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Figure 1. Images synthesized by the proposed CoordGAN for various object categories (left: faces; top-right: cars; bottom-right: cats) :
each row displays images with the same structure but different textures; in each column, structure varies while keeping texture fixed. The
correspondence maps (Corr-Map) controlling the structure of the synthesized images are shown in the first column of each row. For better
visualization, we use off-the-shelf segmentation models to highlight the foreground areas of all the correspondence maps, as shown with
Corr-Map (Crop).

Abstract
Recent advances show that Generative Adversarial Net-

works (GANs) can synthesize images with smooth varia-
tions along semantically meaningful latent directions, such
as pose, expression, layout, etc. While this indicates that
GANs implicitly learn pixel-level correspondences across
images, few studies explored how to extract them explicitly.
In this work, we introduce Coordinate GAN (CoordGAN),
a structure-texture disentangled GAN that learns a dense
correspondence map for each generated image. We repre-
sent the correspondence maps of different images as warped
coordinate frames transformed from a canonical coordi-
nate frame, i.e., the correspondence map, which describes
the structure (e.g., the shape of a face), is controlled via
a transformation. Hence, finding correspondences boils
down to locating the same coordinate in different corre-
spondence maps. In CoordGAN, we sample a transfor-
mation to represent the structure of a synthesized instance,
while an independent texture branch is responsible for ren-

*Work done while an intern at Nvidia.

dering appearance details orthogonal to the structure. Our
approach can also extract dense correspondence maps for
real images by adding an encoder on top of the genera-
tor. We quantitatively demonstrate the quality of the learned
dense correspondences through segmentation mask trans-
fer on multiple datasets. We also show that the proposed
generator achieves better structure and texture disentan-
glement compared to existing approaches. Project page:
https://jitengmu.github.io/CoordGAN/

1. Introduction

Generative Adversarial Networks (GANs) have achieved
great success in synthesizing high-quality images [3, 20,
22, 23, 39], and many recent studies show that they also
learn a rich set of interpretable directions in the latent
space [42, 43]. Moving latent codes along a semanti-
cally meaningful direction (e.g., pose) generates instances
with smoothly varying appearance (e.g., continually chang-
ing viewpoints), implying that GANs also implicitly learn
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which pixels or regions are in correspondence with each
other, from different synthesized instances.

On the other hand, dense correspondence is established
between local semantically-similar regions, but with vary-
ing appearance (e.g., patches of two different eyes). Learn-
ing dense correspondence across images of one category re-
mains challenging because labeling large-scale, pixel-level
annotations is extremely laborious. While most existing
works rely on supervised [7,11,17,41], or unsupervised [49]
image classification networks, few have investigated how to
learn dense correspondence from GANs.

In this work, we explore learning dense correspondence
from GANs. Specifically, we aim to learn an explicit cor-
respondence map, i.e., a pixel-level semantic label map.
Since correspondence represents structure (e.g., shapes of
facial components) and is independent of texture (e.g.,
global appearance like skin tone and texture), this task is
highly relevant to disentanglement of structure and texture
in GANs [1, 29, 35, 43, 47, 52]. Studies show that disentan-
glement of semantic attributes can be achieved by carefully
searching for latent directions learned by GANs [12,43,52],
but all attributes being factorized have to be identified by
humans. Some recent advances [1, 29] demonstrate ef-
fective structure-texture disentanglement by improving the
noise code input to GANs [1], or by applying spatial atten-
tion in the intermediate layers [29]. However, they either
produce a relatively low resolution (e.g., 4 × 4) structure
map [1], or do not produce it explicitly [29].

Our key idea is to introduce a novel coordinate space,
from which pixel-level correspondence can be explicitly ob-
tained for all the synthesised images of a category. Inspired
by UV maps of 3D meshes [19, 28, 32], where shapes of
one category are represented as deformations of one canon-
ical template, in this work, we represent the dense corre-
spondence map of a generated image as a warped coor-
dinate frame transformed from a canonical 2D coordinate
map. This enables the representation of a unique struc-
ture as a transformation between the warped and the canon-
ical frames. We design a Coordinate GAN (CoordGAN)
with structure and texture controlled via two independently
sampled noise vectors. While the texture branch controls
the global appearance via Adaptive Instance Normalization
(AdaIN) [22], in the structure branch, we learn an MLP as
the aforementioned transformation. This maps a sampled
noise vector to a warped coordinate frame, which is further
modulated in the generator to control the structure of the
synthesized image in a hierarchical manner.

We adopt several objectives during training to ensure that
the network learns accurate dense correspondence, i.e., (1) a
texture swapping constraint to ensure the same structure for
images with the same structure code but different texture
codes; (2) a texture swapping constraint to ensure similar
texture for images with the same texture code, but different

structure codes. We also introduce a warping loss to further
regularize the correspondence maps. In addition, we show
that CoordGAN can be flexibly equipped with an encoder
that produces dense correspondence maps for real images.
We summarize our contributions as follows:
• We introduce a novel coordinate space from which

dense correspondence across images of one category
can be explicitly extracted. A warping function is in-
troduced to learn this coordinate space.
• We propose CoordGAN, a disentangled GAN that gen-

erates dense correspondence maps and high-quality
images, via a set of effective objectives.
• CoordGAN can be flexibly equipped with an encoder

to produce the correspondence maps for real images.
In other words, we also introduce a network (i.e., the
encoder) that learns explicit structure representation.
• Experiments show that CoordGAN generates accurate

dense correspondence maps and high-quality struc-
ture/texture editable images, for various categories.

