
Supplementary Materials
We provide more experimental details in the following

sections. First, we elaborate on CIFAR-10 experiments, fol-
lowed by additional details on ImageNet results. We then
give details of experiments on data-free pruning (Section 4.3
of the main paper), data-free knowledge transfer (Section 4.4
of the main paper), and data-free continual learning (Sec-
tion 4.5 of the main paper). Finally, we provide additional
discussions.

A. CIFAR-10 Appendix
A.1. Implementation Details

We run each knowledge distillation experiment between
the teacher and student networks for 250 epochs in all, with
an initial learning rate of 0.1, decayed every 100 epochs with
a multiplier of 0.1. One epoch corresponds to 195 gradient
updates. Image generation runs 4 times per epoch, in steps
of 50 batches when VGG-11-BN is used as a teacher, and
2 times per epoch for ResNet-34. The synthesized image
batches are immediately used for network update (the instan-
taneous accuracy on these batches is shown in Fig. 4) and
are added to previously generated batches. In between image
generation steps, we randomly select previously generated
batches for training.

A.2. BatchNorm vs. Set of Images for Rfeature

DeepInversion approximates feature statistics
E

`
µlpxq|X

˘
and E

`
�2
l pxq|X

˘
in Rfeature (Eq. 4) us-

ing BN parameters. As an alternative, one may acquire
the information by running a subset of original images
through the network. We compare both approaches in
Table 8. From the upper section of the table, we observe
that feature statistics estimated from the image subset also
support DeepInversion and Adaptive DeepInversion, hence
advocate for another viable approach in the absence of BNs.
It only requires 100 images to compute feature statistics
for Adaptive DeepInversion to achieve almost the same
accuracy as with BN statistics.

Samples DI ADI
Top-1 acc. (%) Top-1 acc. (%)

1 61.78 84.28
10 80.94 89.99
100 83.64 90.52
1000 84.53 90.62

BN statistics 84.44 90.68

Table 8: CIFAR-10 ablations given mean and variance estimates
based on (i) up: calculations from randomly sampled original
images, and (ii) bottom: BN running mean and running var param-
eters. The teacher is a VGG-11-BN model at 92.34% accuracy.
The student is a freshly initialized VGG-11-BN. DI: DeepInversion;
ADI: Adaptive DeepInversion.

B. ImageNet Appendix
B.1. DeepInversion Implementation

We provide additional implementation details of DeepIn-
version next. The total variance regularization RTV in Eq. 3
is based on the sum of `2 norms between the base image and
its shifted variants: (i) two diagonal shifts, (ii) one vertical
shift, and (iii) one horizontal shift, all by one pixel. We
apply random flipping and jitter († 30 pixels) on the input
before each forward pass. We use the Adam optimizer with
�1 “ 0.9,�2 “ 0.999 and ✏ “ 1 ¨ 10´8 given a constant
learning rate of 0.05. We speed up the training process using
half-precision floating point (FP16) via the APEX library.

C. Data-free Pruning Appendix
C.1. Hardware-aware Loss

Our proposed pruning criterion considers actual latency
on the target hardware for more efficient pruning. Charac-
terized by Eq. 10, in iterative manner neurons are ranked
according to ISpWq and the least important ones are re-
moved. The new scheme leverages IS,err and IS,lat to
focus on absolute changes in network error and inference
latency, specifically, when the filter group s P S is zeroed
out from the set of neural network parameters W.

Akin to [44], we approximate IS,err as the sum of the
first-order Taylor expansion of individual filters

IS,errpWq «
ÿ

sPS
Ip1q
s pWq “

ÿ

sPS
pgswsq2, (12)

where gs and ws denote the gradient and parameters of a
filter s, respectively. We implement this approximation via
gate layers, as mentioned in the original paper.

The importance of a group of filters in reducing latency
can be assessed by removing it and obtaining the latency
change

IS,lat “ LATpW|ws “ 0, s P Sq ´ LATpWq, (13)

where LATp¨q denotes the latency of an intermediate pruned
model on the target hardware.

