
Accelerated Generative Models for 3D Point Cloud Data

Ben Eckart1,2 Kihwan Kim2 Alejandro Troccoli2 Alonzo Kelly1 Jan Kautz2

1The Robotics Institute, Carnegie Mellon University 2NVIDIA Research
https://research.nvidia.com/publication/accelerated-generative-models

Abstract

Finding meaningful, structured representations of 3D
point cloud data (PCD) has become a core task for spa-
tial perception applications. In this paper we introduce
a method for constructing compact generative representa-
tions of PCD at multiple levels of detail. As opposed to
deterministic structures such as voxel grids or octrees, we
propose probabilistic subdivisions of the data through lo-
cal mixture modeling, and show how these subdivisions can
provide a maximum likelihood segmentation of the data.
The final representation is hierarchical, compact, para-
metric, and statistically derived, facilitating run-time oc-
cupancy calculations through stochastic sampling. Unlike
traditional deterministic spatial subdivision methods, our
technique enables dynamic creation of voxel grids accord-
ing the application’s best needs. In contrast to other gener-
ative models for PCD, we explicitly enforce sparsity among
points and mixtures, a technique which we call expectation
sparsification. This leads to a highly parallel hierarchical
Expectation Maximization (EM) algorithm well-suited for
the GPU and real-time execution. We explore the trade-offs
between model fidelity and model size at various levels of
detail, our tests showing favorable performance when com-
pared to octree and NDT-based methods.

1. Introduction

Given the recent commoditization of different types of
active range sensors (e.g., TOF, Lidar, structured light), spa-
tial processing and visualization of large collections of 3D
point clouds has become one of the most important stages in
3D imaging/vision pipelines [15]. 3D point cloud process-
ing introduces several new challenging problems such as
(1) uneven sampling density, (2) unstructured organization
of the incoming data, (3) level-of-detail processing given
varying speed and memory requirements, and (4) measure-
ment uncertainty from sensor noise. Additionally, modern
depth sensors generate millions of data points per second,
making it difficult to utilize all incoming data effectively in
real-time for devices with limited computational resources.

Many current techniques for processing large amounts

(a) (b) (c)

(d) (e) (f)

Figure 1. Processing PCD with a Hierarchy of Gaussian Mix-
tures: (a) Raw PCD from Stanford Bunny (35k vertices), (b) and
(c) Two levels of detail extracted from the proposed model. Each
color denotes the area of support of a single Gaussian and the el-
lipsoids indicate their one σ extent. Finer grained color patches
therefore indicate higher statistical fidelity but larger model size,
(d) a log-scale heat-map of a PDF from a high fidelity model. (e)
stochastically re-sampled PCD from the model (5k points), (f) oc-
cupancy grid map also derived directly from the model.

of point cloud data (PCD) either simply subsample the data
or apply some sort of discretization, either through dense,
sparse [16] or hierarchical [7] voxelization techniques. Rep-
resenting continuous geometry through voxels creates dis-
cretization artifacts and offers no clear way of handling
noise or data uncertainty. Furthermore, the discrete na-
ture of voxels and sub-sampled point clouds greatly com-
plicate spatial processing procedures that require continu-
ous derivatives or high quality normal estimates.

We address these challenges with a hierarchical and
probabilistic representation of 3D point cloud data (PCD)
in the form of a hierarchy of Gaussian Mixture Models
(GMMs). As a representation of 3D space, a GMM model
has several advantages. First, being a continuous probabil-
ity density function (PDF), the GMM does not require the
discretization of 3D space. Second, the uncertainties of data
measurements are embedded in the covariance matrices of
the GMM, which combined with a special cluster to handle
outliers, provide an effective way of handling noisy mea-

1

https://research.nvidia.com/publication/accelerated-generative-models

surements. Finally, the storage requirements for a GMM
are much lower than for the original PCD.

Though GMMs have been used before for PCD repre-
sentation [4, 8], we introduce a novel top-down hierarchical
model which confers the following benefits: (1) dynamic al-
location of the number of mixtures, with new clusters being
added in areas of high-frequency detail, (2) efficient par-
allel coarse-to-fine construction by recursively partitioning
the points in the PCD into their most influential mixture/s,
and (3) multiple levels of detail for point cloud re-sampling
and occupancy map creation.

Many applications in 3D vision require grid-based oc-
cupancy estimates of space, including path planning [19],
semantic perception [6], and 3D modeling [11]. We show
how our model may augment these applications by allowing
dynamic run-time estimates of occupancy over sparse grids.
Since the spatial extent and voxel resolution of these esti-
mates can be determined dynamically at run-time, one can
avoid many of the common problems with traditional tech-
niques: constrained extent in large scenes, discretization ar-
tifacts as a result of coarse voxel sizes, or memory bottle-
necks resulting from dense high-resolution voxel grids.

Although a generative or continuous parametric repre-
sentation for PCD can facilitate many important applica-
tions such as registration, surface extraction, semantic seg-
mentation, this is not our focus. Instead, we focus on a more
basic and fundamental problem: how one might efficiently
construct, sample, and integrate over these generative mod-
els. This work therefore can be used to augment all the
aforementioned applications.