2. Related Work
Disentangled GANs. Recent studies [12, 43, 52] show

that rich semantically meaningful directions (e.g., pose,
color, lighting, etc.) automatically emerge in GANs. To
factorize these meaningful latent directions, a line of disen-
tangled GANs [4, 5, 35, 36, 44] are proposed to synthesize
images via multiple latent factors, where each factor con-
trols a certain attribute, e.g., object shape or texture. Un-
like [36, 44, 47] where human annotations (e.g., bounding
boxes, surface normals, etc) are required, most related to
ours are self-supervised disentanglement approaches [1,29,
35]. Among them, Alharbi et al. [1] show that injecting
hierarchical noise in the first layer of GANs leads to fine-
grained spatial content disentanglement. Kwon et al. [29]
further inject noise into multiple layers with diagonal spatial
attention modules. However, the learned content code only
captures coarse structure such as viewpoints, i.e., keeping
the same content code and only modifying the texture code
would change the subject’s shape. In contrast, our method
models finer structure that allows for generating images of
the same identity with various textures.

Style Transfer. Style transfer [6, 10, 18, 37, 45] synthe-
sizes a novel image by combining the content of one image
with the texture of another one. Most related to ours is to
swap texture between semantically-related regions of two
images. E.g., Park et al. [37] learns a disentangled auto-
encoder such that texture of corresponding regions can be
swapped. In contrast, our work studies disentanglement of
unconditional GANs and extracts dense correspondence be-
tween images explicitly.

Dense Correspondence. Identifying dense correspon-
dence has been a challenging problem due to large shape
and appearance variances. Most existing approaches are
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Figure 2. Correspondence in coordinate space. The correspon-
dence maps (Corr-Map) establish dense correspondence between
all synthesized images and the canonical coordinate frame.

based on discriminative networks, i.e., either supervised
image classification [7, 11, 17, 26, 33, 41], or unsupervised
image-level contrastive learning [49, 50]. Our work differs
in that we investigate how to extract dense correspondence
from GANs. Recently, several works [51, 54] show that se-
mantics can be extracted from GANs via a linear classifier
in a few-shot setting. However, these methods still require
manual annotations for training the classifier. Inspired by
these works, we move one step further to extract dense cor-
respondence without using any annotated labels.

Concurrent Work. Peebles et al. [38] achieves visual
alignment through equipping a pre-trained StyleGAN2 [24]
with additional Spatial Transformer Network (STN) [16].
However, dense correspondence is only identified for part of
the object. Differently, through disentanglement of struc-
ture and texture, the proposed CoordGAN automatically
generates correspondence maps of full images and neither
pretrained StyleGAN nor additional STN is required.

3. Dense Correspondence from CoordGAN
We design a structure-texture disentangled GAN such

that dense correspondence can be extracted explicitly from
the structural component, where the key component is to
tie image structure to a coordinate space that is shared by
all images. Specifically, the structure of each generated
image is represented as a warped coordinate frame, trans-
formed from a shared canonical 2D coordinate frame. This
reduces finding correspondence between image pixels to lo-
cating the coordinates in corresponding warped coordinate
frames, which are transformed from the same coordinates
in the canonical frame. We call our model Coordinate GAN
(CoordGAN).

Coordinate Map Representation. We define C as a
2D coordinate map of width W c and height Hc. When
C(i, j) = (i, j), this denotes the canonical coordinate map
(see Figure 2). Pixel locations and coordinates are normal-
ized to the range [−1, 1]. For example, C(1, 1) = (1, 1)
indicates the bottom right pixel of the coordinate map is

of coordinate (1, 1). It is then possible to define a warp-
ing function W : (C,w) → Cw, parameterized by a code
w ∈ RN , that maps C into a warped coordinate map Cw.
Since the code w relates the pixel coordinates of the image
to the canonical coordinate map, it can be seen as the repre-
sentation of image structure. In particular,Cw(i, j) = (k, l)
implies that the pixel i, j of the image is in correspondence
with the canonical coordinate k, l. Given the two images
with codes w1 and w2, it is also possible to establish corre-
spondence between them by seeking pixels of similar coor-
dinates. Given pixel (i, j) of the image associated with co-
ordinate Cw1(i, j), the corresponding pixel in another im-
age of coordinate map Cw2 is,

T1,2(i, j) = argmin
p,q
||Cw1(i, j)− Cw2(p, q)||2, (1)

where T1,2 defines the forward transformation from warped
coordinates Cw1 to Cw2 . In this way, a generative model
for images that includes a warping function automatically
establishes dense correspondence between all synthesized
images, as shown in Figure 2. This can be useful for trans-
ferring properties between the images, such as semantic la-
bels, landmark locations, image pixels, etc.

3.1. Overview
An overview of the proposed CoordGAN is presented in

Figure 3. The CoordGAN is a generative model based on
the structural coordinate map representation. The inputs to
our model include two latent code vectors with dimension
N : a structure code zs ∈ RN for modeling layouts and ob-
ject structure, and a texture code zt ∈ RN for modeling tex-
ture, lighting, etc. The CoordGAN generator G(zs, zt; θG)
is a mapping from these codes to the image space, with
parameters θ

G
. This is implemented by a combination of

structure and texture mappings. A structure mapping net-
work ws = S(zs; θS) of parameters θS maps the structure
noise variable zs into a structure code ws, which is then
used by a warping functionW(C,ws) to produce a warped
coordinate map Cws for the image. A texture mapping net-
work wt = T (zt, θT ) of parameters θT maps the texture
noise variable zt into a texture code ws. The modulated
generator then produces an image with the mapping A pa-
rameterized by θA,

G(zs, zt; θG) = A(Cws , wt; θA), (2)

where θ
G

includes θS , θT , and θA. The details of the vari-
ous modules are discussed in the following sections.

