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Abstract

Image segmentation and edge detection are both central problems in perceptual
grouping. It is therefore interesting to study how these two tasks can be coupled to
benefit each other. Indeed, segmentation can be easily transformed into contour
edges to guide edge learning. However, the converse is nontrivial since general
edges may not always form closed contours. In this paper, we propose a principled
end-to-end framework for coupled edge and segmentation learning, where edges
are leveraged as pairwise similarity cues to guide segmentation. At the core of
our framework is a recurrent module termed as dynamic graph propagation (DGP)
layer that performs message passing on dynamically constructed graphs. The layer
uses learned gating to dynamically select neighbors for message passing using
max-pooling. The output from message passing is further gated with an edge signal
to refine segmentation. Experiments demonstrate that the proposed framework is
able to let both tasks mutually improve each other. On Cityscapes validation, our
best model achieves 83.7% mIoU in semantic segmentation and 78.7% maximum
F-score in semantic edge detection. Our method also leads to improved zero-shot
robustness on Cityscapes with natural corruptions (Cityscapes-C).

1 Introduction

Image segmentation and edge detection have been widely studied as important perception problems.
The two problems are closely related. In fact, segmentation subsumes edge detection since any
segmentation contour makes a closed boundary of a region. The converse is however not true since
general edges do not always form closed contours. Nevertheless, edge detection can serve as an
auxiliary task to improve segmentation performance since edges provide important pairwise similarity
cues for segmentation. Early works tend to focus on the grouping and contrast of pixels from a
perceptual similarity perspective. Martin et al. [1] proposed the Berkeley Segmentation Dataset, a
popular benchmark for segmentation and boundary detection that inspired many impactful works in
perceptual grouping [2–5]. The recent surge of deep learning renders powerful representations with
learned features using convolutional neural networks (CNNs) [6]. This has led to great advances in
both areas [7–12], but the two tasks are often considered separately.

In light of the status quo, we consider coupled edge and segmentation learning. Our goal is two-
fold: (1) Multi-task learning - being able to produce high quality edge detection and segmentation.
(2) Mutual improvement - the two tasks can help each other with non-trivial performance gains.
Designing a principled framework is however nontrivial. The key question is how sparse edge signals
can be effectively transformed into dense region-level ones to interact with segmentation. To this
end, we propose a learnable recurrent message passing layer where semantic edges are considered
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Figure 1: Framework Overview. The backbone network provides the encoded features as well as
an edge stream that produces a semantic edge map. The DGP layer takes them as inputs and uses
learnable message passing to produce a refined feature map (F∗) to predict segmentation and edges.

as explicitly learned gating signals to refine segmentation. An overview of our framework is shown
in Fig. 1. Specifically, the dynamic message passing layer uses affinity gates to select the neighbor
for message passing using max-pooling. It conducts message passing sweeps in each of the four
directions: left to right, right to left, top to bottom and bottom to top. The message passing is
jointly gated by both the affinity and edge gates, therefore allowing edge cues to naturally influence
long-range dense predictions. As such, our framework presents a context module that is clean,
compact yet powerful. Our technical contributions can be summarized as follows:

• We formulate recurrent message passing as dynamic graph propagation (DGP). We show that
such a formulation simplifies the required normalization in propagation networks [13]. It also
dynamically finds graph structures that encodes pixel affinities and improves dense prediction.

• We propose a double-gate design where message passing is jointly gated by both the affinity and
edge gates to refine the segmentation feature map. We show that this design together with the
dynamic 1-way connection in DGP better couples segmentation and edge learning.

• We obtain state-of-the-art results on joint semantic segmentation and edge detection. We also show
that DGP leads to strong zero-shot robustness to natural corruptions with significant improvement
over prior methods on Corrupted Cityscapes (Cityscapes-C).

Multitasking segmentation and edge learning is desirable for several reasons: 1) There are many
downstream applications where both are needed, such as occlusion reasoning [14], localization [15],
proposal generation [16–19] and conditional generation [20]. 2) There are many challenging cases
where segmentation quality is poor but edge quality is far more superior, e.g. segmentation tends to
be inferior near object boundaries since they are often optimized for IoU rather than precision [21].
In these cases, edge learning can potentially capture details missed by segmentation. 3) Implicitly
improved model generalization as a result of the coupled learning [22].

