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Abstract. We propose a method for removing marked dynamic objects
from videos captured with a free-moving camera, so long as the objects
occlude parts of the scene with a static background. Our approach takes
as input a video, a mask marking the object to be removed, and a mask
marking the dynamic objects to remain in the scene. To inpaint a frame,
we align other candidate frames in which parts of the missing region are
visible. Among these candidates, a single source is chosen to fill each
pixel so that the final arrangement is color-consistent. Intensity differ-
ences between sources are smoothed using gradient domain fusion. Our
frame alignment process assumes that the scene can be approximated
using piecewise planar geometry: A set of homographies is estimated for
each frame pair, and one each is selected for aligning pixels such that the
color-discrepancy is minimized and the epipolar constraints are main-
tained. We provide experimental validation with several real-world video
sequences to demonstrate that, unlike in previous work, inpainting videos
shot with free-moving cameras does not necessarily require estimation of
absolute camera positions and per-frame per-pixel depth maps.

1 Introduction

Imagining automatic object removal from videos conjures up many powerful
applications: removing all other tourists from your holiday videos, removing
unavoidably visible film crews from movie footage, or removing anachronistic el-
ements from period pieces. While some progress has been made towards this goal
in recent years, there are often many restrictions upon the input footage which
need to be overcome. We present an algorithm for relieving the requirement for
cameras to be static, enabling inpainting on footage captured with free-moving
cameras without the use of dense per-frame geometry reconstruction.

Object removal requires inpainting the hole left by an object with back-
ground. With a static or scene-parallel-moving camera, the background stays
mostly constant or moves only linearly (ignoring illumination changes). Existing
image and video inpainting algorithms exist to solve these problems (Sec. 2),
and they assume that the occluded region is visible in other frames, e.g., the
background occluded by a person at a given frame might be revealed in another
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frame as he or she moves. However, the notion of visibility in these algorithms
is restrictive as the perspective of an occluded object or background region can-
not change throughout the video. This is not the case for free-moving cameras,
where often the camera motion is highly dynamic and nonlinear and, as such, the
appearance (i.e., the projected image) of objects varies with perspective changes.

In this paper, we relax the notion of visibility: An occluded region is visible
if it appears in other frames of the video, even under projective distortions.
In general, the occluded part of the background appears in the video under
different camera perspectives and accordingly, during the selection and blending,
we compensate for the corresponding distortions.

If accurate 3D geometry of the scene and accurate 3D camera registration are
available, then there are existing approaches to solve this problem [1–3]. However,
manually constructing accurate 3D models for arbitrary scenes is costly and
time consuming, and current automatic methods for geometry reconstruction,
either in hardware or in software, are not always applicable and often require
manual intervention. The dual problem of finding accurate camera positions
and extracting depth maps suffers similar problems and is not applicable to all
footage, especially footage with a narrow baseline or a rotating-only camera [4],
or footage with a single dominant plane [5].

Our new method takes advantage of the geometric properties of the scene;
however, it bypasses the dense depth estimation or 3D reconstruction steps. We
perform frame-to-frame alignments using a set of homographies which are chosen
such that they conform with the epipolar geometry whenever possible (Sec. 3.1).
We use the subset of aligned frames in which the missing region is visible as
candidates for a MRF-based inpainting process (Sec. 3.2). In a post-processing
step, we remove luminance discrepancies between frames by performing gradient
domain fusion (Sec. 3.3). We present experimental validation of our pipeline on
several real-world videos from which objects are successfully removed (Sec. 4).

