. V. Reeth. Exposure fusion. In
Pacific Graphics, 2007. 2, 4

[14] T. Oh, J. Lee, Y. Tai, and I. Kweon. Robust high dynamic
range imaging by rank minimization. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2014. 1, 6

[15] S. Raman and S. Chaudhuri. Reconstruction of high contrast
images for dynamic scenes. The Visual Computer, 2011. 1

[16] P. Sen, N. K. Kalantari, M. Yaesoubi, S. Darabi, D. B. Gold-
man, and E. Shechtman. Robust patch-based HDR recon-

struction of dynamic scenes. In SIGGRAPH Asia, 2012. 1,
2, 5, 7

[17] G. Tzimiropoulos, V. Argyriou, S. Zafeiriou, and T. Stathaki.
Robust FFT-based scale-invariant image registration with
image gradients. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2010. 1

[18] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.
Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing, 2004. 4

[19] G. Ward. Fast, robust image registration for compositing
high-dynamic-range photographs from handheld exposures.
Journal of Graphics Tools, 2003. 1

[20] W. Zhang and W.-K. Cham. Reference-guided exposure fu-
sion in dynamic scenes. Journal of Visual Communication
and Image Representation, 2012. 1