3.2. Coordinate Warping Network
One major component in CoordGAN is the warping

function. We propose a Coordinate Warping Network,
which learns a transformation between the canonical and a
warped coordinate frame, conditioned on a latent structure
code ws. While there exist several differentiable transfor-
mation functions, such as Thin Plate Splines (TPS), Spa-
tial Transformation Network (STN) [16], and affinity ma-
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Figure 3. Overview of CoordGAN. CoordGAN mainly consists of a texture mapping network, a structure mapping network, a coordinate
warping network, and a modulated generator. The coordinate warping network (on the right) takes the structure latent code and a canonical
coordinate map and outputs a correspondence map, which is then fed into multiple layers of the modulated generator to synthesize images.

trix [31, 46], in CoordGAN this transformation is imple-
mented with a MLP as

Cws(i, j) =W(C(i, j), ws) = P([C(i, j), ws], θP) ∀i, j (3)

where P is a three layer MLP of parameters θP and
[C(i, j), ws] ∈ RN+2 is the concatenation of coordinate i, j
from the canonical frame with the structure latent code ws.
In the supplementary materials, we show that the MLP is
a learnable, conditional geometric transformation between
the canonical coordinate frame and a warped coordinate
frame.

The advantages of learning the transformation via a MLP
are two folds. First, since an MLP is a continues function
containing only linear projection layers and ReLUs, it pre-
serves the order of the coordinates in the canonical coor-
dinate frame, i.e., it ensures that the warping is diffeomor-
phic. Second, compared to TPS and STN, our design ofW
is generic and allows for more flexible deformation.

3.3. Incorporating Warping in CoordGAN

We introduce the rest of CoordGAN components. While
our generator design is inspired by StyleGAN [22] (see Fig-
ure. 3), we discuss the major differences in the following.

Positional Encoding. Rather than inputting dense cor-
respondence map directly to the generator, we map it via a
positional encoding layer [2]. I.e., a Fourier embedding is
obtained by the application of a 1× 1 convolution followed
by a sine function. The Fourier embedding serves as the
first layer of the generator.

Mapping Networks S(·) and T (·). We use the same
architecture as StyleGAN for the mapping network. Dif-
ferent from StyleGAN, we apply two independent mapping
networks responsible for structure and texture, respectively.

Modulated Generator A(·). We replace the learnable
constant input of StyleGAN with the correspondence map.

Since the latter has high resolution (i.e., 128×128), instead
of gradually increasing spatial resolution, the spatial reso-
lution is kept the same as the input Fourier embedding at
all layers as shown in Figure 3. We inject the latent tex-
ture code wt into different layers of the modulated gener-
ator, via weight modulation [23], to render appearance de-
tails at different levels. To balance the structure and tex-
ture inputs at an architectural level, the dense correspon-
dence map is also concatenated with the features produced
by multiple intermediate layers of the modulated generator.
We found that, without this multi-layer modulation of dense
correspondence map, the coordinate warping network can
only learn coarse and inaccurate structure information (e.g.,
viewpoints of faces), as shown in Table 3.

3.4. Learning Objectives

To learn accurate correspondence maps and encourage
the disentanglement of the latent space, such that zs and
zt encode the image structure and texture separately, Co-
ordGAN is trained with the following objectives.

Texture Swapping Constraint. To ensure the Co-
ordGAN generates the same identity and image layout when
the structure is fixed and only the texture code is modified,
a texture swapping constraint is applied. Given a pair of
synthesized images with a shared structure code zs and dif-
ferent texture codes zt1 , zt2 , the texture swapping loss Lt is
defined as the LPIPS [53] loss between the two synthesized
images:

Lt = LLPIPS (G(zs, zt1 ; θG), G(zs, zt2 ; θG)). (4)

Structure Swapping Constraint. To encourage images
that share the same texture code to have similarly textures,
a structure swapping constraint is introduced. This consists
of encouraging two images with the same texture code zt
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but different structure codes zs1 and zs2 to have similar tex-
tures. Following [37], this is done with a non-saturating
GAN loss based on a patch discriminator Dpatch:

Ls = E
[
− log

(
Dpatch

(
G(zs1 , zt; θG), G(zs2 , zt; θG)

))]
.

(5)

Warping Loss. A warping loss is defined to explic-
itly regularize the correspondence map. Given a pair
of synthesized images x1 = G(zs1 , zt1 ; θG) and x2 =
G(zs2 , zt2 ; θG), x1 is warped to the coordinate frame of x2

by transferring pixel colors according to Equation (1). In
practice, similar to [31, 46, 48], we relax Equation (1) with
affinity matrix to make the warping differentiable. This pro-
duces a warped image xw

2,1
. A warping loss based on the

LPIPS loss [53],

Lwarp = LLPIPS (x
w
2,1
, x2), (6)

is used to minimize the distance between xw
2,1

and x
2

.
Chamfer Loss. Suppose a canonical coordinate map C

is transformed to a warped coordinate map Cw, a Chamfer
loss is implemented to avoid the collapse of the transforma-
tion,

Lcham =
1

|C|
∑

(i,j)∈C

min
(p,q)
||C(i, j)− Cw(p, q)||2

+
1

|Cw|
∑

(p,q)∈Cw

min
(i,j)
||Cw(p, q)− C(i, j)||2.

(7)

Overall Learning Objective. To generate realistic im-
ages, a standard GAN objective function LGAN is applied
to the synthesized images. Combining all the aforemen-
tioned loss objectives, the overall training objective is de-
fined as

LG =λt ∗ Lt + λs ∗ Ls + λwarp ∗ Lwarp

+ λcham ∗ Lcham + λGAN ∗ LGAN ,
(8)

where λt, λs, λwarp, λcham, λGAN are coefficients used to
balance the different losses.

3.5. Inverting CoordGAN via an Encoder

The CoordGAN can be equipped with an encoder to en-
able the extraction of dense correspondence from real im-
ages. Specifically, an encoder E(·; θ

E
) parameterized by

θ
E

is introduced to map an image x to a pair of structure
ws,E and texture wt,E latent codes. These latent codes are
then input to the CoordGAN to synthesize a replica of the
image. As observed in [40], embedding real images directly
into W+ space rather than W space leads to better recon-
struction. So for the texture branch, we design the encoder
to output texture latent codes w+

t,E inW+ space as opposed
to wt,E in W space. During training, we fix the generator
while optimizing the encoder via latent consistency, recon-
struction and texture swapping losses, which are described
as follows.