Our main contribution is a highly efficient and paral-
lelizable method for hierarchical top-down GMM cluster-
ing that, as opposed to previous GMM-based techniques,
applies sparse constraints on point to cluster assignments,
thus enabling construction time logarithmic with respect to
the overall model size. In addition, we present a novel im-
portance sampling technique that allows for efficient inte-
gration of the PDF over a discretized volume of space that
can be used to construct arbitrarily sized probabilistic occu-
pancy maps.

2. Related Work
In most spatial processing applications that rely on point

cloud data, using the raw points directly can be nearly in-
tractable. Thus, most common operations one might want
to perform: nearest neighbor queries, denoising, geometric
or semantic inference, etc., stand to benefit from imposing
some type of structure to the raw data. Table 1 summarizes
typical data structures used for point cloud data.

Voxelization and occupancy grids [6, 19] have been es-
tablished as a popular method to discretize raw PCD over
a dense grid, but memory problems emerge when needing
fine resolution or large grids. Especially in cases of 3D

Data Structure Hierarchical Generative
Voxel
Free

Construction
Complexity

Voxel Hash List [17] N
Octree [11] X N logN
3D-NDT [1] X N
3D-NDT-Octree [14] X X N logN
GMM [4] X X NJ
Hierarchical GMM [10] X X X N2

Proposed Method X X X N log J

Table 1. A Comparison of 3D Point Cloud Data Structures
Hierarchical: Hierarchical methods compress free space and are
therefore more compact than dense grids. Generative: Generative
models add parametric structure to PCD, facilitating statistical in-
ference, maximum likelihood, or continuous optimization meth-
ods. Voxel Free: The lack of voxelization present in the model
avoids discretization errors, allowing higher fidelity at smaller
model sizes. Construction complexity: N is the number of points
in the PCD, and J the number of mixtures in a GMM, with J � N
for most typical applications.

points, many voxels may be unoccupied, leading to inef-
ficient memory usage. Octrees and kd-trees can be much
more space efficient [11], as the construction of a reg-
ularly subdivided hierarchy effectively compresses empty
space. These structures incur additional overhead compared
to dense grids, however, requiring superlinear construction
time with respect to the size of the PCD.

Whereas voxels and octrees rely on discretization to ob-
tain structure from PCD, another class of algorithms instead
model the data as a set of independent samples from some
unknown distribution. These algorithms use the principle of
maximum data likelihood to optimize a set of latent param-
eters that describe the original PCD. Known as generative
models, these models can by construction provide robust
probabilistic inference. Their trade-off, however, is the po-
tentially high construction or inference cost and need for a
priori knowledge.

For modeling 3D PCD, the most common generative
model used in the literature is the Gaussian Mixture Model
(GMM). Typically, GMMs are used to facilitate robust point
cloud registration techniques [1, 4, 5, 12, 8]. The work of
Jian and Vemuri [12], for example, convert a point cloud
into a GMM by placing a covariance around each point.
Though this minimizes the setup cost, inference then be-
comes very slow as the GMM is larger than the original raw
points. Others, such as Eckart et al. [4, 5] perform a max-
imum data likelihood optimization during the construction
of the model in order to reduce its size, but this construc-
tion does not scale well when large amounts of mixtures are
needed. In contrast to these methods, our proposed tech-
nique is exponentially faster with respect to the size of the
model. A “flat” version must iterate linearly O(J) through
all J mixtures, whereas our method is O(log J). Further-
more, we do not need to specify the number of mixtures a
priori. Our coarse-to-fine construction allows us to both fil-

ter out low-frequency details quickly (floors and walls) and
drill down to deeper levels for high-frequency details.

The Normal Distributions Transform (NDT) [1, 18] is a
widely used and elegant technique that attempts to merge
the concepts of a voxel grid or octree with a GMM by sim-
ply recording the mean and covariance of all points that fall
into each voxel. The GMM can then be constructed as a
weighted sum of the voxel’s respective Gaussian parame-
ters. Though the construction of such a data structure is
very efficient, the requirement to voxelize at the beginning
can cause a loss of fidelity.

Other work has experimented with hierarchical forms of
GMMs for applications like 2D image segmentation [9].
Typically, these methods operate bottom-up, repeatedly
grouping together like clusters of points using divergence
measures to split and merge the data. For example, Gold-
berger et al. [10] construct an iterative EM-like algorithm
using KL-Divergence in order to repeatedly merge candi-
date clusters. In contrast, we adopt a top-down hierarchical
approach, motivated by the need to keep the calculation of
point-mixture correspondences sparse for 3D point cluster-
ing. As such, our approach is more amenable to parallel
hardware and is much more computationally efficient (see
Table 1). Another similar top-down construction is that of
Kalaiah et al. [13], though this method is not generative.

3. Method Overview
Our model uses overlapping basis functions (anisotropic

Gaussian mixtures) for representing 3D geometry. These
functions are recursively applied in a top-down fashion
to create a hierarchy of overlapping patches that approxi-
mate the original 3D PCD. The creation of this model is
cast as the solution to a Maximum Likelihood Estimation
(MLE) hierarchical Gaussian Mixture segmentation prob-
lem that can be solved by recursively employing the Ex-
pectation Maximization (EM) algorithm over increasingly
smaller partitions of the point data.

