
1

A Soft Shadow Volume
Algorithm
A Soft Shadow Volume
Algorithm

• Contents of my
presentation
– Motivation
– Penumbra wedges
– Visibility

calculations
– Implementations

(SW/HW)
– Load balancing
– Disadvantages
– Comparison: Hard

vs Soft
– Live demo

2

Q1: Why soft?Q1: Why soft?
• Answer #1:

– Soft shadows are addictive!
Point light
source

umbra

Area light source

umbra

penumbra

Reasons for soft shadows:
1) increases the level of realism of the rendered images – the large

marjority of all light sources have some extensions in space (even the sun)
2) spatial relationsships get even simpler to determine for a human,

since sharp shadow edges imply that the shadow caster is close to the receiver,
and vice versa.

3) puts off the focus from the shadows, i.e., a hard shadow can
sometimes be misinterpreted for a geometrical edge, but that is hardly ever the
case with soft shadows

4) Atmosphere: imagine a setting sun...
For animated real-time graphics, the addiction is even more severe...

3

Q2: Why shadow volumes?Q2: Why shadow volumes?
• Answer #2:

– Very hard to make the size of the umbra
decrease with shadow map

– When 1st approach fails, try something else

Difference image + extra
contrast

Reasons for shadow volumes:
1) Shadow maps seemed harder to extend into handling soft

shadows, that is, the size of the umbra must decrease when light source size
increases

2) The complexity of shadow volumes are often considered to be
much higher, but in research one should not really put any limits on what to do
research on (if the results are convincing enough, but too slow, then let’s do
research on accelerating the shadow rendering)

4

Introducing my
graphics laboratory...
Introducing my
graphics laboratory...

Do this in the kitchen, and you’ll learn stuff that is hard to learn at other places!

Cut a square hole in a hard paper, and place a thin paper over the hole. This thin
paper should spread the light diffusely. Place the hard + thin paper construction
over the light source. Turn off all other light sources, then play with various shadow
casters and receivers.

5

Soft shadow algorithms
in general
Soft shadow algorithms
in general

• Fundamental visibility problem in CG
– Soft shadow rendering and view cell occlusion culling

are essentially the same thing
– Inherently difficult

Lots of research on this every year
Often at least one SIGGRAPH paper on the topic

Difficult because need to have visibility information for each point to be shaded to
every point on the area light source

6

The general idea:
Penumbra Wedges
The general idea:
Penumbra Wedges

• A new primitive for bounding the penumbra
region imposed by a silhouette edge

In two dimensions A single penumbra wedge

This is the basic INSIGHT behind our algorithm:
Penumbra wedges are part of the core of the algorithm, without the penumbra
wedge, we will have a hard time implementing this algorithm.
The nice thing about the penumbra wedge is that it is possible to rasterize them
quite efficiently using today’s graphics hardware. This is true, even though the
wedge is a 3D entity (not 2D, like a triangle or quad).

Can use more planes than just 5 if you want to.

7

Important simplificationImportant simplification

• Compute potential silhoutte edges as seen from
the center of the light source

• Use one penumbra wedge per such edge

This simplification makes the problem much simpler to solve.

Disadvantage: popping can occur for simple objects, such as a cube.

8

A A wedgewedge for for eacheach silhouettesilhouette edgeedge……

A wedge is generated for each silhouette edge, enclosing a part of the
penumbra region .

9

A A wedgewedge for for eacheach silhouettesilhouette edgeedge……

Together, the wedges will enclose the whole penumbra region.
They don't have to correspond exactly to the penumbra region – it is
sufficient that they enclose it. And this is a major advantage of our algorithm,
since the correct penumbra region can be complicated to compute.

10

A A wedgewedge for for eacheach silhouettesilhouette edgeedge……

11

A A wedgewedge for for eacheach silhouettesilhouette edgeedge……

12

A A wedgewedge for for eacheach silhouettesilhouette edgeedge……

13

RasterizingRasterizing the the wedgeswedges

We then rasterize each wedge with a pixel shader.