Latent Consistency Loss. We introduce a latent con-
sistency loss by feeding synthesized images back to the en-
coder and matching the distribution of encoder outputs to
that originally produced by the mapping network. Suppose
an image is synthesized with latent codes wt, ws, and cor-
respondence map Cw. Inputting this image back into the
encoder produces a pair of latent codes w+

t,E and ws,E , and
the correspondence map Cw

E . The latent consistency loss
Lcon is defined as

Lcon = L2(ws, ws,E ) + L2(C
w, Cw

E
), (9)

where L2(·, ·) denotes the L2 loss.
Reconstruction Loss. This is a reconstruction loss for

input real images, with L1 (L1) and LPIPS [53] (LLPIPS)
components, defined as

Lrec = L1(x,G(E(x))) + LLPIPS (x,G(E(x))), (10)

Overall Learning Objective. The overall learning ob-
jective used for encoder training an encoder is

LE = λcon ∗ Lcon + λrec ∗ Lrec + λt ∗ Lt, (11)

where λcon, λrec, λt are hyperparameters that balance the
different losses.

We note that the encoder facilitates explicit structure rep-
resentation learning for real images. It is significantly more
efficient than optimization-based GAN-inversion methods,
as no iterative inference is required.

4. Experiments
In this section, we show quantitative and qualitative re-

sults of models trained on the CelebAMask-HQ [30], Stan-
ford Cars [27], and AFHQ-Cat [6] datasets. We train sepa-
rate models on each dataset, using a resolution of 512×512
for the CelebAMask-HQ model and 128×128 for the other
two. For CelebAMask-HQ, we first train CoordGAN with
an output size of 128 × 128 and then append two upsam-
pling layers to generate high-resolution images. Detailed
network design and training hyper-parameters are described
in the supplementary.

4.1. Evaluation on Dense Correspondence

We quantitatively demonstrate the quality of the ex-
tracted dense correspondence on the task of semantic label
propagation. Given one reference image with semantic la-
bels, its correspondence map is first inferred with the trained
encoder. This establishes a mapping between the semantic
labels and the correspondence map for that image. Another
correspondence map is then inferred for a query image and
the labels of the reference image are obtained with Equa-
tion (1). To align with the training stage, we relax Equa-
tion (1) with affinity matrix in practice.
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Figure 4. Qualitative results for semantic label propagation. In each row, given one reference image along with its semantic labels as shown
on the left, the proposed approach predicts its correspondence map and propagates its segmentation mask to other query images on the
right. For better visualization, we use the ground-truth masks to highlight the foreground areas of all the predicted correspondence maps,
denoted with Corr-Map (Crop). Note that no ground-truth masks are used for actual label propagation.

Datasets and Metrics. We evaluate different meth-
ods on the CelebAMask-HQ [30] and DatasetGAN [54]
datasets. We merge CelebAMask-HQ dataset labels and se-
lect 6 classes (eyes, nose, ear, mouth, face and eyebrow)
for our evaluation. The DatasetGAN dataset contains de-
tailed manually annotated labels for faces (34 classes) and
cars (20 classes). For the DatasetGAN faces, we excluded
neck and hair since they are not consistently visible for all
images in the dataset. For all datasets, we randomly se-
lect 5 images as reference and another set as query images.
Each reference image’s semantic label is propagated to all
query images and the mean intersection-over-union (IOU)
with the ground-truth segmentation maps is computed for
evaluation. We report the averaged score of these 5 runs.

Baselines. For all baseline models, we extract fea-
tures from hidden layers and use nearest neighbor search
to determine feature correspondences and propagate la-
bels. We detail the features selected for label propagation
below. We employ two sets of baselines. The first set
comprises of transfer learning based methods with either
supervised ImageNet pre-training, e.g., ResNet50 [14] or
self-supervised contrastive learning based pre-training, e.g.,
MoCo [13] pre-trained on ImageNet [8] and VFS [50] pre-
trained on Kinetics video dataset [25]. For all these meth-
ods, ResNet50 [14] is employed as the backbone and the
pre-trained models are directly tested on our task without
fine-tuning. We follow [49, 50] and use the Res-block 4
features for label propagation as it is shown that Res-block
4 gives the best pixel-level correspondences. Another set
of baselines is based on auto-encoders, such as Swapping
Auto-encoder [37] and Pix2Style2Pix [40]. Both methods
are trained on the same datasets as ours. For Swapping
Auto-encoder, the structure branch features are used for la-

CelebA-HQ DGAN-face DGAN-car
Resnet50 [14] 39.48 11.05 11.07
Moco [13] 36.19 10.00 9.53
VFS [50] 38.10 8.55 6.88
Swap AE [37] 24.73 5.48 5.37
Pix2Style2Pix [40] 48.50 20.36 10.77
CoordGAN 52.25 23.78 13.23

Table 1. IOU comparison for label propagation. Our method
shows the best semantic label propagation results among all base-
line methods.
bel propagation. For Pix2Style2Pix encoder, the Res-block
4 features are used for label propagation. All methods are
evaluated with input image resolution of 128, except for
Pix2Style2Pix where the input image size is set to 256 fol-
lowing the original paper.

Quantitative Results. As reported in Table 1, the pro-
posed CoordGAN outperforms all baselines across all three
datasets on the task of semantic segmentation label propa-
gation. The most related approach is Pix2Style2Pix, which
also learns an encoder for a pre-trained StyleGAN2 model.
While Pix2Style2Pix encoder features contain both struc-
ture and texture information, CoordGAN correspondence
maps, with only structure information, still achieve better
label propagation performance. These results suggest that
CoordGAN learns much accurate correspondence than the
other methods.