3.1. Model Definition

Our world model is composed of J overlapping proba-
bilistic mixtures Θj plus a (J+1)th noise distribution. We
choose our J mixtures to be weighted 3-dimensional mul-
tivariate Gaussians, Θj = {πj ,µj ,Σj}, with πj being the
weight and µj and Σj being the mean and covariance, re-
spectively. Our noise distribution is chosen to be a uniform
distribution over the bounding box of the point data. To-
gether, these basis distributions produce a mixture model,
which is itself a valid probability distribution.

Given a point cloud Z of size N , its probability of be-
ing generated by our model, given that each point is an iid
sample of the world, is:

p(Z|Θ) =

N∏
i=1

p(zi|Θ) =

N∏
i=1

J+1∑
j=1

πjp(zi|Θj), (1)

p(zi|Θj) =

{
N (zi|Θj), for 1 ≤ j ≤ J,
1
η , for j = J + 1,

(2)

where η is the size of the volume for which the noise cluster
is active.

To find the basis functions to best fit the point cloud data
we employ the EM algorithm [2], which has been estab-
lished as a way to iteratively maximize data likelihood when
there is no closed form solution to the maximizer, yet there
is a way of finding a maximum of joint data likelihood of
the data and a set of associated latent variables. We define
a set C of latent variables cij that represents the binary as-
sociations between points zi ∈ Z and mixtures Θj . In the
E-Step, we calculate the posterior for all cij ∈ C given Θ:

E[cij] =
πjp(zi|Θj)∑J+1

j′=1 πj′p(zi|Θj′)
(3)

In the M-Step, we maximize the expected log-likelihood
with respect to Θ, using our current E[cij]

def
= γij :

max
Θ

∑
ij

γij{lnπj + ln p(zi|Θj)} (4)

Given a fixed set of expectations, one can solve for the op-
timal parameters in closed form at iteration k:

µk+1
j =

∑
i γijzi∑
i γij

(5)

Σk+1
j =

∑
i γijziz

T
i∑

i γij
− µk+1

j µk+1
j

T
(6)

πk+1
j =

∑
i

γij
N

(7)

3.2. Expectation Sparsity

Given the above definitions and a sufficiently high num-
ber of mixtures J , the posterior over correspondences will
be sparse due to the nature of 3D geometry. We can see this
fact intuitively: Consider that in an indoor scene, for exam-
ple, the geometric structure of a light fixture will not be sta-
tistically informative to a point sampled on a couch beneath
it. Thus, given a point cloud of size N , if we naively try to
calculate all NJ point-subsurface expectations (γij), most
will be zero or near-zero and not contribute meaningfully to
the calculation. Therefore, one could save vast amounts of
computation when trying to calculate γij by restricting the
summation to only those {zi,Θj} tuples that are known to
have sufficiently non-zero conditional probability. We show
in the next section how to solve this problem by construct-
ing a top-down hierarchy of GMMs.

3.3. A Top-Down Hierarchy of Mixtures

We can formally define our hierarchical Gaussian Mix-
ture Model recursively by looking at the probabilistic form

for a point zi ∈ R3. At the root of our tree, level 1 (l = 1),
our model consists of a Gaussian Mixture of size Ĵ , with a
Ĵ + 1th noise cluster:

p(zi|Θl=1) =

Ĵ+1∑
j=1

πl=1
j p(zi|Θl=1

j) (8)

Each Θl=1
j can then be refined as another Gaussian Mixture,

using its correspondence variable:

p(zi|cl=1
i ,Θl=2) =

Ĵ+1∑
k=1

π
l=2|1
k p(zi|Θl=2|1

k), (9)

where the superscript indicates the selection of Gaussian
parameters at level 2 given the parent node at level 1.
The above is a proper Gaussian Mixture that satisfies∑Ĵ+1
k=1 π

l=2|1
k = 1. Our model is then fully defined by the

set of all Θl
k and πlk.

If we begin with a coarse decomposition into Ĵ � J
mixtures, after convergence, the posterior over correspon-
dences gives us a natural maximum likelihood partitioning
of data into Ĵ coherent geometric regions. We can then use
this posterior as a partitioning function over our data, and
reduce our problem into Ĵ subproblems of roughly 1/Ĵ th
the size. Recursing this process multiple times generates
a tree of GMMs, requiring many small EM algorithms of
size Ĵ . The number of levels in the hierarchy would be
l = logĴ(J), where each level produces Ĵ l−1 EM problems
of size Ĵ . Thus, we would need O(J−1

Ĵ−1) EM algorithms of

size O(NlĴ), where Nl ≈ N
J∗l−1 . The entire procedure will

be logarithmic in the number of mixtures and linear in the
number of points, O(N logĴ(J)).

In order to maintain a valid global GMM, however, we
need to share context between parents and children. Math-
ematically, we can derive this relation by assigning causal
relationships to a set of l latent correspondence variables,
Cl, as depicted in Fig. 2. Using the model, we can calculate
the probability of our observed variable by marginalizing
over the latent variables. In the two layer case,

p(zi|Θl=2) =
∑
Cl=1

∑
Cl=2

p(zi, c
l=1
i , cl=2

i |Θ
l=2)

=
∑
Cl=1

∑
Cl=2

p(zi|Θl=2, cl=2
i)p(cl=2

i |cl=1
i)p(cl=1

i)

=

Ĵ+1∑
j′=1

Ĵ+1∑
j=1

πl=1
j′ π

l=2|1
j p(zi|Θl=2|1

j) (10)

We can clearly see that for multiple levels, the correct
mixing value must be propagated down the tree to the leaf
node, forming a multiplicative chain.