2 Related Work

Semantic Segmentation. There is a rich set of prior work in semantic segmentation. Long et
al., [7] proposed fully convolutional end-to-end training of semantic segmentation and pointed out
its connection to recognition [6]. Chen et al. [8] introduced atrous convolution and atrous spatial
pyramid pooling (ASPP) to capture multi-scale image contexts. Another contemporary work is the
wide ResNet-38 which explores a relatively shallower but wider backbone [23]. It has also been
shown that context plays an important role in segmentation, including context encoding [24, 25],
multi-scale context [26–28] as well as relational context [29, 30]. More recently, there has been a
surge of interests in segmentation with Transformers [31–34]

Boundary/Edge Detection. Similar to segmentation, boundary/edge detection have been widely
studied as perceptual grouping problems in early literature [1–3]. Recent methods tend to resort to
CNNs. For example, Bertasius et al. proposed a multi-scale deep network architecture for top-down
contour detection, where as Xie et al. [11] further introduced holistically-nested edge detection
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(HED) for end-to-end edge learning. Besides detecting binary edges, Hariharan et al. [35] proposed
the Semantic Boundaries Dataset (SBD) which has become a popular benchmark for semantic
edge detection. Compared to binary edge detection, semantic edge detection involves the semantic
classification of edge pixels in addition to localization which presents additional challenges to existing
frameworks. A series of works including HFL [36], CASENet [12], SEAL [37] and STEAL [38]
have followed up [35] and pushed the boundaries.

Multi-task Segmentation and Edge Learning. Multi-task segmentation and edge learning remains
under-studied but is not entirely new. Edges have been pairwise similarity cues to improve seg-
mentation [3, 39, 18] and superpixels [4]. It was shown that edges can be transformed into dense
regions through the Laplacian Eigenmaps of boundary transformed affinity [36, 5, 40]. Despite being
robust, these methods are generally slow and not end-to-end trainable. For more recent CNN based
models, end-to-end multi-task learning on a shared backbone is a natural choice [41]. In addition,
proper regularization between segmentation and edge has been shown to improve the performance of
both tasks. For example, Takikawa et al. [21] use softmax with temperature to impose consistency
between segmentation and semantic edges. Zhen et al. [42] correlate semantic segmentation and edge
detection tasks with a consistency loss. Our work goes beyond multi-tasking and let the two task
more deeply coupled through dynamic graph propagation.

Structured Dense Prediction. Segmentation is a dense prediction task where structured information
can be useful. Structured prediction models such as Markov random fields (MRFs) [43], conditional
random fields (CRFs) [44–46] and energy minimization [47, 48] have widely proved helpful in
segmentation problems by imposing contrast-sensitive smoothness. In addition, structured inference
can also be unfolded as network layers for end-to-end training [49, 50], therefore combining the
advantages from both ends. Recently, there is an increasing trend to directly model the message
passing process itself using multi-dimensional RNN [51–53], graph RNN [54, 55] and spatial
propagation network (SPN) [13, 56, 57]. A common advantage is that these methods render more
context-aware prediction with larger receptive fields while preserving local details similar to CRFs.
Their ability to train end-to-end allows more powerful representation of inter-pixel similarities and
thus better dense prediction quality. Our work can be broadly categorized into this category. It is worth
mentioning that the contrast sensitive smoothness term in CRF and propagation networks [52, 13] is
an implicit modeling of edge signals by learning to relax smoothness constraints at high contrast areas.
There have also been variants of SPN [58] that take binary edge as gate regularization. However, none
of these works have explicitly addressed multi-tasking learning with category-aware edges whereas
the proposed DGP framework presents a novel and effective solution to this problem.

3 Multi-task network

As a first step towards coupled segmentation and edge learning, we introduce two novel multi-task
networks that are able to perform multi-task learning for both segmentation and edge detection. An
overview of their architectures is shown in Fig. 2. The rest of the paper follows these notations and
covers more details for each module.

Backbone. A CNN giving a semantic feature map (denoted as F ) encoding the segmentation
information. There could be multiple choices of the backbone networks, ranging from the popular
architectures of DeepLabv2 [8], DeepLabv3 [27] to latest state-of-the-arts such as DeepLabv3+ [28]
and Dual-Attention Network [30]. Adopting powerful backbones will surely benefit the system-level
performance, but the major purpose of this work does not completely lie in achieving state-of-the-arts.
We are more interested in showing the effectiveness of a proposed framework on standard backbones.
To this end, we consider both CASENet [12] and ResNet-38 [23] as the standard backbones for
benchmarking. Both of them comprehensively covers the feature map resolutions of 1, 1/2, 1/4 and
1/8, with the last resolution being a rule of thumb adopted by many segmentation networks. For both
networks, we adopt atrous spatial pyramid pooling layers with dilation rate [6, 12, 18, 24, 30, 36] to
capture context information. We set the output channels to be 128 to produce a semantic feature map,
fowllowed by either direct segmentation prediction (baselines) or the proposed DGP layer.