2 Previous work

Most existing non-parametric video inpainting algorithms can be regarded as
extensions of relatively well-established image inpainting methods. These algo-
rithms synthesize the pixel values in the hole as a combination of video patches
(localized 3D windows in video volumes) sampled from visible regions of the
video. Each algorithm is characterized by the energy functional that measures
the compatibility of candidate inpainting patches at the boundary of the hole
and, at the same time, the compatibility of different candidate inpainting patches
with each other. The energy functional is either defined explicitly (globally) or
implicitly (locally) and the video inpainting is formulated as a global or local
energy minimization accordingly. Patwardhan et al. [6] proposed a local method
that assigns a priority to every hole pixel based on the existence and direction
of motion across the hole boundary. Proceeding by highest priority, the method
copies those patches that best match the context of the pixel of interest. This al-
gorithm was later improved to handle parallel-to-image-plane camera motions [7,
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8]. Wexler et al. [9] proposed an explicit formulation defined over spatio-temporal
patches sampled from every visible pixel in the input video. Completion is per-
formed by solving a global energy functional through iteratively assigning to each
missing pixel the most likely color among those patches that are closest to the
current solution. Related approaches can be found in [10–12]. Spatio-temporal
patches vary significantly with camera motion and thus they can no longer be
matched to each other, even when perspective distortions are not severe. Non-
parametric methods do not generalize well to free-moving cameras (see Sec. 4).

Several video completion techniques rely on specific knowledge of the region
to be inpainted. For instance, if the hole contains specific objects (e.g., humans)
then model-based approaches can be used [13, 14]. Assumptions on the specific
motion (e.g., cyclic motion) can also be exploited [13, 15]. The algorithm of
Venkatesh et al. [13] tracks and segments an occluded human and constructs a
database of segmented frames where the occluded object is fully visible. The holes
are filled by aligning frames in the database to the partially or fully occluded
frames in the hole. This idea was further extended in [16]. Our method belongs
to the model-based category, but we do not rely on modeling nor learning the
structure of specific types of objects. Instead, we make geometric assumptions
about the region to be inpainted: the occluded object is approximately piecewise
planar and static, so that variation is mainly caused by camera motion and illu-
mination changes. However, unlike previous approaches, we do not assume that
the occluded object is visible from the same viewpoint in another frame. This is
possible since our algorithm rectifies the distortion from viewpoint changes.

On free camera videos, the most related algorithm was proposed by Bhat et
al. [1]. They provide a framework for performing several video editing operations
on videos of static scenes, including object removal. They obtain a dense depth
map for every frame using multi-view stereo (MVS), which they use to recon-
struct the video with the desired edits. Camera parameters are estimated using
structure-from-motion (SfM) [17]. Their video reconstruction algorithm assumes
initial depth and color estimates for every frame. Following an MRF framework,
they compute a composite of coherent patches from warped neighboring frames
(or additional photographs). For object removal, they compute initial depth and
color estimates as the median of reprojected non-hole regions of nearby frames.
Sources with large depth discrepancies are discarded, and the remaining sources
are penalized according to their color difference. Each frame is reconstructed in-
dependently, and temporal incoherences are removed by a gradient domain fusion
algorithm. Our method has similarities with this pipeline but contains important
differences. We reconstruct the occluded background using reprojected frames
by compositing a few compatible, unoccluded sources, and we reduce temporal
incoherences through gradient domain fusion. The fundamental difference is that
our method does not require dense depth estimates for every frame, therefore
bypassing the need for camera calibration and multi-view-stereo, which are both
non-trivial to estimate and can fail on certain content (see Sec. 4). Instead, we
construct a set of hole-filling hypotheses and choose the most suitable one. This
provides inpaintings using plausible information about scene geometry.
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Input video and region 
to remove (shaded in red)

(a) Pairwise frame 
alignment

(b) Composition by
energy minimization

(c) Gradient-domain
fusion

Fig. 1. Our inpainting pipeline proceeds as follows: (a) the input frames are pairwise
aligned based on a set of local homographies; (b) the inpainting result is composited by
minimizing a global energy functional which trades between the compatibility among
aligned local image regions and the deviation from a guide image (a weighted average
per pixel of the aligned pixels); and (c) in the post-processing stage, gradient-domain
fusion is performed to remove potential illumination discrepancies.

3 Video Inpainting Method

The general problem of inpainting occluded regions within dynamic scenes is
interesting and has wide applicability. However, contemporary technology is far
from able to achieve plausible general video inpainting even with a fair amount
of user interaction. As a step toward this goal, we focus on a specific set of ap-
plications which are of practical interest. First, we assume that the object to be
removed occludes static background. This does not imply that the appearance
of the background in the hole is static. Changes in both camera viewpoint and
scene illumination (frequent in outdoor scenes) cause significant background ap-
pearance changes, as shown in our experiments (Sec. 4). Second, our algorithm
assumes that the region behind the hole is unoccluded in at least one frame.