The scene is first rendered into the frame buffer and z-buffer.
The umbra and penumbra contribution is then rasterized, wedge by wedge
by our algorithm. The pixel shader reads out a point from the z-buffer and
uses that point to compute a shadow contribution that is stored in a separate
buffer. And this buffer is later used to modify the whole frame buffer to ”add”
on the soft shadows to the image.

I have here visualized the rendering of the umbra contribution and penumbra
contribution simultaneously. Typically, we use Crow’s shadow volume
algorithm for hard shadows first to fill the umbra, and then compensate with
our penumbra pass.

14

RasterizingRasterizing the the wedgeswedges

15

RasterizingRasterizing the the wedgeswedges

And as they are rasterized, the final soft shadow will gradually appear.

16

RasterizingRasterizing the the wedgeswedges

17

RasterizingRasterizing the the wedgeswedges

18

Wedge construction:
in theory
Wedge construction:
in theory
1. Form a cone from

light source to edge
vertex

2. Sweep the vertex
from one end to the
other

3. The swept surface is
the ”best” wedge

• Not planar: consists
of Coon’s patches

Light
source

Silhouette
edge

Can do exactly this with any light source.

19

Wedge construction:
in practice
Wedge construction:
in practice
• Must consist of planar faces
• Must be robust and handle all weird cases

Light source

Must be planar because we need to rasterize them!

These cases are difficult because either one cone intersects the other edge end
point or cones intersect with each other or both.

20

Practical wedge construction (1)Practical wedge construction (1)

A: first move the farthest edge end point (in this case e0) towards the center of the
light source, and stop when the new point is as far from l_c as the other edge end
point e1. This makes it possible to get planar faces on the wedge.

B: Place two planes that passes through the edge e0’->e1.
Rotate the first plane until it barely intersects with one far side of the light source.
Rotate the other plane until it barely intersect with the other side of the light source.

At this point we have created two of the planes of the wedge, namely, the front and
back plane.

21

Practical wedge construction (2)Practical wedge construction (2)

C: Create left and right planes.
Example: for the right plane, create a plane that can rotate a around an axis that
goes through e0´ and passes through the vector which is formed as the cross
product of e1->e0´ and l_c->e0´ (where l_c is the center of the light). Then rotate
this plane until it barely touches the far side of the light. Do similar things to create
the left plane.

D: at this point all plane have been created, and we might limit the extension of the
wedge by placing a bottom plane for the wedge as well.

22

Visibility calcuationsVisibility calcuations
• Really want to compute how much of the

light source that we can see

In the left image, the silhouette edges as seen from the center of the light source
are marked with blue, green, and red lines.
Imagine that you can jump down to the red dot, and look up towards the light
source. Then you see the image to the right.
The only silhouettes that project onto the light as seen from the red dot is the red
and green silhoutte edges.
They each compute a contribution of how much they can ”see” of the light source.

23

Each silhouette edge’s
contribution to visibility
Each silhouette edge’s
contribution to visibility
• From the point-to-be-shaded, project the

edge onto the light source
• Compute the area, called coverage, of the

dark gray region
• Add/subtract to a visibility buffer

The visibility buffer will be described in detail later

24

Precomputed 4D texturesPrecomputed 4D textures

Next we clip the projected edge against the borders of the light source (in this case
a square light).
This gives us four coordinates: x1,y1, x2,y2.
And thus we can precompute the coverage based on these coordinates into a 4D
texxture (which when flattened out
Looks like the image to the right).

In fact, this even allows us use colored textures as ligth sources. Just precompute
the sum of the colors of the coverage area (dark gray in previous slide).

25

Why 4D textures?Why 4D textures?
• Used as a look-

up table
• Due to

intelligent
caches fast!

• Can have
textured lights
(and animated)

• 32x32 light
texture 3 MB

Higher resolution would give better quality, but seldom a problem in practice.

26

Some examples using textured
light sources
Some examples using textured
light sources

Left: this image was rendered using a single light source, but the texture on it shows
4x4 small area light sources. Due to the precomptued 4D texture, this can be
handled in one pass.

Right: a simpler case that shows that we’re doing the right thing.

27

A soft shadow volume algorithmA soft shadow volume algorithm
• 1st pass: Render hard shadow quads

(as usual)
– To be sure that we register when we enter/exit umbra

• 2nd pass: compensate for overstated umbra

The coverrage can be at most 0.5, and the hard pass adds 1.0 when whe enter the
hard shadows.
Therefore, when the point is in the positive half space of Q, we need to subtract the
coverage, and otherwise add it.