Affinity stream. Convolution layers that aggregate the cross-layer information of the backbone and
produces an affinity feature map (denoted as A) to encode the affinity of pairwise neighboring pixels.
This stream is only used with the presence of recurrent message passing layer (including its related
baselines). The stream aims to model the simialrity of pair-wise neighboring pixels and serve as a
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Figure 2: An overview of the architecture for the proposed multi-task Network. Left: architecture
with the CASENet backbone. Right: architecture with the ResNet-38 backbone. Each residual block
of the backbone is marked with corresponding output scales (1, 1/2, 1/4, 1/8). In addition, the output
feature maps A, F and E are marked with (scale, channel number).

major input to the gating signal in recurrent message passing layer. Compared to edge stream, the
affinity stream seeks to capture coarser-level inter-pixel affinity with slightly deeper convolutions and
higher dimensions. The resulting feature map A is a 256 dimensional tensor concatenated by ASPP
and the side convolutional feature maps from the affinity stream.

Edge stream. Dense skip-layer features with abundant details that are combined with edge classifica-
tion layer through shared concatenation [12] to produce a semantic edge map (denoted as E). We
design an improved edge stream over CASENet [12] to better leverage detail information at multiple
scales/levels with dense side connections. Unlike CASENet where the bottom blocks only provide
1-channel side features, we densely obtain side features from every sub-block residual modules. In
CASENet, this gives side features with a total number of 31 dimensions. Similar rules apply to
ResNet-38, where the side feature has a total number of 17 dimensions We also found that applying
sigmoid after side features with resolution 1/8 greatly benefits edge training from two aspects: (1)
It helps to stabilize and prevent gradient explosions from dense skip connections. (2) It removes
the typical aliasing edge issue caused by upsampling/deconvolution, and produces elegant smooth
edges. Even though we do not explicitly apply techniques such as edge alignment [37] in this work,
the proposed backbone is able to produce high quality edge predictions under noisy labels. We also
notice that it is better to remove sigmoid for side features with higher resolutions. Edge prediction is
multi-tasked alongside with ASPP using 1× 1 convolution on top of Res Block5. This returns the K
classes coarse edge predictions. Similar to CASENet, we upsample all side features together with the
K-dimensional edge predictions to full image resolution and apply shared concatenation, where side
features are repetitively shared and concatenated with each class for K times, followed by a K-way
3× 3 group convolution to produce semantic edges.

Dynamic graph propagation. Learnable recurrent message passing layer that takes the above three
branches as input to produce a refined semantic feature map (denoted as F ∗). More details regarding
this module will be introduced in the next section.

4 Coupled segmentation and edge learning

Although the multi-task network is able to jointly produce segmentation and edge prediction, we are
interested in letting these two tasks better coupled to mutually improve each other. To this end, we
look into recent spatial propagation networks where edges can be transformed into gating signals that
produce long range influence to segmentation. We first give the notations and definitions:

4.1 Notations and Settings

We start with a two-dimensional recurrent network architecture with a linear propagation module
passing messages (memories) spatially over a feature map. We define a 4-way message passing: 1.
Left→ Right (Mode L), Right→Left (Mode R), Top→Bottom (Mode T) and Bottom→Top (Mode
B). Each way of message passing will separately generate a hidden state map H which can be
approximately viewed as a refined (smoothed) version of F . Finally, we take an element-wise max
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operation to ensemble them where the model automatically selects the optimal direction with highest
neural activation for each pixel:

F ∗ ←H , max (HL, HR, HT , HB) (1)

Figure 3: Illustration of spatial propagation. Left: prop-
agation under Right→Left mode. Right: the defined
graphs and neighbors of different propagation modes.

To perform message passing in each way,
one often needs to pre-define a graph that
encodes the message passing paths. For
tractability and and computation issues,
such graph is often sparsely defined with
locally connections between immediate
neighboring pixels. We follow spatial prop-
agation network (SPN) [13] by defining a
three-way local connection, as illustrated
on the hand side of Fig. 3. The advantage
of such design is obvious: Taking Mode R
propagation as an example, one just needs
to initiate the message passing from the
right most column, and recurrently pass the
message from right to left column by col-
umn. In this case, the hidden state of each
pixel is directly influenced by the three immediate neighboring pixels on the right column. Details of
the propagation under Mode R is illustrated on the left hand side of Fig. 3.

Let F ∈ RH×W×C be the feature map input to the propagation module, H ∈ RH×W×C the
propagation latent space on top of F . In addition, let hi,t and fi,t denote the hidden state and feature
of the i th pixel located at recurrence t3 on H and F , respectively. We denote {pk

i,t|k ∈ N(i, t)}
the set of learnable propagation gating weights for hidden state h(i, t) where N(i, t) is the set of
neighbors of pixel (i, t). In this case, the spatial propagation in each mode is defined as:

hi,t =
(
1−

∑
k∈N(i,t)

pk
i,t

)
� fi,t +

∑
k∈N(i,t)

pk
i,t � hk,t−1 (2)

where � is element-wise product, and hk,t−1 is the hidden state of pixel (i, t)’s neighbors from the
previous recurrence. {pk

i,t|k ∈ N(i, t)} is expandable to an affinity matrix, revealing the global and
dense message passing among all the pixels of F .