3.4. Sparsification: Hard and Soft Partitioning

When we recurse into a new tree level, we utilize the
set of posteriors γij of the parent level to obtain a parti-

N

Θl=3πl=2 πl=3

cl=1
i

πl=1

cl=3
i

zicl=2
i

Figure 2. Graphical model of hierarchical GMM An example
of a three-level hierarchy, where a series of causally linked latent
variables are used to identify salient geometric regions of influence
for each observed point zi.

tion of our PCD. We call this process expectation sparsifi-
cation. One possible partitioning strategy is to simply as-
sign a point to the mixture for which its parent expectation
was the highest. We will refer to this as hard partitioning.
However, though this method retains mixture overlap inside
every group of Ĵ children, we will have no such overlap
among groups of children from different parents.

We can use a soft partitioning scheme to constrain the
amount of geometric context sharing among children of dif-
ferent parents while still maintaining logarithmic efficiency
with respect to the number of mixtures. To do this, we in-
troduce a parameter, λp, that relaxes the hard partitioning
constraint but still keeps γij sparse. Alg.1 describes the pro-
cedure in detail. To avoid double-counting observed points
in the final GMM, we introduce a per-point weighting factor
into the E-Step, called pi. The total collection of all weights
is denotedP . ξ is a normalization constant such that piξ over
all active partitions sums to 1.0.

Algorithm 1 Expectation Sparsification Algorithm
1: procedure PARTITION(Z , P , Θ, Ĵ , λp)
2: for zi, pi ∈ {Z,P} in parallel do
3: calculate γij , ∀j ∈ Ĵ
4: for γij ≥ λp do
5: add zi to partition j as {zi,

piγij
ξ
}

6: end for
7: end for
8: return partitionsj , ∀j ∈ Ĵ
9: end procedure

In this formulation, a point can now contribute to mul-
tiple partitions, but an additional piece of information, pi,
needs to be recorded such that the observed point in a given
partition contributes exactly

∑
Ĵ γij = pi. In this way, we

can use λp to control the amount of context sharing among
children of different parents. Given that λp is sufficiently
large, the algorithm will remain both highly efficient and
parallelizable as only a small amount of “border points” will
need to be counted multiple times in different partitions.

3.5. Parallel Construction

Additionally, we can further accelerate the calculation
of expectations by parallelization on the GPU. Inspecting
Equations 5-7 reveals that one only needs to keep track of J
zeroth, first and second moments, weighted by their expec-

tations,

{T 0
j , T

1
j , T

2
j }

def
= {

∑
i

γij ,
∑
i

γijzi,
∑
i

γijziz
T
i } (11)

These constitute sufficient statistics for the GMM. For
the purposes of parallelization, the calculation of the above
three quantities can be done in two steps: (1) Calculation of
each γij and (2) a weighted sum over all zeroth, first, and
second moments. The former requires information about
all J clusters but no information needs to be shared among
points. The latter requires information about all N points
but no information is needed from the J clusters once γij
are calculated. This allows for point-level parallelism in
calculating γij and an efficient point-level reduction sum
when calculating the weighted moments.

4. Implementation Details
We first review the implementation of our hierarchical

EM algorithm using hard partitions, and then in Sec. 4.1
discuss a generalization to soft partitioning.

Algorithm 2 shows the pseudocode for implementing the
hard partitioned variant.

Algorithm 2 Hierarchical EM with Hard Partitions
1: procedure HIERARCHICAL EM(Z, L, λs, λd)
2: Init: parentIdx← {−1}N ; Θ← Θinit

3: for l = 0 . . . L− 1 do
4: while !Converged(λs) do
5: {T 0, T 1, T 2, currIdx} ← E step(Z , Θ, parentIdx)
6: Θ←M step(T 0, T 1, T 2, l, λd)
7: end while
8: parentIdx← currIdx
9: end for

10: end procedure
11: procedure E STEP(Z , Θ, parentIdx)
12: for i ∈ size(Z) in parallel do
13: for j ∈ Children(parentIdx[i]) do
14: γij ∝ πjN (zi|Θj)
15: {T 0

j , T
1
j , T

2
j } ←Accumulate(T 0

j , T
1
j , T

2
j , γij , zi)

16: end for
17: currIdx[i]← j s.t. max(γi) = γij
18: end for
19: return {T 0, T 1, T 2, currIdx}
20: end procedure
21: procedure M STEP(T 0, T 1, T 2, l)
22: for j ∈ Level(l) in parallel do
23: Θj ←ML Estimator(T 0

j , T
1
j , T

2
j)