Since the vast majority of computation stems from con-
volutional operators, we approximate the overall network
latency as the sum of their run-times. This is generally ap-
propriate for inference platforms like mobile GPU, DSP,
and server GPU [9, 66]. We model the overall latency of a
network as:

LATpWq “
ÿ

l

LATpopWq
l q, (14)

where ol refers to the operator at layer l. By benchmark-
ing the run-time of each operator in hardware into a single
look-up-table (LUT), we can easily estimate the latency of

any intermediate model based on its remaining filters. The
technique of using a LUT for latency estimation has also
been studied in the context of neural architecture search
(NAS) [9, 66]. For pruning, the LUT consumes substantially
less memory and profiling effort than NAS: instead of an
entire architectural search space, it only needs to focus on
the convolutional operations given reduced numbers of input
and output filters against the original operating points of the
pre-trained model.

C.2. Implementation Details
Our pruning setup on the ImageNet dataset follows the

work in [44]. For knowledge distillation given varying image
sources, we experiment with temperature ⌧ from t5, 10, 15u
for each pruning case and report the highest validation ac-
curacy observed. We profile and store latency values in the
LUT in the following format:

key “ rcin, cout, kernel˚, stride˚, fmap˚s, (15)

where cin, cout, kernel, stride, and fmap denote input
channel number, output channel number, kernel size, stride,
and input feature map dimension of a Conv2D operator, re-
spectively. Parameters with superscript ˚ remain at their
default values in the teacher model. We scan input and out-
put channels to cover all combinations of integer values that
are less than their initial values. Each key is individually
profiled on a V100 GPU with a batch size 1 with CUDA 10.1
and cuDNN 7.6 over eight computation kernels, where the
mean value of over 1000 computations for the fastest kernel
is stored. Latency estimation through Eq. 14 demonstrates
a high linear correlation with the real latency (R2 “ 0.994).
For hardware-aware pruning, we use ⌘ “ 0.01 for Eq. 10
to balance the importance of IS,err and IS,lat, and prune
away 32 filters each time in a group size of 16. We prune
every 30 mini-batches until the pre-defined filter/latency
threshold is met, and continue to fine-tune the network af-
ter that. We use a batch size of 256 for all our pruning
experiments. To standardize input image dimensions, de-
fault ResNet pre-processing from PyTorch is applied to MS
COCO and PASCAL VOC images.

C.3. Hardware-aware Loss Evaluation
As an ablation, we show the effectiveness of the hardware-

aware loss (Eq. 10 in Section 4.3) by comparing it with the
pruning baseline in Table 9. We base this analysis on the
ground truth data to compare with prior art. Given the same
latency constraints, the proposed loss improves the top-1
accuracy by 0.5%-14.8%.

C.4. Pruning without Labels
Taylor expansion for pruning estimates the change in loss

induced by feature map removal. Originally, it was proposed

V100 Lat. Taylor [44] Hardware-aware Taylor (Ours)
(ms) Top-1 acc. (%) Top-1 acc. (%)

4.90 - baseline 76.1 76.1

4.78 76.0 76.5
4.24 74.9 75.9
4.00 73.2 73.8
3.63 69.2 71.6
3.33 55.2 70.0

Table 9: ImageNet ResNet-50 pruning ablation with and without
latency-aware loss given original data. Latency measured on V100
GPU at batch size 1. Top-1 accuracy corresponds to the highest val-
idation accuracy for 15 training epochs. Learning rate is initialized
to 0.01, decayed at the 10th epoch.

for CE loss given ground-truth labels of input images. We
argue that the same expansion can be applied to the knowl-
edge distillation loss, particularly the KL divergence loss,
computed between the teacher and student output distribu-
tions. We also use original data in this ablation for a fair
comparison with prior work and show the results in Table 10.
We can see that utilizing KL loss leads to only ´0.7% to
`0.1% absolute top-1 accuracy changes compared to the
original CE-based approach, while completely removing the
need for labels for Taylor-based pruning estimates.