The inpainting problem is cast into one of identifying potential source frames
and aligning and compositing them into the current target frame (Sec. 3.1). We
do not assume that a single source frame covers the entire hole. Accordingly,
one has to composite different sources in a coherent manner. For instance, it is
better to copy pixels from a frame which has a similar camera viewpoint and
illumination. We solve the compositing problem with a global energy functional,
which we describe in Sec. 3.2. The rest of this section details the method of
identifying and aligning source frames into target frames and dealing with global
illumination changes (Sec. 3.3). The overall pipeline is illustrated in Fig. 1.

The input to our inpainting method is a video sequence, and a user-provided
mask for the hole region to be filled (containing the object to be removed). Op-
tionally, the user can provide a mask for other dynamic objects that should not
be used as sources during the inpainting. The video of interest will be repre-
sented as a 3D volume V : Ω⊗{1, . . . , T} 7→ R3, where Ω is the discrete domain
of all pixels in a frame (i.e., Ω = {1, . . . ,m} ⊗ {1, . . . , n} with m and n being
the height and width of a frame), T is the number of total frames in the video,
and each pixel in the video has 3-tuple color values. The hole H is represented
as an index set on V . The optional dynamic region F is defined identically as
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H. The t-th frame in V and the corresponding hole therein will be denoted as
Vt and Ht, respectively. The (i, j)-th pixel in the t-th video is then represented
with Vt(i, j) := V (i, j, t) and the corresponding pixel in the hole is denoted in
the same way: Ht(i, j) := H(i, j, t).

3.1 Frame alignment

The first step of our algorithm is to generate candidates for each pixel in the hole.
These candidates are generated independently for each frame t containing the
holeHt. A candidate pixel originates from a source frame Vs, s ∈ {1, . . . , T}\{t},
which is transformed to compensate for the viewpoint difference Fst between Vs
and Vt. We refer to transforming a frame Vs into Fst(Vs) ≈ Vt as alignment.

While there are various different methods for estimating Fst, we choose the
homography as the basic element. In general, a single homography between a
pair of frames does not provide a reasonable estimate of Fst since the homog-
raphy relies on linear geometric assumptions which are infrequently the case in
practice for most scenes. Instead, we approximate the scene by piecewise linear
geometry, i.e., by an arrangement of planes. This allows us to align a frame pair
by decomposing them into regions which each can be placed into correspondence
by a homography, and thus concur with a local planarity assumption.

To obtain an alignment Fst, we first compute a set of candidate homographies
between Vs and Vt, and then for each pixel we decide on a single homography
that minimized the resulting alignment error. The result of this process is il-
lustrated in Fig. 2. Generating candidate homographies starts with establishing
geometrically consistent feature correspondences. First, we identify potential fea-
ture correspondences and discard outliers by estimating fundamental matrices
using RANSAC. For consecutive frames, potential feature correspondences are
obtained by KLT tracking [18, 19]; for more distant frame pairs, we perform
approximate nearest neighbor matching on SURF features [20]. Once geometri-
cally consistent inlying feature correspondences are obtained between the source
and target frame, a set of homographies are adaptively estimated in an incre-
mental scheme: At step 1, a homography is estimated from the current set of
feature correspondences after outliers are identified with RANSAC. At step n,
the set of input feature correspondences are replaced by the outliers determined
at step n − 1 and a homography is estimated again. The process iterates until
kmax-homographies are determined.