Qualitative Results. We visualize both the coordinate
maps and the propagated segmentation labels in Figure 4.
On the left, several reference images from the DatasetGAN
dataset are shown along with their semantic labels. On the
right, we show the propagation results for different query
test images. The predicted correspondence maps for both
the reference and query images are color-coded and masked
with the foreground ground-truth semantic labels for better
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CoordGAN DiagonalGAN StyleGAN Factorization

Figure 5. Qualitative comparison for texture swapping. From top to bottom: models trained on CelebAMask-HQ, Stanford Cars, and
AFHQ-cat datasets. For CoordGAN and DiagonalGAN, images shown in each row are generated with the same structure code and diverse
texture codes. For GAN Factorization, images in each row are generated with random perturbations along the identified eigen-vector
directions. It is apparent that CoordGAN preserves structure better when only texture codes are modified.

visualization. Note that this is only for visualization, no
ground-truth masks are used for the actual label propaga-
tion. Note that our method produces precise label propa-
gation results for both frontal and profile query faces. For
cars, this is even more challenging, considering the large
differences in viewpoints and scales. For example, in ex-
treme cases where the reference car is viewed from the front
and the query car from the back, no correspondence exist.
Surprisingly, even in cases where the reference car is ob-
served from the side and the query car from the rear, Co-
ordGAN still matches the labels reasonably well. We con-
jecture this is because it learns a reasonable prior for the
category, by observing many instances and densely associ-
ating them during training.

4.2. Identity-preserving Texture Swapping

We analyze disentanglement of structure and texture of
CoordGAN by generating images with the same structure
code but different texture codes (i.e., texture swapping) and
evaluating the structural consistency of the outputs. We fo-
cus on the generator and do not use an encoder in these
experiments.

Metrics. To quantitatively examine different methods,
we use the ArcFace [9] face identity loss and the LPIPS [53]
loss to evaluate disentanglement and structure preservation
performance, and FID [15] score for measuring the per-

CelebA-HQ Stanford Cars AFHQ-cat
LPIPS ↓ Arcface ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓

StyleGAN2 [24] - - 8.21 - 16.20 - 21.02
DiagonalGAN [29] 0.58 0.79 11.16 0.61 18.09 0.55 17.63
CoordGAN 0.22 0.38 16.16 0.21 24.27 0.27 23.62

Table 2. Texture swapping comparison. The lowest LPIPS and
Arcface feature distances of CoordGAN suggest better structure
preservation when the texture code is varied.

ceptual image quality of the generated images. ArcFace
computes a feature-level cosine similarity loss between two
faces. It can be used to measure whether the face identity
is preserved since the smaller the loss is, the more likely
both images capture the same identity. LPIPS [53] mea-
sures whether two images have similar image layouts.

Baselines. CoordGAN is compared against two base-
lines: DiagonalGAN [29] and GAN Factorization [43].
DiagonalGAN achieves state-of-the-art performance for
StyleGAN-based structure and texture disentanglement.
Similar to CoordGAN, it uses separate structure and tex-
ture codes as inputs. To generate texture-swapped images,
we sample a structure code and different texture codes, and
then compute the structural similarity among the images
synthesized using the aforementioned metrics. GAN Fac-
torization exploits SVD to identify semantically meaning-
ful latent directions across different GAN layers. The pa-
per suggests that the final layers of the GAN are mainly
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Figure 6. Qualitative results for structure swapping. Images shown
in each row are generated with the same texture code and diverse
structure codes.

responsible for controlling texture. Therefore, we generate
texture-swapped images with GAN Factorization by adding
perturbations along the computed eigen-vectors of the last
two convolution layers of a pre-trained StyleGAN2.

Results. As shown in Table 2, CoordGAN outperforms
the baselines by a significant margin for all disentanglement
metrics (ArcFace and LPIPS) on all object categories. This
suggests that it successfully preserves the fine-grained im-
age structure independent of the input texture. Note that
ArcFace is only available for human faces. The FID score
is computed over 10,000 generated images for all methods,
for reference. Note that, as discussed in [1, 29], a slight
decrease in the FID score is observed due to the strong dis-
entanglement constraints enforced.

In Figure 5, each row shows diverse texture-swapped
images generated by fixing the structure code and varying
the texture code. The DiagonalGAN changes the subject’s
identity completely. This becomes more clear when testing
on cars, where the viewpoint is ambiguous and scale can
vary. Results suggest that its disentangled content code only
captures coarse structural information, such as the rough
image layout and viewpoint. In contrast, CoordGAN suc-
cessfully maintains both the coarse and fine-grained image
structure and only varies appearances, on all datasets. For
GAN factorization, while potentially possible to exhaus-
tively search for the latent eigen-vectors that only modify
image textures, it is not easy to finely control the appear-
ance of the synthesized images.

4.3. Structure Swapping

To further demonstrate CoordGAN successfully disen-
tangles structure and texture, in this section, we synthesize
images of the same texture code and various structure codes
(i.e., structure swapping). As show in Figure 6, from top
to bottom, we show synthesized images of models trained
separately on CelebAMask-HQ, Stanford Cars, and AFHQ-
cat datasets. It is clear that images in each row show sim-
ilar textures (e.g., hair/face colors for humans, grey cars,
orange cats) with diverse structural variations (e.g., view-
point, scale, shape, layout, etc). The again confirms that

Disentanglement Correspondence
LPIPS↓ Arcface ↓ CelebA-HQ DGAN-face

CoordGAN 0.10 0.32 52.25 23.78
w/o struc-mod 0.32 0.73 48.59 20.01

Table 3. Ablation on structure modulation. We show that incorpo-
rating the structure modulation is essential to a good disentangle-
ment and correspondence performance (measured by IOU).