24: if !Supported(T 0
j , λd) then πj ← 0

25: end for
26: return Θ
27: end procedure

HIERARCHICAL EM: The algorithm takes as an input a
point cloud Z , the maximum number of levels of recur-
sion, L, and two convergence parameters λs, λd. The first
convergence parameter controls the stopping condition for
a given set of EM steps, and the second convergence pa-
rameter controls the degree of geometric complexity of the

final output by dropping clusters with insufficient support.
To initialize Θ, we set our means to be the corners of the
unit cube centered around zero. Note that during the exe-
cution of our algorithm we implicitly and recursively scale
and offset the data to fit within the unit cube. The mixing
weights are initially equal. Since these values are the same
regardless of the recursion level for every new set of Ĵ mix-
tures, we only need to set these once at the very beginning
of the algorithm. Likewise, we need to initialize an integer
array parentIdx of size N to the value of −1, which will
give us the correct child indices when l = 0 ([0 . . . 7]) to
iterate over inside the first level’s E step. After initialization
is complete, we then iterate through L levels of the EM al-
gorithm. After a given level has converged, we update our
parentIdx array to point to the Maximum Likelihood esti-
mates of subsurface expectation, recorded in currIdx during
each iteration of the E step.
E STEP: The E step calculates expectations over the child
mixtures given the ML expectation of every point to the set
of parent mixtures. The weighted moments {T 0, T 1, T 2}
(Eq. 11) can be calculated efficiently and in parallel using
sum reductions or CUDA’s atomicAdd functionality.
M STEP: While the E step parallelizes over points, the M
step parallelizes over subsurfaces (see Section 3.5). The
ML Estimator updates the model according to the stan-
dard MLE equations for GMM-based EM (cf. Eq. 5-7).
Tikhonov regularization is done on the covariances to pre-
vent numerical instability. Finally, clusters are dropped with
insufficient support.

Note that if we implicitly encode the Gaussian Mix-
ture tree in a large flat statically allocated array, the index-
ing functions Children and Level can be calculated in con-
stant time: Children(i) = [(i + 1)Ĵ . . . (i + 2)Ĵ − 1] and
Level(l) = [Ĵ(Ĵ

l−1)
Ĵ−1 . . . Ĵ(Ĵ

l+1−1)
Ĵ−1 − 1].

Algorithm 3 E Step with Soft Partitions
1: procedure E STEP({Z , P}K , Θ)
2: for zi, pik ∈ {Z , P}k,∀k = 1 . . .K in parallel do
3: for j ∈ Children(k) do
4: γij ∝ πjN (zi|Θj)
5: {T 0

j , T
1
j , T

2
j } ←Accumulate(T 0

j , T
1
j , T

2
j , pikγij , zi)

6: end for
7: end for
8: return {T 0, T 1, T 2}
9: end procedure

By looking at the construction of the algorithm and not-
ing that L = logĴ(J) and J � N , we can see that the algo-
rithm will run in O(k logĴ(J)(ĴN)), where k is the num-
ber of EM iterations until convergence. The normal “flat”
EM algorithm would execute in O(kNJ). Thus, we have
produced an algorithm that speeds up model creation expo-
nentially with respect to J , the total number of mixtures in
the model. Furthermore, we have liberated J as a parame-
ter that must be set a priori, instead letting the convergence

criterion λs and low support threshold λd determine when
the point cloud has been sufficiently segmented.

4.1. Soft Partitioning

For hard partitions, updating the pointer parentIdx after
EM convergence is all that is necessary for hierarchical con-
struction since in the subsequent level we can then use the
updated parentIdx in conjunction with the Children function
as our index array into the tree.

To generalize the algorithm presented in Alg.2 to soft
partitions, however, we need to record a few more pieces of
data. Instead of a single parentIdx array, we need to record
all expectations that fall above λp, as per the partitioning
function outlined in Alg.1. Thus, we need to store both the
index of partitioned points and their respective soft parti-
tioning weights, piγijξ . To do this, we modify line 8 of Alg.2
to instead call the Partition function from Alg. 1. The E step
is then modified according to Alg.3. The only other change
is that now inside ML Estimator of the M Step: the new mix
value must now be normalized using

∑N
i pi and not the nor-

mal N (cf. Eq.5-7). With the modifications, a point in mul-
tiple subsurfaces will get distributed recursively throughout
the hierarchy to all branches containing those subsurfaces in
such a way that its expected contribution still sums to one
among them. This important bookkeeping operation keeps
consistency among the different paths down the tree.

5. PCD Processing with Generative Models
Our work in this paper focuses on the basic and fun-

damental problem of how one might efficiently construct,
sample, and integrate over a generative model for PCD. We
have so far explained how one might efficiently construct
the model (Sec 3), but once the model is obtained, it is not
trivial to see how one might sample and integrate over it,
two operations that are fundamental for spatial processing
applications. In this section, we describe two algorithms to
efficiently perform sampling and integration, which we ap-
ply to point cloud reconstruction and occupancy grid gen-
eration, respectively. Our contribution is a novel impor-
tance sampling algorithm for GMMs that allows us to sig-
nificantly reduce the number of samples required during in-
tegration by Monte Carlo sampling. Because these algo-
rithms are not specific to hierarchical GMMs, we simplify
the notation to the PDF as defined in Equation 1.

5.1. Point Cloud Reconstruction

To regenerate a set of N points we sample the distribu-
tion defined by the GMM as shown in algorithm 4. First
we determine how many samples Hj to generate from each
cluster j in [1, J] according to the mixture weights πj . Then
we generate the Hj for each cluster according to the nor-
mal distribution defined by Θj . Details on this technique,
known as ancestral sampling, can be found in Bishop et

al. [2]. We present it here for completeness as this is an
important operation on our model. Refer to Figure 1e for a
graphical example of this result.