Once we have the set of candidates, we use the expansion-move algorithm [21–
23] to assign a homography for each pixel. The algorithm finds an assignment
that is a trade-off between the alignment error (i.e., color differences between
the corresponding pixels, identified with the homography of interest) and the
mismatch at the boundary between two adjacent regions aligned by different
homographies. Let Hst = {H1

st, . . . ,H
k
st} be the set of candidate homography

matrices that align Vs to Vt. The homography best aligning each pixel is found
by minimizing the energy functional:

E(K) =
∑
p∈Ω

E1
p(K(p)) + β

∑
(p,q)∈N (Ω)

E2
p,q(K(p),K(q)), (1)
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Fig. 2. Homography-based frame alignment. Top-left: Target frame with the region
to be inpainted shaded in red; Top-right: A source frame where the region to be in-
painted is partially visible (the remaining parts would need to come from other sources);
Bottom-left: The target frame is partially filled using the aligned source; Bottom-right:
Overlay between the aligned source and the mapping K that selects the homogra-
phy used to align each region. The linearity of homographies allows the algorithm to
effectively extrapolate into the hole, for which no reference colors are known.

where N denotes the spatial neighborhood system (4-neighbors in the current
algorithm), and K : Ω → [1 . . . k] is the variable corresponding to the assignment

of a homography H
K(p)
st to a pixel p ∈ Ω. The factor β balances the importance

of the two terms; we set β = 10 in all our experiments. The alignment Fst is then

given as Fst(p) := H
K∗(p)
st ph, where ph is p defined in homogeneous coordinates,

and K∗ is the labeling that minimizes Eq. 1. The data term

E1
p(k) = Ckst(p) · ||Vt(p)− Vs(Hk

stph)||2 (2)

measures the color differences between the source and target frames if aligned
by Hk

st. The smoothness term

E2
p,q(u, v) = 1{u 6=v} (‖Vs(Hu

stph)− Vs(Hv
stph)‖2 + ‖Vs(Hu

stqh)− Vs(Hv
stqh)‖2)

(3)
penalizes the pairwise color discrepancies between two adjacent pixels p, q in the
source frame when they are aligned using distinct homographies Hu

st, H
v
st [24].

We include the factor Ckst(p) to represent the compatibility between the candi-
date homography Hk

st at pixel p and the fundamental matrix fst between frames
s, t (Fig. 3). This factor follows from the rationale that a single homography
is very unlikely to provide a good alignment of the whole scene (unless it is
composed of a single plane), and thus, each homography should only be used to
align regions where it is compatible with the scene geometry. We approximate
this using the epipolar constraints between the views. Therefore, we define the
compatibility as the distance (phfst)(H

k
stph) between the epipolar line of p in

frame t and its location predicted by the homography:

Ckst(p) = 1−

[
exp

(
−1

2

(
phfstH

k
stph

)2
r2

)
− 1

2

]
, (4)
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Fig. 3. Compatibility between fundamental matrix and homographies: Color-coded
score for the first (left pair) and second (right pair) homographies (out of four) aligning
the left and right frames shown in Fig. 2, and the key-points used to estimate them. This
score encodes the spatially varying compatibility between each candidate homography
and the fundamental matrix between the frames (blue: compatible, red: incompatible).

where r is the reprojection error threshold for homography/F-matrix estimation.
Unlike SfM, a unique estimate of the fundamental matrix is not critical to our
algorithm. For instance, when the camera motion is degenerate, there is a class of
fundamental matrices in which only one is correct. However, we use the estimated
fundamental matrix only for calculating the weight in Eq. 4. For the given class
of degenerate fundamental matrices, the weights are all uniform. Accordingly,
we can obtain the correct weighting in this degenerate case.

When assigning homographies from the source to the target frame, it is pos-
sible for a source pixel to be mapped to multiple target locations. Repetitiveness
is not an issue in regions of uniform appearance; however, in highly structured
regions, repetitiveness leads to artifacts in structures that should be unique. We
prevent this situation by inverting the aligning process, i.e., we align the target to
the source frame, find an optimal homography assignment, and then transform
the region supporting each homography back to the domain of the target.

The energy (Eq. 1) is minimized with graph cuts. Before optimization, we
detect and remove some spurious homographies that (a) do not preserve orien-
tation, (b) show disproportionate scaling along only one axis (i.e., high ratios
between the first two eigenvalues of the homography matrix; threshold set at
0.1), or (c) produce an area scaling that varies too much with position (i.e.,
the norm of the homography’s projectivity vector is larger than a threshold set
at 0.1), so the appearance of the target view cannot be properly reconstructed
from the source due to discretization. Although the latter two cases can occur
in practice, such projections are unlikely to be correctly detected since most in-
terest point detectors are only invariant up to affine transformations. The two
threshold parameters were fixed at these values for all experiments.