CoordGAN learns a disentangled representation where the
structure code and the texture code capture different at-
tributes of a synthesized image. More visualizations are
included in the supplementary materials.

4.4. Ablation Studies

We ablate different architectures w.r.t the structure
branch, i.e., feeding the correspondence map (1) only to the
first layer of CoordGAN (w/o struc-mod), or (2) to modu-
late multiple layers, as discussed in Section 3.3. Both mod-
els are trained to synthesize images of resolution 128× 128
on the CelebAMask-HQ dataset. Table 3 shows that the
proposed structure modulation design is crucial to achieve
a good disentanglement of structure and texture. This con-
firms that a non-trivial architecture design is needed to em-
bed the structure information and highlights the importance
of the proposed balanced structure and texture modulation.
More studies on objectives are included in the supplemen-
tary materials.

5. Discussion
Conclusion. In this work, we show that it is possible to
train GANs so that dense correspondence can automatically
emerge. We propose a novel disentangled GAN model, Co-
ordGAN, that produces dense correspondence maps repre-
sented by a novel coordinate space. This is complemented
by an encoder for GAN inversion, which enables the gener-
ation of dense correspondence for real images. Experimen-
tal results show that CoordGAN generates accurate dense
correspondence maps for a variety of categories. This opens
up a new door for learning dense correspondences from
generative models in an unsupervised manner. We qualita-
tively and quantitatively demonstrate that CoordGAN suc-
cessfully disentangles the structure and texture on multiple
benchmark datasets.

Limitations and Future Work. The current proposed
model is restricted to learn correspondence within the same
category, since it requires the coordinate maps transformed
from the same canonical space. While we can potentially
infer the 3D viewpoints from the coordinate map (as visu-
alized in Figure 4), we have not explicitly modelled the 3D
structure in our representation. A future extension of this
work can be to learn a 3D UV coordinate map instead of a
3D map to represent the underlying structure.
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A. Overview
In this appendix, we provide more details of the submis-

sion: We show quantitative results of structure swapping in
Section B; We provide ablation studies on the objectives, as
described in Section C; We conduct a user study on disen-
tangling structure and texture by swapping the attributes of
the generated images, as described in Section D; We answer
the question of how an MLP models explicit transformation
between canonical and warped coordinate frames in Section
E; More implementation details are discussed in Section F;
We show at last in Section G the application of the finetun-
ing the CoordGAN on other domains.

B. Quantitative Results on Structure Swapping
We present quantitative comparisons to the SOTA struc-

ture swapping method DiagonalGAN. We sample 5000
pairs of images, each pair with the same texture code and
different structure codes. Each pair is evaluated by both
the LPIPS (to measure how the structure varies) and the Ar-
cFace (to evaluate whether identity changes) scores. Co-
ordGAN has better performance: 0.75 over 0.65 for Ar-
cFace, and 0.55 over 0.50 for LPIPS. The results indicate
that, with the same texture code, different structure codes of
CoordGAN produce images of larger structural variations,
whereas DiagonalGAN tends to generate images with sim-
ilar identities. This demonstrates the structure and texture
are better disentangled with the proposed method.

C. Ablation Studies
Ablation for image synthesis. In this part, we study the

effect of different loss functions for training the generator.
As shown in Table 4, it is observed that the combination
of the warp loss, structure swapping constraint and texture
swapping constraint achieve the best performance. Without
the texture swapping constraint, the texture code tends to
take the majority of the variances while the warped coordi-
nates are similar across different samples. Without the warp
loss, the correspondence performance drops significantly.
This suggests that regularizing the correspondence maps is
crucial to extracting dense correspondence accurately.

Ablation for encoder. In this part, we fix the parameters
of the generator and study the effects of different loss func-
tions for training the encoder. Table 5 compares the recon-
struction performance with respect to different loss combi-
nations. We find that both the latent consistency and the
texture loss are essential to achieving the best reconstruc-
tion performance. While removing the texture swapping
loss results in lower reconstruction errors, we find the cor-
respondence performance slightly decreases. Without the
latent consistency loss, both reconstruction and correspon-
dence performance drop significantly. This indicates that
encouraging the encoded structure to match the learned dis-

Disentanglement Label Propagation
LPIPS↓ Arcface ↓ CelebA-HQ DGAN-face

CoordGAN 0.10 0.32 52.25 23.78
w/o warp loss 0.11 0.22 24.84 10.52
w/o structure swap 0.18 0.51 46.52 18.53
w/o texture swap 0.64 0.90 45.96 17.66

Table 4. Ablation on generator losses on CelebAMask-HQ. We
show that incorporating the all losses is essential to good disentan-
glement and label propagation performance (measured by IOU).

Reconstruction Label Propagation
LPIPS↓ Arcface ↓ MSE↓ CelebA-HQ DGAN-face

CoordGAN 0.25 0.49 0.03 52.25 23.78
w/o latent consistency 0.28 0.59 0.04 46.19 21.50
w/o texture swap loss 0.23 0.47 0.03 50.83 23.53

Table 5. Ablation on encoder losses on CelebAMask-HQ. We
show that incorporating all the losses is essential to faithfully re-
constructing the input and encoding accurate correspondence.

tribution plays an important role to model accurate corre-
spondence for real image inputs.

D. User Study on Attribute Swapping
We conduct a user study to further evaluate the disen-

tanglement of structure and texture for the proposed Co-
ordGAN and DiagonalGAN. Given a pair of images gener-
ated with the same structure code but diverse texture codes,
we ask users on AMT to rate the pairs of images based on
their structural similarity with a score from 1 to 5. A higher
score indicates that the pair of images are more similar in
terms of structure. Likewise, we ask users to rate the tex-
ture similarities of images generated with the same texture
code but diverse structure codes. For each dataset, we ran-
domly sample 200 image pairs and each pair of images is
rated independently by three individuals.