Filters pruned CE loss, w/ labels [44] KL Div., w/o labels (Ours)
(%) Top-1 acc. (%) Top-1 acc. (%)

0 - baseline 76.1 76.1

10 72.1 72.0
20 58.0 58.1
30 37.1 36.4
40 17.2 16.6

Table 10: ImageNet ResNet-50 pruning ablation with and without
labels given original images. CE: cross-entropy loss between pre-
dictions and ground truth labels; KL Div: KullBack-Leibler diver-
gence loss between teacher-student output distributions. Learning
rate is 0, hence no fine-tuning is done.

C.5. Distribution Coverage Expansion
Adaptive DeepInversion aims at expanding the distribu-

tion coverage of the generated images in the feature space
through competition between the teacher and the student
networks. Results of its impact are illustrated in Fig. 7. As
expected, the distribution coverage gradually expands, given
the two sequential rounds of competition following the initial
round of DeepInversion. From the two side bars in Fig. 7,
we observe varying ranges and peaks after projection onto
each principal component from the three image generation
rounds.

To further visualize the diversity increase due to compe-
tition loss (Eq. 8), we compare the class of handheld com-
puters generated with and without the competition scheme
in Fig. 8. As learning continues, competition leads to the
discovery of features for hands from the teacher’s knowledge
scope to challenge the student network. Moreover, gener-
ated images differ from their nearest neighbors, showing the

Figure 7: Projection onto the first two principal components of the
ResNet-50-avgpool feature vectors of ImageNet class ‘hand-held
computer’ training images. ADI-1/2 refers to additional images
from round1/2 competition.

In
ve

rt
ed

C
lo

se
st

re
al

(a) DeepInversion (b) ADI

Figure 8: Nearest neighbors of the synthesized images in the
ResNet-50-avgpool feature space for the ImageNet class ‘hand-
held computer’ (a) without and (b) with the proposed competition
scheme.

efficacy of the approach in capturing distribution as opposed
to memorizing inputs.

D. Data-free Knowledge Transfer Appendix
We use the following parameters for the experiment on

ResNet50v1.5: ↵tv “ 1 ¨ 10´4, ↵f “ 0.01, and a learning
rate of 0.2 for Adam. We generate images with an equal
probability between the (i) multi-resolution scheme and (ii)
the scheme described in Section 4.2 with 2k iterations only
to further improve image diversity. We clip the synthesized
image x̂ using

x̂ “ min

`
maxpx̂,´m{sq, p1 ´ mq{s

˘
, (16)

where m “ t0.485, 0.456, 0.406u and s “ t0.229, 0.224,
0.225u.

E. Data-free Continual Learning Appendix
E.1. Implementation Details

Our DeepInversion setup for this application follows the
descriptions in Section 4.2 and Appendix B.1 with minor

modifications as follows. We use DeepInversion to gener-
ate {250, 64} images of resolution 224 ˆ 224 per existing
class in the pretrained {ResNet-18, VGG-16-BN}. These
images are generated afresh after adding each new dataset.
For {ResNet-18, VGG-16-BN}, we use a learning rate of
t0.2, 0.5u, optimize for 10k gradient updates in all, and
decay the learning rate every 1.5k steps with a 0.3 multiplier.
We use both `2 and `1 norms for total variance regularization
at ↵tv,`2 “ t3 ¨10´5, 6 ¨10´5u, ↵tv,`1 “ t1 ¨10´1, 2 ¨10´1u,
jointly with ↵`2 “ 0 and ↵f “ t1 ¨10´1, 3 ¨10´2u for Deep-
Inversion. These parameters are chosen such that all loss
terms are of the same magnitude, and adjusted to optimize
qualitative results.

Each method and dataset combination has individually-
tuned learning rate and number of epochs obtained on a
validation split using grid search, by optimizing the new
dataset’s performance while using the smallest learning rate
and number of epochs possible to achieve this optimal perfor-
mance. For each iteration, we use a batch of DeepInversion
data px̂, yopx̂qq and a batch of new class real data pxk, ykq.
The batch size is 128 for both kinds of data when train-
ing ResNet-18, and 64 for VGG-16-BN. Similar to prior
work [56], we reduce the learning rate to 20% at 1