3.2 Scene composition

Frame alignment provides inpainting of the target frame Vt with parts of the
source frames Vs. In general, there are several source frames in a video that
partially or completely cover the hole Ht. For each pixel in Ht, a single frame
must be chosen from all candidates found during frame alignment to produce a
color value that is spatially consistent with its neighbors inside and outside the
hole. Let St : H → {1 . . . T} be the mapping specifying a source frame for every
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hole pixel p ∈ Ht. We obtain St by minimizing the energy functional:

E ′(St) =
∑
p∈Ht

E′
1
p(St(p)) + γ

∑
(p,q)∈N (Ht∪∂Ht)

E′
2
p,q(St(p), St(q)), (5)

where Ht ∪ ∂Ht denotes the hole pixels and the non-hole pixels at its boundary,
and γ balances the importance of the two terms (γ = 10 in our experiments).

The smoothness term E′
2
p,q(u, v) measures the local color discrepancies [24]

between two distinct source frames u, v had they been chosen to fill two adjacent
hole pixels p, q, respectively:

E′
2
p,q(u, v) = 1{u6=v}

(
‖W t

u(p)−W t
v(p))‖2 + ‖W t

u(q)−W t
v(q)‖2

)
, (6)

where W t
u denotes frame Vu(Fut) aligned to the current target Vt.

To guide the source frame selection process, we compute an initial inpainting:

Rt(p) =

∑T
l=1 a

t
lW

t
l (p)∑T

u=1 a
t
l

, (7)

where each pixel is filled with the weighted average of the candidate pixel values
(see Fig. 4). The alignment score atl represents the quality of the alignment
between frames l and t. Let etl(q) = ‖W t

l (q) − Vt(q)‖2 be the color difference
between two aligned non-hole pixels; the score atl is given by

atl = exp

(
− Atl
σAt

)
, with Atl =

∑
p∈Ω\Ht

dHt(p)e
t
l(p)∑

p∈Ω\Ht
dHt

(p)
, (8)

and σAt is the standard deviation of {Atl}l=1...T . Here, the weight dHt
(p) =

exp
(
− 1

2
D(p,Ht)
σd

)
penalizes misalignments located close to the boundary of the

hole, D is the distance transform, and σd represents the score fall-off, which is
set to σd = 8 in our experiments.

We use a weighted mean as a guide for the optimization process instead of
a mode. If we use the mode, one color is picked per pixel as a guide, and this
color is likely to be selected during the graph-cut refinement since the cost of
other colors is large. If we use the mean color, the costs of all potential source
colors will be larger but similar. Hence, the optimization will emphasize more
the opinion of the neighbors via the smoothness term. This can be seen as a label
propagation from the neighbors whenever the data term is deemed uncertain. As
such, tested empirically, our weighted mean gave better results than the mode.

Frame alignments and their corresponding scores are computed for every pair
of images (T 2 scores, see Fig. 1-a), or for a sliding window of n frames around
each target frame (nT scores). Other sampling strategies to reduce the number
of candidate frames could be devised, such as randomized sampling and region
growing [25]; we leave this issue for future work.

For any given pixel, the blending data term (the first term in (5)) is:

E′
1
p(u) = ‖W t

u(p)−Rt(p)‖2, (9)
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Fig. 4. The weighted aver-
age of aligned source frames
is taken as guide for the op-
timization process: (left) in-
put; (middle) guiding aver-
age; (right) resulting inpaint-
ing composite.

which penalizes the color difference between an aligned source frame W t
u and

the corresponding reference color obtained in Eq. 7.
We evaluate the energy functional only for cases where a candidate color

W t
u(p) is properly defined, i.e., (a) when a correct alignment was found between

the target and source frames, (b) when the corresponding source pixel is not a
hole or dynamic pixel at the source, and (c) when the source pixel’s projection lies
within the target frame. Ill-defined candidates are excluded during optimization.