4.2 Dynamic graph propagation (DGP)

As a linear module, the above operation requires careful normalization of among {pk
i,t|k ∈ N(i, t)}.

In particular,
∑

k∈N(i,t) p
k
i,t ≤ 1 should be satisfied since the energy of the hidden state signal gets

unbounded easily under the recurrence operation. To normalize the gating weights, one may consider
a linear self-normalization scheme [13] where the constraint

∑
k∈N(i,t) |pki,t| ≤ 1 is imposed to

guarantee the stableness of the propagation4 via dividing each pki,t with
∑

k∈N(i,t) |pki,t|.

But the above formulation also leads to certain limitations. For example, the linear form allows pki,t
to be both positive and negative, which potentially encourages pki,t to be large towards either positive
or negative side rather than being monotonic. In addition, when pki,t ≥ 0,

∑
k∈N(i,t) p

k
i,t = 1 which

means that such formulation considers zero unary input from fi,t. Therefore, another choice is to
constrain pki,t with a probabilistic output:

pk
i,t =

exp(p̂k
i,t)∑

k∈N(i,t) exp(p̂
k
i,t)
� σ(p̂k

i,t), (3)

where p̂k
i,t is defined as:

p̂k
i,t = W>

a [Ai,t; Ak,t−1], (4)

3There is a one-to-one correspondence between (i, t) and pixel index (h,w). But the mapping varies subject
to the propagation mode. In Mode R for example, t corresponds to column with w = W − t whereas h = i+1.

4Similar property holds when the same constraint is applied to each dimension of pk
i,t in Equation (2).
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and σ(·) is the Sigmoid function. Note that p̂k
i,t is the raw gating activation without normalization,

and is obtained via a linear projection on the concatenated affinity stream features.

The above formation satisfies both
∑

k∈N(i,t) p
k
i,t ≤ 1 and pk

i,t ≥ 0, while partially considering the
unary input with the Sigmoid term. Yet the framework is a bit complicated with many non-linear
terms. To this end, we take one more step to further sparsifying and simplifying the gating response
by considering a softmax-with-temperature formulation and taking the limit of T → 0:

pk
i,t = lim

T→0

exp(p̂k
i,t)/T∑

k∈N(i,t) exp(p̂
k
i,t)/T

� σ(p̂k
i,t) (5)

Substituting Equation (5) into Equation (2), we have:

hi,t =
(
1− σ(p∗i,t)

)
� fi,t + σ(p∗i,t)� h∗i,t, (6)

where the n-th dimension of p∗i,t and h∗i,t are defined as:

k∗ , argmax
k∈N(i,t)

{p̂k
i,t[n]} p∗i,t[n] = p̂k∗

i,t [n] h∗i,t[n] = hk∗,t−1[n]. (7)

Figure 4: Illustration of dynamic graph propagation.

Equation (6) essentially leads to a
dynamic graph propagation (DGP)
framework where one performs mes-
sage passing on a dynamic graph
structure by picking neighbor with the
highest response. Intuitively, DGP
captures a compact structure that has
close relation to directed minimum
spanning tree, Chu–Liu/Edmonds’ al-
gorithm [59] and the recently pro-
posed tree filters [60, 61]. Such structure presents an inductive bias that benefits segmentation
by filtering out noisy prediction and following only strong signals. Figure 4 illustrates DGP where
we show three example paths on three feature channels. Each channel independently takes different
paths depending on its own neighbor affinities.

4.3 Coupling edge prediction with segmentation

To deeply couple edge prediction with segmentation, we further incorporate edge signal into the
above dynamic graph propagation by proposing a double-gate framework:

hi,t =
(
1− σ(p∗i,t)� σ(gi,t)

)
� fi,t + σ(p∗i,t)� σ(gi,t)� h∗i,t, (8)

where gi,t is defined as:

gi,t , We ∗E[i− 1 : i+ 1, t− 1 : t+ 1] (9)

Note that the edge gating signal is obtained by via a 3 × 3 convolution on the K-channel edge
activation map E, which outputs a vector g sharing the same dimension (128) as p∗. This way, edges
are able to actively influence segmentation via edge-sensitive gating on message passing.