3 , 1
2 , 2

3 ,
and 5

6 of the total number of epochs. We use stochastic gradi-
ent descent (SGD) with a momentum of 0.9 as the optimizer.
We clip the gradient `2 magnitude to 0.1, and disable all
updates in the BN layers. Gradient clipping and freezing
BN do not affect the baseline LwF.MC [56] much (˘2%

change in combined accuracy after hyperparameter tuning),
but significantly improve the accuracy of our methods and
the oracles. We start with the pretrained ImageNet models
provided by PyTorch. LwF.MC [56] needs to use binary CE
loss. Hence, we fine-tuned the model on ImageNet using bi-
nary CE with a small learning rate. The resulting ImageNet
model is within ˘0.5% top-1 error of the original model.
We did not investigate the effect of the number of images
synthesized on the performance.

E.2. VGG-16-BN Results
We show our data-free continual learning results on the

VGG-16-BN network in Table 11. The proposed method
outperforms prior art [56] by a large margin by enabling
up to 42.6% absolute increase in the top-1 accuracy. We
observe a small gap of † 2% combined error between our
proposal and the best-performing oracle for this experimental
setting, again showing DeepInversion’s efficacy in replacing
ImageNet images for the continual learning task.

E.3. Use Case and Novelty
The most significant departure from prior work such as

EWC [27] is that our DeepInversion-based continual learn-
ing can operate on any regularly-trained model, given the
widespread usage of BN layers. Our method eliminates the

Method Top-1 acc. (%)
Combined ImageNet CUB Flowers

ImageNet + CUB (1000 Ñ 1200 outputs)
LwF.MC [56] 47.43 64.38 30.48 –
DeepInversion (Ours) 70.72 68.35 73.09 –
Oracle (distill) 72.71 71.95 73.47 –
Oracle (classify) 72.03 71.20 72.85 –

ImageNet + Flowers (1000 Ñ 1102 outputs)
LwF.MC [56] 67.67 65.10 – 70.24
DeepInversion (Ours) 82.47 72.11 – 92.83
Oracle (distill) 83.07 72.84 – 93.30
Oracle (classify) 81.56 71.97 – 91.15

Table 11: Results on incrementally extending the network softmax
output space by adding classes from a new dataset. All results are
obtained using VGG-16-BN.

need for any collaboration from the model provider, even
when the model provider (1) is unwilling to share any data,
(2) is reluctant to train specialized models for continual learn-
ing, or (3) does not have the know-how to support a down-
stream continual learning application. This gives machine
learning practitioners more freedom and expands their op-
tions when adapting existing models to new usage scenarios,
especially when data access is restricted.

F. Limitation Discussion
• Image synthesis time. Generating 215K ImageNet sam-

ples of 224ˆ224 resolution for a ResNet-50 takes 2.8K
NVIDIA V100 GPU-hours, or 22 hours on 128 GPUs.
This time scales linearly with the number of synthesized
images. The multi-resolution scheme described in Sec-
tion 4.4 reduces this time by 10.7ˆ (0.26K GPU-hours /
4 hours on 64 GPUs).

• Image color and background similarity. We believe
there are two possible reasons for this similarity. 1) The
method uncovers and visualizes the unique discrimina-
tive characteristics of a CNN classifier, which can guide
future work on neural network understanding and interpre-
tation. Post-training, the network learns to capture only
the informative visual representations to make a correct
classification. For example, the key features of a target
object are retained, e.g., detailed bear heads in Fig. 6
or the fur color/patterns of penguins and birds in Fig. 5,
whereas the background information is mostly simplified,
e.g., green for grass or blue for ocean. 2) For all the im-
ages synthesized in this work, we use a default Gaussian
distribution with zero mean and unit variance to initialize
all the pixels, which may lead to unimodal behaviors. We
have also observed that the style varies with the choice of
the optimization hyperparameters.

• Continual learning class similarity. We implemented
DeepInversion on iCIFAR and iILSVRC [56] (two splits)
and observed statistically equivalent or slightly worse
performance compared to LwF.MC. We suspect that the
synthesized images are more effective in replacing old

class images that are different from the new images, com-
pared to a case where the old and new images are similar
(e.g., random subsets of a pool of classes).