28

Example of how it works...Example of how it works...

A: the square is a light source with center l_c, and the gray polygon is a shadow
casting object. Imagine that we’re at the point to be shaded a look up against the
shadow caster (the gray object) and the light source.
The only projected edges that can influence visibility is A and B, and their respective
contributions are shown in figure B and C.

D: At the bottom we show the light source as fully visible at first (leftmost image),
and then subtract the contribution of A due to its orientation with respect to l_c, and
then because the orientation is reversed for B, we add its coverage value. The
result is the expected visibility of the light source.

29

SW vs HW implementationSW vs HW implementation
• Implemented everything in SW due to lack

of HW
• Performance was poor when we finally got a

higly programmable graphics card
– fps(SW rendering) > fps(HW rendering)!

• Had to fine tune the implementation:
– Tighter wedges for rectangular lights
– Optimized pixel shaders
– Frame buffer blending
– Culling

We will not cover the ”tighter wedges” – see our Graphics Hardware 03 paper.

30

Implementation – overviewImplementation – overview
• Compute position buffer (once per frame)
• Compute hard shadows into V-buffer

– Give overestimation of umbra
• Correct for that by rendering the wedges

– Use culling for faster rendering
– Split into 2 buffers: one additive, one

subtractive
• Additive – subtractive = shadow mask
• Combine shadow mask with rendered

scene

There are several limitations on current graphcis hardware that makes the
implementation a bit ackward.
This outline shows how we currently do it, but that can change with a newer
graphics card.

31

Position bufferPosition buffer
• The subsequent

fragment programs
need the (x,y,z) of
each pixel

• Interpolate world
space coordinates
over each triangle
(using texture
coordinates)

• One vertex & fragment
program compute the
(x,y,z) and stores in a
floating point pixel
buffer (R,G,B)=(x,y,z)

Image courtesy of Jonas Svensson and Ulf Borgenstam

The position buffer is computed once at the beginning of each frame

32

V-buffer (1)V-buffer (1)

• Need to hold the coverage for each pixel
– A number from 0.0 to 1.0 would be nice
– 0.0 == full shadow, >1.0 no shadow
– Must use >8 bits blending – how?

• Practice:
– One buffer for positive values, one for negative

• V-buffer = ”additive buffer” – ”subtractive buffer”
– Each is 8 bits RGBA
– Only deals with gray scale textured lights
– This is the current solution – will evolve...

Normal stencil shadows use 8 bits of stencil per pixel. This is so we can have
several overlapping shadow volumes.
Here each coverage value should be somewhere between 0 and 255, and we would
need
Overlapping objects as well. This we need about 12-16 bits per pixel.

33

V-buffer (2)V-buffer (2)
• Reserve highest 5 bits for overflow, and

store part of value in 3 bits (per RGBA)
Reserved for overflow

7 6 5 4 3 2 1 0 One byte
7 6 5 4 3 2 1 0

Bit 3
Bit 4Bit 5

• 1D texture is used to split an incoming
coverage value into 4 pieces of 3 bits each

• The split values are recombined with a dot
product that scale each channel and adds
them together

5 bits for overflow means that we can have <32 overlapping objects!

34

Overflow

Accumulate Visibility Masks...

Recombine Split Values

Split Coverage
5 3

H L

Coverage

Visibility Mask

+
+

=

+
+
+

=

5 3 5 3 5 3

5 3 5 3 5 3 5 3

5 3 5 3 5 3 5 3

5 3 5 3 5 3 5 3

5 3 5 3 5 3 5 3

5 3

H
5 3

5 3

L

5 3

12-bit value (we need only 8 bits)

RED GREEN BLUE α

18-bit value

The last step shows how the RGBA is combined with a dot product to form the hires
value that we need.