We also hope that the refined segmentation activation after DGP can alternatively serve as a shape
regularizer of the edge prediction. To this end, we output a K-channel edge regularization feature
from Fm using 1× 1 convolution, followed by another 3× 3 convolution to fuse with E to produce
a refined edge map E∗. This is illustrated in Fig. 1 on the bottom right. One shall see that the above
coupled design let the two tasks greatly improve each other, and we term the final framework CSEL.

4.4 Training loss

The training loss for CSEL is a multi-task combination of cross-entropy (BCE) losses for multi-label
edge learning and the cross-entropy (CE) loss for segmentation:

L = LSeg + LEdge = LCE(Conv(F ∗)) + λ(LBCE(E
∗) + LBCE(E)) (10)

where λ is the parameter controlling the weight of segmentation loss. For segmentation, we use a
3× 3 convolution to linearly project the 128-channel activation F ∗ into a K-channel before the loss.
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5 Experiments

5.1 Datasets and metric

Cityscapes. Cityscapes [62] contains 2975 training images, 500 validation images and 1525 private
testing images with 19 pre-defined semantic classes. The dataset has been widely adopted as the
standard benchmark for both semantic segmentation and semantic edge detection. Following a
number of previous works [12, 37, 38, 21], we comprehensively conduct ablation and quantitative
studies for both segmentation and edge detection on the validation set.

SBD. The Semantic Boundaries Dataset [35] contains both category-level and instance level semantic
segmentation annotations. The dataset contains 11355 images (8498 for training and 2857 for testing)
from the trainval set of PASCAL VOC2011 [63], and follows the 20-class VOC definition.

PASCAL VOC 2012 [64] is a semantic segmentation dataset with 1464 (training) and 1449 (val)
and 1456 (test) images. We use the augmented dataset with 10582 training images, as in [28]. The
dataset contains 20 foreground object classes and 1 background class.

COCO Panoptic [10] contains the mask annotations for both things and stuff, with a split setting
(118K train 2017 images and 5K validation 2017 images) following the detection community.

Evaluation metrics. For evaluation, We consider intersection-over-union (IoU) for segmentation,
and the maximum F-score (MF) at optimal dataset scale (ODS) for edge detection5. We also consider
the boundary F-score proposed in [21] for direct comparison on edge detection task.

5.2 Implementation details

Data loading. During training, we unify the training crop size as 1024 × 1024 for Cityscapes,
472 × 472 for SBD and VOC12, and 464 × 464 for COCO Panoptic. All models are trained with
150k iterations on Cityscapes with batch size 8, 30k iterations on SBD and VOC12 with batch size
16, and 220k iterations on COCO Panoptic with batch size 16. We also perform data-augmentation
with random mirror, scaling (scale factors in [0.5, 2.0]) and color jittering.

Optimization. we apply an SGD optimizer with a weight decay of 5 × 10−4 during training. For
baselines and methods that involving CSEL, we additionally apply a second ADAM optimizer to
the propagation layers. In our case, we empirically found that ADAM optimizer is more capable of
optimizing the propagation layers with better performance.

Learning rate and loss. The base learning rates for methods with ResNet-101/ResNet-38 backbones
are unified as 3.0 × 10−8/7.0 × 10−8 across Cityscapes, SBD and VOC12. On COCO Panoptic,
the base learning rate is unified as 5.0 × 10−8 for all comparing methods. Unless indicated, the
segmentation weight λ in Eq (7) is empirically set it to 0.5 to balance LSeg and LEdge. We found our
method not sensitive to λ, and setting λ = 0.5 works excellently for all backbones and datasets.

Using Mapillary Vistas. On Cityscapes, a number of literature consider large-scale pretraining on
Mapillary Vistas (MV) [65], which is shown to considerably benefit the segmentation performance.
Unless indicated, our method does not adopt Mapillary Vistas pre-training for fair comparison.

5.3 Experiments on Cityscapes

Table 1: Ablation study of Semantic segmentation
on Cityscapes validation set.

method ResNet-101 ResNet-38

ST 77.9 78.55
MT 78.4 79.43
SPN 80.0 -
SPN+Edge 80.4 -

DGP 81.3 -
CSEL− 80.9 -
CSEL 82.8 82.8
CSEL-Ms 83.7 83.4

Ablation study (semantic segmentation). Table 1 shows the
ablation studies on semantic segmentation where we consider
apple-to-apple compared methods that are trained following
the same backbones and training protocols: 1) ST: Single task
segmentation network without propagation layer but keeping
the 128-channel feature map F . 2) MT: The same as ST but
naively multi-tasking segmentation with edge detection. 3)
SPN [13]: Implementation of SPN with the 3-way propagation
on F , where gating signal is computed using the affinity stream
A. 4) SPN+Edge: Coupling SPN with edge learning following
exactly the same double gate design. 5) DGP: Baseline which

5we follow [37] by applying exactly the same parameters and settings.
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Table 2: Main results of semantic segmentation and semantic edge learning on Cityscapes.
(a) Main semantic segmentation results on
the Cityscapes validation set.