Algorithm 4 Point Cloud Reconstruction
1: procedure PCD RECONSTRUCT(Θ, J , N)
2: calculate Πj =

∑j
i=1 πi, ∀j ∈ J

3: S ← N random uniform samples in [0, 1)
4: H ← histogram(S, Π) , Π provides bins extents
5: for j = 1 . . . J do
6: Pj ← Hj points sampled fromN (µj |Σj)
7: end for
8: return Pj , ∀j ∈ J
9: end procedure

5.2. Occupancy Grid Generation

To construct an occupancy grid we can stochastically
sample points directly from the model to perform a Monte
Carlo estimation of the probability that a given region of
space is occupied. More formally, to build a discrete oc-
cupancy voxel grid we would like to spatially integrate our
PDF over each voxel to obtain its probability estimate,

p(Vk|Θ) =

∫
Vk

J+1∑
j=1

πjp(v|Θj)dv, (12)

where Vk is a particular indexed cube or voxel.
Since there is no analytical solution to this integral, we

resort to Monte Carlo sampling. However, uniform sam-
pling the PDF over the space of the voxel grid will likely
yield estimates with very high variance since the previ-
ously discussed sparsity will render many areas to essen-
tially zero probability. Thus, we employ the use of impor-
tance sampling. To see how importance sampling is quite
efficient in this context, we need to re-interpret the GMM
as a weighted sum of zero-mean isotropic Gaussians that
have been skewed and shifted through 3D space. To do this,
we perform a Cholesky decomposition on the covariances,
Σj = UT

j Uj . Then the multivariate normal equation is,

N (xi|Θj) = ξ−1j e−
1
2 (xi−µj)

T UT
j Uj(xi−µj) (13)

= ξ−1j e−
1
2‖Ajxi−bj‖2 , (14)

where Aj = Uj and bj = Ujµj , and ξj is a normalization
factor. Thus, we can interpret each input xi as undergoing
an affine transformation before being evaluated through a
zero-mean Gaussian function with identity covariance. To
efficiently sample from the GMM therefore we first sample
uniformly over [0, 1] in 3 dimensions and then transform
the values through the Φ−1 (probit) function. Our derived
affine transformations of the samples X ∼ N (0|I) for each
of J subsurfaces place them in the GMM space. Further-
more, since the GMM is simply a linear combination of
many Gaussians, once we have a collection of transformed
samples, one only needs to keep track of what proportion

(a) Input PCD (1.6 mil pts) [21] (b) Occupancy grid map

Figure 3. Occupancy estimates: Left: Raw PCD. Right: an ex-
ample high resolution occupancy map obtained by sampling a hi-
erarchical GMM (max depth 5) produced from the points.

of these samples, per cluster, fall into a particular voxel and
then multiply this ratio by the appropriate mixing parame-
ter. Thus,

p(Vk|Θ) ≈
J+1∑
j=1

πj
N

i=N∑
i=1

IVk
(xi) (15)

where xi ∼ N (µj |Σj) and I is an indicator function for
whether xi falls within the bounds of Vk.

Since the sampling function matches the underlying PDF
(up to a multiplicative constant), these calculations yield
unbiased estimates of the voxel probabilities and have low
variance for even a fairly small number of samples. Fur-
thermore, we precalculate all the samples X before recon-
struction so that the entire process amounts to simply bin-
ning (voxelizing) the results of J different affine transfor-
mations over a relatively small static set of random or pseu-
dorandom points. Since the model itself contains no vox-
els, as opposed to voxel-based or NDT methods, we are
free to dynamically choose the extent and resolution of
the occupancy grid at run-time, according to any number
of application-specific constraints, arbitrarily defined axes,
frustum culling, or locus of attention.

Figure 3 demonstrates this process for a large scene.
Once we create a model from the points (in this case, a hi-
erarchical GMM with a max depth of 5), we no longer need
the raw PCD, and instead can at runtime produce a high
quality occupancy map using the model only (Figure 3b).

6. Model Evaluation
We evaluate our model with respect to reconstruction fi-

delity and construction execution time. We used for test-
ing the Stanford Bunny (∼36k points) and the Stanford 3D
scene dataset, containing scenes with approximately ∼1-3
million points [20, 21]. On all these experiments, we stati-
cally set Ĵ = 8 and our sparsity constraint, λp = 0.1.

6.1. Reconstruction Fidelity

The reconstruction fidelity provides a measure of how
well our model can re-create the original point cloud. For
this purpose, we use a PSNR (Peak Signal to Noise Ra-
tio) metric derived from the Hausdorff distance as suggested

L2: 45.7 PSNR, 2.5kB
170x less data

L3: 48.7 PSNR, 20kB
21x less data

L4: 50.7 PSNR, 159kB
2.6x less data

Figure 4. Levels of Fidelity: The colors in each heatmap shows
the accumulated PDF values projected onto the screen space.
PSNR, model size, and the reduced storage size are shown for each
level. We vary the level of detail (L2 to L4) to show the trade-off
between storage size and fidelity. The original PCD is 421 kB.

by [3]. Specifically, given a reference a point cloud of size
N , we stochastically generate an equivalent N amount of
points from our model as described in section 5.1. Then, for
every point in the original point cloud, we find the nearest
neighbor in the reconstructed cloud. The logarithm of the
inverse root mean squared error for all points relative to the
bounding box size around the point cloud gives our PSNR
metric. Note that the PSNR is on a logarithmic scale. Thus,
linear increases in PSNR correspond to exponential reduc-
tions in average point-to-point recreation error. By comput-
ing the PSNR at different levels of details of our model we
can provide an insight on the trade-off between model size
and fidelity and fairly compare these trade-offs against other
generative techniques.