Table 6 shows that CoordGAN significantly outperforms
DiagonalGAN in terms of texture-swap ratings on both
CelebAMask-HQ and Stanford Cars datasets. This further
suggests that the proposed approach of modeling the struc-
ture with a coordinate space effectively disentangles fine-
grained structure from texture. While both methods per-
form similarly in terms of structure-swap studies, we em-
phasize that many structure-swapped pairs from Diagonal-
GAN are just slightly different as the learned structure code
is only responsible for coarse viewpoint. More visualization
results are shown in Figures 9, 10 and 12 to 15 and ??.

E. Coordinate Warping Network Analysis
In this section, we validate that the coordinate warping

network, designed as an MLP conditioned on the sampled
structure code, formulates an explicit geometric transforma-
tion between the canonical coordinate frame and a warped
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CelebAMask-HQ Stanford Cars
Struc-swap ↑ Text-swap ↑ Struc-swap ↑ Text-swap ↑

DiagonalGAN 3.39 2.83 3.76 3.11
CoordGAN 3.32 3.68 3.58 3.77

Table 6. User study on attribute swapping. Struc-swap denotes
the setting where the pair of images are generated with the same
texture code but different structure codes; Text-swap denotes the
setting where the pair of images are generated with the same struc-
ture code but diverse textures.
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Figure 8. Coordinate warping network design. Sampler indicates
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coordinate frame. Formally, a geometric transformation be-
tween two coordinate frames should satisfy two properties:
(1) one-to-one mapping exists between each element of two
sets; (2) the transformation is invertible.

In the following, we show that the coordinate warping

network equivalently outputs a flow w.r.t. each input coor-
dinate, which satisfies the aforementioned property (1). We
begin by defining another pixel coordinate frame P denot-
ing pixel locations. This is numerically similar to the canon-
ical coordinate frame, where coordinates are normalized to
the range [-1, 1]. For example, P(1, 1) = (1, 1) indicates
the bottom right pixel is of value (1,1). It then follows that
the proposed coordinate warping network, as shown in Fig-
ure 8 (a), is equivalent to the architecture in Figure 8 (b).
This comes from two facts: (i) the pixel coordinate frame
is constructed exactly the same as the canonical coordinate
frame; (ii) the grid sampling operation in Figure 8 (b) out-
puts exactly the same value as the MLP output as the MLP
is constrained to output values from -1 to 1. Therefore, we
show that, given a structure code, the MLP learns a transfor-
mation from the canonical coordinate frame to the warped
coordinate frame.

In addition, we build another backward MLP to satisfy
the second property, such that warped coordinates can be
back to canonical coordinates with the same structure code.
Specifically, as shown in Figure 8 (c), we construct another
three-layer MLP to map warped coordinates to canonical
coordinates. To distinguish the MLP mapping from canon-
ical coordinates to warped coordinates, we refer to this one
as the Backward MLP (B-MLP). We train CoordGAN with
the additional B-MLP (CoordGAN-B) from scratch, where
the B-MLP is supervised with an additional L1 loss between
the predicted canonical coordinate frame and ground-truth
canonical coordinate frame. As show in Table 7 and Table 8,
CoordGAN-B achieves on average better performance in
both image synthesis and label propagation.

To this end, we prove that the proposed MLP models
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CelebA-HQ Stanford Cars
LPIPS ↓ Arcface ↓ FID ↓ LPIPS ↓ FID ↓

CoordGAN 0.22 0.38 16.16 0.21 24.27
CoordGAN-B 0.19 0.38 15.45 0.18 23.95

Table 7. Image generation results on Coordinate Warping Network
with backward MLP (CoordGAN-B).

CelebA-HQ DGAN-face DGAN-car

CoordGAN 52.25 23.78 13.23
CoordGAN-B 54.51 25.44 12.59

Table 8. Label propagation results on Coordinate Warping Net-
work with backward MLP (CoordGAN-B). Measured by IOU.

an explicit geometric transformation between the canonical
coordinate frame and a warped coordinate frame. We opt
for an MLP as it preserves the order of the coordinates in
the canonical coordinate frame due to its continuity. Since
an explicit transformation is learned, it ensures that, when
the MLP outputs the same coordinate given two different
structure codes, these two positions are corresponding to
the same coordinate in the canonical frame.

F. Implementation Details
We introduce the training details and specify the archi-

tecture for each module of our network.

F.1. Architecture

Generator. Both the sampled structure and texture codes
are 512-dimensional. The structure and texture mapping
networks are implemented with an 8-layer MLP with a la-
tent dimension of 512. The coordinate warping network,
conditioned on a latent structure code, is implemented with
a three-layer MLP. A tanh function is used at the output of
the coordinate mapping network to ensure that the output
is within a valid coordinate space. The dense correspon-
dence map is passed to a positional encoding layer where, a
Fourier embedding with 512 channels is obtained by the ap-
plication of a 1×1 convolution followed by a sine function.
In all experiments, the canonical coordinate map and the
correspondence map are defined with a spatial resolution
of 128. The modulated generator consists of 10 layers and
all layers are with 512 channels. The design of each layer
is similar to StyleGAN2. We follow StyleGAN2 to inject
the latent texture code into different layers of the modu-
lated generator via weight modulation/demodulation. The
dense correspondence map is concatenated with all 10 lay-
ers of the modulated generator, as shown in Figure 7. To
generate higher resolution images, another two upsampling
blocks are added to the last layer of the modulated genera-
tor. Note that the correspondence map is not concatenated
to these upsampling blocks. Skip connections are used to
combine features for every two layers from intermediate
feature maps to RGB values.