Method Backbone MV mIoU

PSPNet [26] ResNet-101 78.8
DeepLabV3+ [28] ResNet-101 78.8
CCNet [66] ResNet-101 80.5
GSCNN [21] ResNet-101 74.7
DANet [30] ResNet-101 81.5
RPCNet [42] ResNet-101 82.1
CSEL ResNet-101 83.7

SGPN [57] ResNet-38 80.9
GSCNN† [21] ResNet-38 80.8
VRec-JP (LR) [67] ResNet-38 81.4
Axial-DeepLab [68] AxiaiRes-XL 81.1
CSEL ResNet-38 83.4

(b) Main semantic segmentation results
on the Cityscapes test set.

Method Backbone MV mIoU

PSPNet [26] ResNet-101 78.4
PSANet [69] ResNet-101 80.1
ASPP [27] ResNet-101 80.1
BFP [58] ResNet-101 81.4
DA-Net [30] ResNet-101 81.5
OCR [29] ResNet-101 81.8
CCNet [66] ResNet-101 81.9
RPCNet [42] ResNet-101 81.8
CSEL ResNet-101 82.1

GSCNN ResNet-38 X 82.9
CSEL ResNet-38 X 83.5

(c) Main results of semantic edge detection on the
Cityscapes validation set. Results measured by
Maximum F-Score (MF) at optimal data scale.

Method Backbone MF (IS) MF (Non-IS)

CASENet [12] ResNet-101 68.1 68.9
SEAL [37] ResNet-101 69.1 -
STEAL [38] ResNet-101 69.7 71.4
RPCNet [42] ResNet-101 - 78.2

CSEL ResNet-101 78.1 78.3
CSEL ResNet-38 - 78.7

contains the proposed DGP layer without the double gate design. 6) CSEL−: Baseline which is
the same as CSEL except for removing the edge loss. 7) CSEL: Our full method with single scale
inference. 8) CSEL-MS: CSEL with multiscale inference at {0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0}. We
also consider both instance-sensitive (IS) and non-instance-sensitive (Non-IS) settings where the edge
training/evaluation labels are with/without instance-edges.

Discussions. We make sure that the comparisons are apples to apples and fair, by using the same
backbones and training recipes (such as learning rate, crop size, batch size, and number of iterations)
for all comparing methods.The DGP baseline can be considered as an apples to apples counterpart
of SPN, whereas the CSEL− baseline is a further study to understand whether the improvement
in CSEL purely comes from the enriched representation with edge features. One could observe
several trends from the results: 1) The proposed multi-task network consistently outperforms its
single task counterpart. 2) CSEL outperforms both SPN and SPN+Edge with the dynamic graph
propagation and edge gating. 3) The dynamic graph design in DGP alone helps it to achieve 81.3%
mIoU, outperforming both SPN and SPN+Edge by 1.3% and 0.9%, respectively. 4) The incorporation
of edge guidance with the double gate design further leads to another non-trivial 1.5% improvement.
Simply adding the edge feature does not improve the segmentation quality. In fact, CSEL− is even
slightly lower than DGP where no edge features are involved. This reflects the importance of edge
signal as a structural guidance than making the representation more expressive.

Comparison to state-of-the-art (semantic segmentation). We also compare CSEL to state-of-the
art semantic segmentation models and list the results in Table 2a and 2b. For clarity, we divide
to table into two parts with models using the same type of backbone putting together. Among the
comparing methods, CSEL obtains the best results using both ResNet-101 and ResNet-38 backbones.

Table 3: Ablation study of edge detection on the Cityscapes
validation set. Results measured by MF and scaled by %.

Method Res101 (IS) Res101 (Cls) Res38 (Cls)

ST 74.66 74.87 75.42
MT 74.48 74.62 75.38

CSEL 77.58 77.67 78.19
CSEL-Ms 78.09 78.32 78.73

Ablation study (edge detection). We additionally con-
duct experiments on edge detection. We first show an
ablation study in Table 3, where ST indicates single-task
edge detection network with the proposed edge stream.
MT indicates naive multi-task training of both segmenta-
tion and edge. MT leads to slight performance degrada-
tion on the edge detection task compared to single-task
training on edge detection. However, the degradation is marginal compared to the significant im-
provement of the edge quality introduced by deep coupling of the two tasks in CSEL. Again, this
shows the considerable benefit of coupled learning with both segmentation and edge detection.