Discussion. An alternative to the first part of our method, i.e. aligning source
frames to the target, is to perform structure-from motion (SfM) and multi-view-
stereo (MVS), and use the estimated data (camera projection matrices and depth
maps) to render the occluded regions from the target’s viewpoint. However, this
approach introduces two limitations: First, performing camera calibration using
SfM implies that the camera translation needs to be sufficiently large as to
properly triangulate the location of interest points, thus limiting the space of
input videos. Additionally, since SfM is sensitive to the initial estimate of focal
length, it might fail to provide correct camera locations on sequences where the
focal length is variable. Our algorithm does not suffer from this restriction on
camera movement. Also, it does not require camera intrinsics (e.g., focal length),
thus it is independent of errors in their estimation.

Furthermore, MVS methods require that either the scene is completely static [1],
or that the scene is simultaneously captured from different viewpoints using
many cameras. In our method, we recover only as much geometrical information
about the scene (homographies and fundamental matrices) as required to per-
form a plausible inpainting, thus avoiding the restrictions of recovering complete
dense depth maps. In the limit, our method corresponds to pairwise stereo if we
allow arbitrarily many homographies.

3.3 Handling illumination changes

Outdoor scenes typically exhibit changes in illumination. Since our energy func-
tional enforces color value consistency, our algorithm tends to reconstruct the
scene from illumination consistent source regions. However, when the illumina-
tion of the target frame is different from all sources, the result contains artificial
boundary artifacts (Fig. 5). To resolve this, we perform gradient-domain fusion
by solving the Poisson equation with Dirichlet boundary conditions to remove
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Fig. 5. Gradient-domain fusion. From left to right: previous frame (inpainted, blended)
aligned using optical flow; current inpainted frame; color-coded labeling of the time-
stamp of the chosen sources for the current frame; resulting gradient-domain fusion;
original current frame for reference.

potential lighting differences [26]. To maintain temporal consistency, we intro-
duce a regularizer which penalizes discrepancies between the reconstructed colors
and their corresponding colors in the (optical-flow-aligned) previous frame [27].
Given the colors of the current and previous inpainted frames {f∗p }, {g∗p}, re-
spectively, the Poisson-blended colors {fp} can be obtained by minimizing the
discretized energy functional:

min
f

∑
(p,q)∈N (Ω)

[(fp − fq)− vpq]2 + λ
∑
p∈Ω

(fp − g∗p)2, (10)

where λ is the weight balancing the importance between the spatial and temporal
boundary conditions. In our experiments, we set this value to half of the ratio of
the total number of boundary conditions. To cope with gradient mismatches at
the boundary between source regions, we set the corresponding guiding gradients
to zero, i.e., vpq = 1{S(p)=S(q)}(f

∗
p − f∗q ). The result is obtained by solving the

linear system

(|Np|+ λ)fp −
∑
q∈NHp

fq =
∑
q∈NHp

vpq +
∑

q∈N∂H
p

f∗q + λg∗p, (11)

whereNp ≡ N (p) andNHp ≡ N (p)∩H, which in our implementation is computed
by the conjugate gradients method.

4 Experiments and Discussion

To experimentally validate our algorithm, we use seven real-world sequences in
four different scenes (S1-S7 in Fig. 6; all available on our project website). The
sequences were captured with a hand-held Canon HV20 digital camcorder in
anamorphic Full HD resolution at 25fps. Rolling shutter artifacts are present,
particularly in S2, as this camera has a CMOS sensor. S1, S2 and S7 have 95,
100, and 80 frames respectively, and were processed at 1440x1080 resolution;
S3-S6 have 180, 270, 225, and 220 frames, respectively, and were down-sampled
to 960x720 pixels. The short sequences have every frame aligned to every other,
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and the remaining sequences were aligned using sliding windows of sizes n = 50
to 100. All alignments were performed using the method presented in Sec. 3.1.
The running times ranged from one hour (n = 50) to four hours (n = 100)
running in parallel on a frame server with 64 logical processors.