Figure 4 shows a visual representation of the PDF, the
PSNR and model size for three different levels of Bunny
model. Though many different potential GMMs may be ex-
tracted from the hierarchy, we restrict our comparisons to
GMMs consisting of leaf nodes are different max levels.
For example, a “Level 3” GMM would the GMM extracted
from the hierarchy by taking all the leaves of the GMM tree
at a max depth of 3. As seen in Figure 4, the PDF from
Level 2 provides a fairly good approximation while at the
same time using ∼170 less storage than the original PCD.
By level 4, the fidelity is such that points generated from
the model are virtually indistinguishable from the original
PCD. Because model construction using the hierarchical
GMM framework can be viewed as the sparse embedding
of 3D points into a higher dimensional 10D space, we can
save on storage space with respect to the original size of
the PCD, while still retaining a high level of geometric fi-
delity. We don’t claim that we provide a state-of-the-art
compression algorithm, but we note instead that our model
allows for important savings in storage, in addition to its
other properties.

We compare our model against the 3D-NDT represen-
tation [1] and its octree-based variant [14]. We chose the
3D-NDT as it is a widely used state-of-the-art generative
model. To generate the trendlines for 3D-NDT, we calculate
models at increasingly finer voxel resolution, and for the
octree variant, we use increasingly smaller splitting thresh-
olds. As a baseline we compute a subsampled version of the

10-1 100 101 102 103

Size (kB)

42

44

46

48

50

52
Bunny

10-1 100 101 102 103 104 105

62

64

66

68

70

72

P
S
N

R

Burghers

GMM-Tree
Subsampling
3D-NDT

3D-NDT-Octree
Original Point Cloud

10-1 100 101 102 103 104 105
58

60

62

64

66

68

70
Lounge

10-1 100 101 102 103 104 105

Size (kB)

62

64

66

68

70

72

P
S
N

R

Cactus

Figure 5. A comparison of data structure size vs fidelity over sev-
eral standard point cloud datasets. The blue dashed line indicates
the original point cloud size. Note the x-axis is on log scale.
The star markers indicate different levels in the GMM hierarchy.
At similar size models, the hierarchical GMM has much better
PSNR (reconstruction performance) with respect to the original
data when compared against the 3D-NDT, 3D-NDT-Octree, and a
simple subsampling strategy for point cloud reduction.

original point cloud. Randomly subsampling of the PCD
can be seen as a basic way to reduce the data size and is
a common preprocessing technique for many 3D point al-
gorithms. Fig. 5 shows the fidelity reconstruction vs stor-
age size results. In every case but the bunny, we find that
our model performs favorably to both NDT variants. This
is because our optimization procedure yields a more com-
pact representation without the need for voxelization. In
the case of the bunny, however, the original point cloud is
small enough that at higher model sizes we see diminishing
returns over the octree-based NDT. In terms of statistical
downsampling, both the hierarchical GMM and 3D-NDT
are clearly much better choices to downsize the data while
still retaining high geometric fidelity: for example, the level
5 GMM for Burghers achieves 72 PSNR with respect to the
original point cloud, whereas a subsampled point cloud of
equivalent size only yields 60 PSNR. Similarly, the small-
est GMM more than doubles the PSNR over downsampling.
To give another interpretation of this data: the level 3 GMM
for Burghers contains as much reconstruction fidelity as if
the point cloud were subsampled to about a fifth of its size,
however, the level 3 GMM uses about 450x less memory.

6.2. Computational Speed and Scalability

We now take a look at the execution time of the hierar-
chical model construction. We implemented our algorithm
in C++/CUDA and are able to run it on desktop and mobile
platforms. Table 2 shows the construction times for each
level in the hierarchy over different data sets using hard par-
titions. Note that, even on the mobile platform, the PCD

Burghers (D) Bunny (D) Raw depth (M)
307k pts 44k pts 60k pts

L1 32.6ms (31Hz) 2.6ms (385Hz) 10.6ms (95Hz)
L2 57.8ms (17Hz) 4.3ms (233Hz) 15.3ms (65Hz)
L3 72.6ms (14Hz) 7.7ms (130Hz) 22.0ms (45Hz)
L4 92.2ms (11Hz) 11.7ms (85Hz) 31.5ms (32Hz)

Table 2. Hierarchy construction time. L1 to L4 refers to a level
of the hierarchy (i.e., L3 denotes the the process including L1 to
L3). D refers to a desktop computer (i5-3500/GTX660) used for
the computation, and M denotes a Mobile device (NVIDIA Shield
tablet). Raw depth refers to the point cloud directly captured from
Softkinetic DS325 depth camera.

#J Hierarchy Flat Speed-up
8 79.2 ms 61.6 ms 0.78×

64 145.6 ms 166.5 ms 1.14×
512 184.2 ms 1145.4 ms 6.22×

4096 213.8 ms 8750.8 ms 40.93×
32768 251.0 ms 71061.7 ms 283.11×

Table 3. Construction speed-up relative to a flat GMM model.
The table compares the E Step execution time of the hierarchi-
cal GMM compared with a flat GMM having the same number of
mixtures on the full Burghers model (∼4.5M pts). At higher de-
tail levels, the proposed hierarchical GMM is significantly faster
to build than the flat GMM.

from a depth camera can be processed at rates higher than
60FPS for a level 2 decomposition. In addition, we com-
pare the construction time of our hierarchical model against
the flat GMM model. We show in Table 3 that our hierar-
chical method becomes increasingly faster relative to a flat
version with larger numbers of clusters, making our method
more suitable in applications where high fidelity is desired
yet construction times need to remain low.