Patch Discriminator. The patch discriminator architec-
ture for the structure-swapping constraint is designed fol-
lowing Swapping Autoencoder. The patch discriminator
consists of a feature extractor of 5 downsampling residual
blocks, 1 residual block, and 1 convolutional layer, and a
classifier. Specifically, 8 randomly cropped patches from
the same image are used as reference. Each patch is cropped
randomly from 1

8 to 1
4 of the image dimensions for each

side. All cropped patches are resized to 1
4 of the image

size and then input to the patch discriminator. Each patch is
passed to multiple downsampling blocks to obtain a feature
vector. The feature vectors of all reference patches are aver-
aged and then concatenated with a feature vector from a real
or fake patch. The real patches are patches from the same
image as the reference patches and fake patches are from a
structure-swapping image. The classifier finally determines
whether the concatenated feature vector is real or fake.

Encoder. Given an image, the encoder produces two 512
dimensional vectors. As shown in Figure 7, our encoder
network design follows Swapping Autoencoder. The dif-
ference is that instead of outputting a feature map for the
structure code, the proposed design outputs a 512 dimen-
sional structure code. Specifically, 4 downsampling resid-
ual blocks are first applied to produce an intermediate ten-
sor, which then produces separate features for the structure
code and texture codes. The structure code is produced by
first applying 1-by-1 convolutions to the intermediate ten-
sor, reducing the number of channels and then applying a
fully-connected layer. The texture codes in the W+ space
are produced by applying stride convolutions, average pool-
ing, and then different dense layers.

F.2. Training Details

To train the generator, we follow StyleGAN2 and use the
non-saturating GAN loss and lazy R1 regularization. The
R1 regularization is also applied to the patch discriminator.
The weight of the R1 regularization is 10.0 for the image
discriminator and is 1.0 for the patch discriminator. We use
the ADAM optimizer with a learning rate of 0.002 and with
β1 = 0.0 and β2 = 0.99. The batch size is set to 16 with 8
GPUs. Coefficients for different losses are set as following:
λcham = 100, λGAN = 2, λt = 5, λwarp = 5, λs = 1.
To warm up training, for the first 20k iterations, λwarp, λt,
and λs are linearly increased from 0. For celebAMask-
HQ, we train the generator for 300k iterations at the res-
olution 128 × 128 and then train at a high resolution for
another 200k iterations. For the Stanford Cars and AFHQ-
cat datasets, we train the generator for 300k iterations at the
resolution 128×128. The hyper parameters for training the
encoder are selected as following: λrec = 10, λcon = 10,
λt = 5. The encoder is trained for 200k iterations.
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G. Application in Other domains
In this section, we show that the CoordGAN can han-

dle structure texture transfer on other domains, e.g., paint-
ings. Specifically, we finetune the CelebAMask-HQ pre-
trained model at the resolution of 512 × 512 on the met-
faces dataset [21]. The metfaces dataset contains 1336 high-
quality images at 1024 × 1024 resolution. Following [34],
we freeze the first three high resolution layers of the dis-
criminator during finetuning. Furthermore, to enable tex-
ture swapping across different domains, we fix the weights
of the structure mapping network and coordinate mapping
network. As show in Figure 11, we qualitatively demon-
strate that, CoordGAN can generate arts with high quality
by combining the structure representation learned from real
images with texture codes learned from arts. Note that the
structure-texture disentanglement is still well maintained.
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Figure 9. Images synthesised by the proposed CoordGAN model: each row displays images with the same structure but different textures;
in each column, structure varies while texture is fixed. The correspondence maps (Corr-Map) controlling the structure of the synthesized
images are shown in the first column of each row. For better visualization, we use off-the-shelf segmentation models to highlight the
foreground areas of all the predicted correspondence maps, as shown with Corr-Map (Crop).
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Figure 10. Images synthesised by the proposed CoordGAN model: each row displays images with the same structure but different textures;
in each column, structure varies while texture is fixed. The correspondence maps (Corr-Map) controlling the structure of the synthesized
images are shown in the first column of each row. For better visualization, we use off-the-shelf segmentation models to highlight the
foreground areas of all the predicted correspondence maps, as shown with Corr-Map (Crop).
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Figure 11. Images synthesised by the proposed CoordGAN model: the first row displays correspondence maps; from the second row to the
bottom, each row displays images with the same texture but different structures; in each column, texture varies while structure is fixed.

17



Corr-Map Generated Images
Corr-Map

(Crop)

Figure 12. Images synthesised by the proposed CoordGAN model: each row displays images with the same structure but different textures;
in each column, structure varies while texture is fixed. The correspondence maps (Corr-Map) controlling the structure of the synthesized
images are shown in the first column of each row. For better visualization, we use off-the-shelf segmentation models to highlight the
foreground areas of all the predicted correspondence maps, as shown with Corr-Map (Crop).

18



Corr-Map Generated Images
Corr-Map

(Crop)

Figure 13. Images synthesised by the proposed CoordGAN model: each row displays images with the same structure but different textures;
in each column, structure varies while texture is fixed. The correspondence maps (Corr-Map) controlling the structure of the synthesized
images are shown in the first column of each row. For better visualization, we use off-the-shelf segmentation models to highlight the
foreground areas of all the predicted correspondence maps, as shown with Corr-Map (Crop).
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Figure 14. Images synthesised by the proposed CoordGAN model: each row displays images with the same structure but different textures;
in each column, structure varies while texture is fixed. The correspondence maps (Corr-Map) controlling the structure of the synthesized
images are shown in the first column of each row. For better visualization, we use off-the-shelf segmentation models to highlight the
foreground areas of all the predicted correspondence maps, as shown with Corr-Map (Crop).

20



Corr-Map Generated Images
Corr-Map

(Crop)

Figure 15. Images synthesised by the proposed CoordGAN model: each row displays images with the same structure but different textures;
in each column, structure varies while texture is fixed. The correspondence maps (Corr-Map) controlling the structure of the synthesized
images are shown in the first column of each row. For better visualization, we use off-the-shelf segmentation models to highlight the
foreground areas of all the predicted correspondence maps, as shown with Corr-Map (Crop).
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