Table 4: Results of boundary evaluation on Cityscapes vali-
dation set following [21]. Results measured by boundary F-
score and scaled by %. † indicates results reported in [21].

Method Backbone 12px 9px 5px 3px

DeepLabV3+† ResNet-38 80.1 78.7 74.7 69.7
GSCNN [21] ResNet-38 81.8 80.7 77.6 73.6
CSEL ResNet-38 87.0 86.0 83.4 79.6
CSEL ResNet-101 87.2 86.2 83.5 79.6

Comparison to state-of-the-art (edge detection). We
also compare to state-of-the-art semantic edge detec-
tion methods in Table 2c where we present the train-
ing/evaluation protocols in two categories (IS and Non-
IS) following SEAL. Note that we evaluate the results
with the edge thinning protocol. One could see that our
method achieves the best performance in both settings
with significant performance gain from the coupled edge and segmentation learning, as well as the
benefit from the dynamic graph propagation module. Besides the evaluation protocol from SEAL, we
also follow a separate evaluation protocol from GSCNN [21] in Table 4, where we use the original
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evaluation code base from GSCNN to evaluate the boundary quality of semantic segmentation. One
can observe that at all different thresholds, CSEL with both ResNet-101 and ResNet-38 backbones
outperform DeepLabV3+ and GSCNN by significant margins in terms of boundary quality.

5.4 Experiments on SBD
Table 5: Semantic edge detection on the re-annotated SBD
test set. Results measured by MF and scaled by %. † indi-
cates results are reported by [38].

Method Backbone MF (IS) MF (Non-IS)

CASENet [12] ResNet-101 63.6 63.5†

SEAL [37] ResNet-101 67.0 66.8†
STEAL [38] ResNet-101 65.8 68.2
DFF ResNet-101 68.0 -

CSEL ResNet-101 73.1 73.2

We also evaluate CSEL on the SBD dataset and compare
with previous state-of-the-art semantic edge detection
models. The main results are presented in Table 5. Note
that we used the re-annotated SBD test set from [37] to
pursue more precise semantic edge evaluation. From the
table, one could see CSEL outperforms other state-of-
the-art methods in both IS and Non-IS settings.

5.5 Experiments on PASCAL VOC12

Table 6: Results on VOC12 validation set.

Method Backbone mIoU

DT-EdgeNet [52] ResNet-101 69.96
SPN (3-way) [13] ResNet-101 75.28
DFN [41] ResNet-101 80.60
DeepLabv3+ [28] ResNet-101 80.57

CSEL ResNet-101 83.30

We evaluate CSEL on the PASCAL VOC12 dataset and report
the main results of semantic segmentation in Table 6. The
performance is evaluated as the mean IoU over the 20 PAS-
CAL VOC classes plus the background class. We compare
CSEL with previous competitive methods that are state-of-the-
art (DeepLabv3+) or considerably related (SPN/DFN). CSEL
achieves considerable improvement these methods.

5.6 Experiments on COCO Panoptic

Table 7: Results on COCO Panoptic val2017.

Method Backbone mIoU

ST ResNet-101 53.95
MT ResNet-101 54.14
SPN ResNet-101 56.49
SPN-Edge ResNet-101 56.51

CSEL ResNet-101 57.03

We further conduct experiments on the full COCO Panoptic
dataset. Several earlier methods have reported results on COCO-
Stuff 10K which is an earlier version of COCO with much less
data. However, this does not lead to significant differences
with VOC12 in both the size and the diversity of data. We
therefore adopt the full COCO Panoptic dataset which is sig-
nificantly larger and is widely accepted by the detection and
instance/panoptic segmentation communities. We hope that our
work present solid baselines that inspires subsequent research on this benchmark.

Specifically, we convert the instance segmentation annotations to semantic segmentation ones, and
compare segmentation methods with or without the proposed CSEL module. All comparing methods
adopt the same CASENet (ResNet-101) architecture. Other hyperparameters are kept exactly the
same. Models are trained on the train2017 split and tested on val2017 with single scale inference.

From the results in Table 7, one could see that adding CSEL leads to consistently improved results
over the naïve segmentation baselines. In addition, multi-task learning with both segmentation and
edge losses also slightly outperforms the single segmentation. Finally, CSEL slightly outperforms
SPN with reduced gain compared to results on Cityscapes. We hypothesize that the reduced gain is
partly caused by the noisier mask annotations on COCO Panoptic which makes edge learning more
challenging and decreases the edge gate quality.

5.7 Robustness Against Natural Corruptions

We hypothesize that CSEL also brings robustness to the segmentation model. We show that this
is the case and empirically verify on Cityscapes-C in Table 8. Specifially, we follow the standard
corruption package provided by [70] to corrupt the Cityscapes validation images. This expands
the Cityscapes validation set with 16 types of algorithmically generated corruptions from 4 major
categories: “Noise”, “Blur”, “Weather” and “Digital”. Each corruption type also contains 5 severity
levels, leading to 2500 evaluation images for each type alone6.