7. Conclusion and Future Work
We introduced a hierarchical data structure based on

Gaussian mixture models that comprises a compact and
generative representation for 3D point cloud data. Model
creation is accelerated by producing bounds on spatial in-
teractions between the points and model. Thus, hierarchical
model construction is orders of magnitude faster than the
equivalent flat model, which follows as a result of replacing
a large EM problem into multiple smaller ones. We demon-
strated that the PDF can be used to effectively model the
original data at different levels of detail, reconstruct point
clouds of arbitrary sizes, and compute probabilistic occu-
pancy estimates, fundamental components of many spatial
perception and 3D modeling applications. Compared to dis-
crete methods or hybrid approaches such as the NDT, our
model yields higher fidelity results at smaller sizes, with
modest construction time trade-offs even on mobile hard-
ware. Future work will explore techniques for hierarchical
shape-based object recognition, and locally rigid globally
non-rigid surface registration with our generative models.

References
[1] P. Biber and W. Straßer. The normal distributions transform:

A new approach to laser scan matching. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems,
volume 3, pages 2743–2748, 2003. 2, 3, 7

[2] C. M. Bishop. Pattern Recognition and Machine Learning.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.
3, 6

[3] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measur-
ing error on simplified surfaces. Computer Graphics Forum,
17(2):167–174, 1998. 7

[4] B. Eckart and A. Kelly. REM-Seg: A robust EM algorithm
for parallel segmentation and registration of point clouds. In
IROS, pages 4355–4362, 2013. 2

[5] B. Eckart, K. Kim, A. Troccoli, A. Kelly, and J. Kautz.
Mlmd: Maximum likelihood mixture decoupling for fast and
accurate point cloud registration. In IEEE International Con-
ference on 3D Vision. IEEE, 2015. 2

[6] A. Elfes. Using occupancy grids for mobile robot perception
and navigation. Computer, 22(6):46–57, 1989. 2

[7] J. Elseberg, D. Borrmann, and A. Nüchter. One billion points
in the cloud–an octree for efficient processing of 3d laser
scans. ISPRS Journal of Photogrammetry and Remote Sens-
ing, 76:76–88, 2013. 1

[8] G. D. Evangelidis, D. Kounades-Bastian, R. Horaud, and
E. Z. Psarakis. A generative model for the joint registra-
tion of multiple point sets. In Computer Vision–ECCV 2014,
pages 109–122. Springer, 2014. 2

[9] V. Garcia, F. Nielsen, and R. Nock. Levels of details
for Gaussian Mixture Models. In ACCV, pages 514–525.
Springer, 2010. 3

[10] J. Goldberger and S. T. Roweis. Hierarchical clustering of a
mixture model. In Advances in Neural Information Process-
ing Systems, pages 505–512, 2004. 2, 3

[11] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard. Octomap: An efficient probabilistic 3d mapping
framework based on octrees. Autonomous Robots, pages
189–206, 2013. 2

[12] B. Jian and B. C. Vemuri. Robust point set registration us-
ing gaussian mixture models. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 33(8):1633–1645, 2011.
2

[13] A. Kalaiah and A. Varshney. Statistical geometry represen-
tation for efficient transmission and rendering. ACM Trans-
actions on Graphics, 24(2):348–373, 2005. 3

[14] M. Magnusson, A. Lilienthal, and T. Duckett. Scan registra-
tion for autonomous mining vehicles using 3d-ndt. Journal
of Field Robotics, pages 803–827, 2007. 2, 7

[15] R. B. Rusu and S. Cousins. 3d is here: Point cloud library
(pcl). In International Conference on Robotics and Automa-
tion, 2011 2011. 1

[16] J. Ryde and H. Hu. 3d mapping with multi-resolution occu-
pied voxel lists. Autonomous Robots, 28(2):169–185, 2010.
1

[17] J. Ryde and H. Hu. 3d mapping with multi-resolution occu-
pied voxel lists. Auton. Robots, 28(2):169–185, 2010. 2

[18] J. Saarinen, H. Andreasson, T. Stoyanov, J. Ala-Luhtala, and
A. J. Lilienthal. Normal distributions transform occupancy
maps: Application to large-scale online 3d mapping. In
Robotics and Automation (ICRA), 2013 IEEE International
Conference on, pages 2233–2238. IEEE, 2013. 3

[19] S. Thrun and A. Bü. Integrating grid-based and topological
maps for mobile robot navigation. In AAAI’96, pages 944–
950, 1996. 2

[20] G. Turk and M. Levoy. Zippered polygon meshes from range
images. In Proceedings of the 21st Annual Conference on
Computer Graphics and Interactive Techniques, pages 311–
318. ACM, 1994. 7

[21] Q.-Y. Zhou and V. Koltun. Dense scene reconstruction
with points of interest. ACM Transactions on Graphics,
32(4):112, 2013. 7