Each sequence features two or more people moving in front of a static back-
ground; we remove one person from each. The mask of the object to be re-
moved and the mask of the remaining foreground objects were created semi-
automatically using the implementation of [28] available in Adobe After Effects
CS5 (Fig. 6-a). S1, S2, S5, and S7 have small view point variations and narrow
baselines, and S3, S5, and S6 were captured with a view point span of 10–20 de-
grees around the object of interest. S3 and S7 have varying focal lengths caused
by zooming. All inpaintings were computed using identical parameters.

In S1-S2, the scene has three dominant planes: ground, facade, and tree.
The facade contains non-trivial geometry (lamps, doorways, and showcases).
Our algorithm produced perceptually plausible inpaintings despite the presence
of small objects (tree in S1 and lamp in S2). This is because only one correct
alignment per hole region is required to perform a reconstruction. In S3, the
scene has a relatively uniform background under motion blur. This is a challeng-
ing sequence for our algorithm due to the lack of distinctive features. Feature
matching performs poorly, leading to less suitable homography candidates.

S4-S6 have two feature rich, dominant planes (ground and facade); hence,
our algorithm produces plausible inpaintings. However, part of the shadow of
the removed person is still visible. This is caused by inaccuracies in the user-
provided mask, which could be remedied by additional manual correction. In
general, this is a challenging issue since the shadow boundary is difficult to mask
correctly. Future work on simultaneous alignment and object segmentation that
takes into account these luminance differences could address this issue.

As we use binary masks, semi-transparent objects (such as hair) are either
inpainted with background or kept as is, causing temporal inconsistencies. Layer
separation could be applied to inpaint individual layers separately [29].

Lastly, temporal inconsistencies are visible in some cases, especially in S3,
since our algorithm does not directly enforce it (cf. [30]). In general, enforcing
temporal consistency should improve the inpainting result. However, it is not
straightforward to implement, since testing temporal coherence requires three
pairs of correctly aligned frames, which does not always occur in practice. When
we imposed this restriction, the number of possible sources was restricted by
unavailable alignments, leading to less favorable results. We leave more sophis-
ticated methods for temporal consistency as future work.

Nevertheless, our algorithm generates high quality results for sequences which
do not significantly deviate from our assumptions (piecewise-planar geometry,
non-flat textures); these cover a large range of scene and object configurations.

To illustrate the importance of perspective distortion correction, we perform
a comparison with a non-parametric inpainting method [12] (see Fig. 7-b). As
identical perspective distortions of the same object are unlikely to appear in
videos with free-moving cameras, the result is geometry-inconsistent. Addition-
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S1

S2

S3

S4

S5

S6

S7

(a) Input+mask
(b) Color-coded source

frames
(c) Final composite

Fig. 6. Results of inpainting in our seven test sequences: (a) an input frame and over-
layed masks for the hole and dynamic objects (shaded in red and green, respectively);
(b) visualization of the source frames obtained by minimizing Eq. (5); (c) inpainting
after compositing and gradient domain fusion. Subjects in S3-S7 were kindly provided
by the Ministry of Silly Walks.
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��
��

cameras

geometry (point cloud)

(a) Input (b) Our result (c) Result by [12] (d) SfM failure

Fig. 7. Non-parametric inpainting methods [12, 9, 7] do not support general camera
motion and can produce inconsistent results ((c), in red). SfM also fails in this sequence:
the reconstructed geometry is almost planar even though there is an obvious ground
plane, and some of the cameras are estimated to be behind the scene ((d), upper-left).

ally, the SfM method of Snavely et al. [17] (used in [1]) fails to produce correct
calibration in all our sequences (see Fig. 7-d , and supplementary material). This
prevented a subsequent application of MVS as performed in [1].

5 Conclusions

We proposed a method for removing objects from free-camera videos. We in-
paint the region behind them by compositing background regions visible in other
frames. By assuming the scene can be decomposed into piece-wise planar re-
gions, we correct perspective distortions caused by camera motion by estimating
a composite of homography-aligned image sub-regions. Since there may be mul-
tiple candidate frames to fill the hole, the selection of pixel sources is formulated
as a global energy minimization. Spurious illumination mismatches are removed
using Poisson blending. In contrast to methods based in multi-view-stereo, our
algorithm does not require recovering camera locations and depth map estimates.
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