Our result shows that CSEL overall improves the robustness significantly, especially compared to
ResNet-38 and GSCNN [21] which share the same backbone. On the other hand, the method does

6We only consider level 1-3 for the “Noise” category following [71].
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still show some vulnerability to certain type of corruptions, particularly those belonging to the “Noise”
category. However, this trend is aligned with ResNet-38 and GSCNN and we hypothesize that it may
be partly related to the specific design of ResNet-38 based on this pattern.

Table 8: Main results on Cityscapes-C. “DLv3+”, “MBv2”, “R” and “X” refer to DeepLabv3+, MobileNetv2,
ResNet and Xception. The mIoUs of compared methods are reported from [71].

Arch. Clean Blur Noise Digital Weather
Motion Defoc Glass Gauss Gauss Impul Shot Speck Bright Contr Satur JPEG Snow Spatt Fog Frost

DLv3+ (MBv2) 72.0 53.5 49.0 45.3 49.1 6.4 7.0 6.6 16.6 51.7 46.7 32.4 27.2 13.7 38.9 47.4 17.3
DLv3+ (R50) 76.6 58.5 56.6 47.2 57.7 6.5 7.2 10.0 31.1 58.2 54.7 41.3 27.4 12.0 42.0 55.9 22.8

DLv3+ (R101) 77.1 59.1 56.3 47.7 57.3 13.2 13.9 16.3 36.9 59.2 54.5 41.5 37.4 11.9 47.8 55.1 22.7
DLv3+ (X41) 77.8 61.6 54.9 51.0 54.7 17.0 17.3 21.6 43.7 63.6 56.9 51.7 38.5 18.2 46.6 57.6 20.6
DLv3+ (X65) 78.4 63.9 59.1 52.8 59.2 15.0 10.6 19.8 42.4 65.9 59.1 46.1 31.4 19.3 50.7 63.6 23.8
DLv3+ (X71) 78.6 64.1 60.9 52.0 60.4 14.9 10.8 19.4 41.2 68.0 58.7 47.1 40.2 18.8 50.4 64.1 20.2

ICNet 65.9 45.8 44.6 47.4 44.7 8.4 8.4 10.6 27.9 41.0 33.1 27.5 34.0 6.3 30.5 27.3 11.0
FCN8s 66.7 42.7 31.1 37.0 34.1 6.7 5.7 7.8 24.9 53.3 39.0 36.0 21.2 11.3 31.6 37.6 19.7

DilatedNet 68.6 44.4 36.3 32.5 38.4 15.6 14.0 18.4 32.7 52.7 32.6 38.1 29.1 12.5 32.3 34.7 19.2
ResNet-38 77.5 54.6 45.1 43.3 47.2 13.7 16.0 18.2 38.3 60.0 50.6 46.9 14.7 13.5 45.9 52.9 22.2

PSPNet 78.8 59.8 53.2 44.4 53.9 11.0 15.4 15.4 34.2 60.4 51.8 30.6 21.4 8.4 42.7 34.4 16.2
GSCNN 80.9 58.9 58.4 41.9 60.1 5.5 2.6 6.8 24.7 75.9 61.9 70.7 12.0 12.4 47.3 67.9 32.6

CSEL (R38) 82.8 63.7 66.4 44.3 66.4 15.1 6.4 17.5 40.4 79.7 66.0 78.3 17.1 19.5 41.4 78.5 33.0

6 Conclusion

We proposed a unified framework for coupled segmention and edge learning. Our work revisits the
two long-standing and important perceptual grouping problems - semantic segmentation and edge
detection. Our method (CSEL) includes a novel end-to-end multi-task network, a recurrent dynamic
graph propagation layer, as well as deep coupling of the two tasks on top on top of them. Finally,
results show that careful coupling of the tasks leads to significant improvement on both of them.

Broader Impact

Our method coupled two long-standing important vision problems, semantic segmentation and
edge detection, under a unified framework. Besides the various practical benefits from deeply
coupling these two tasks, we expect the research to inspire considerable insights, interests and
revisits on perceptual grouping, mid-level representations and structured prediction. The result of
the research is likely to find diverse scene understanding applications such as autonomous driving
and robot navigation. Like many other discriminative recognition models, our method inevitably
faces challenges from input data quality and underlying data biases. The model behavior is subject
to various factors such as data distributions, domain gaps, label quality and fairness. We encourage
researchers to focus on the “in the wild” robustness when the above challenges are present.
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