35

V-buffer (4)V-buffer (4)
• Clear V-buffer: 1.0 additive, 0.0

subtractive == fully lit
• Then, rasterize standard SV polys into V-buffer

– +1.0 for frontfacing subtractive buffer
– +1.0 for backfacing addritive buffer

• Rasterize penumbra wedges

”additive buffer”

-

”subtractive buffer”

=

”soft shadow mask”

Im
ag

es
 c

ou
rte

sy
 o

f J
on

as
 S

ve
ns

so
n

an
d

U
lf

Bo
rg

en
st

am

Assume ZFAIL!

The result: ADD – SUB = FINAL SHADOW MASK

36

Penumbra wedge rasterizationPenumbra wedge rasterization
• Render frontfacing triangles of wedge

– Execute fragment shader the computes coverage
• Fragment shader expensive use culling

– Only want to execute shader for (x,y,z) inside wedge
• Front facing & pass depth +1 stencil
• Back facing & pass depth -1 stencil

- =

Images courtesy of Jonas Svensson and Ulf Borgenstam

INSIGHT: use standard shadow volue algorithm on the wedge!

The images shows the ZPASS version.

Reduces artifacts!

37

Penumbra wedge rasterizationPenumbra wedge rasterization

• Use culling step as described on prev slide
• Render frontfacing polygons of wedge,

and execute fragment shader where
stencil == +1

• execute shader only in penumbrae

• What does the fragment shaders look like?

The culling helps performance quite a bit as well as avoiding artifacts that would
otherwise come from testing whether a point is inside all wedge planes.

38

Fragment shaders: Transform the
Silhouette Edge to Projection Space
Fragment shaders: Transform the
Silhouette Edge to Projection Space
• Projection space is defined as the point to be

shaded at the origin and the light center
located on the z axis at z = 1

Point to be Shaded

SilhouetteEdge

Point to be Shaded

SilhouetteEdge

Point to be Shaded

SilhouetteEdge

Point to be Shaded

SilhouetteEdge

Light Center
Light Center

Light Center Light Center

X

Z
Y

Projection is a SHEAR and a SCALE.

39

Clip edge and
do perspective divide
Clip edge and
do perspective divide
• The square light shader clips edge to planes in

homogenous space.
• The spherical light shader solves the equation of an

intersection with a cone and line in homogenous space.
• The perspective divide is simply x/z and y/z.

Light Center

Point to be Shaded

Silhouette Edge

Point to be Shaded

Silhouette Edge

Light Center

X

Z
Y

The shader programs become shorter when we performed clipping first, and then
projection.

40

When edge has been clipped...
compute coverage of edge
When edge has been clipped...
compute coverage of edge

• For rectangular lights:
– Use 4D coverage texture or
– Compute it analytically + using 2D textures

(for constant lights)
• Better accuracy!

• For spherical lights:
– Compute analytically + using 2D textures

• We’re done.

41

Combine shadow mask with
lighting and texturing
Combine shadow mask with
lighting and texturing

⊗ =

⊗ =

Images courtesy of Jonas Svensson and Ulf Borgenstam

Or more EFFICIENTLY: render an image with diffuse lighting plus texturing, and
then modulate with soft shadow mask.

42

Load-balancing for constant
frame rate rendering
Load-balancing for constant
frame rate rendering
• Simple idea: scale the size of the output V-buffer

– Smaller resolution faster rendering

• Usual tradeoff: speed vs image quality

Resolution: 1024x1024 16 fps Resolution: 256x256 85 fps
Images courtesy of Jonas Svensson and Ulf Borgenstam

Always nice to be able to get higher frame rates. This is one way to do it.

43

Load balancing... cont’dLoad balancing... cont’d
• Use a simple reactive algorithm
• Will get rendering errors?

Im
ag

es
 c

ou
rte

sy
 o

f J
on

as
 S

ve
ns

so
n

an
d

U
lf

Bo
rg

en
st

am

Is it worth it?

Will get flickering...

Can use bilinear filtering, but that costs...

44

Disadvantages of
Soft Shadow Volumes
Disadvantages of
Soft Shadow Volumes

• Cases handled 100% correctly:
– An arbitrary non self-intersecting,

planar polygon
– If the silhouette of the object is the

same from all points on the area
light source

• There are still a few
approximations

• Shadow volumes do in general
not scale well with scene
complexity

• Recommended reading:
– Jukka Arvo, Mika Hirvikorvi, Joonas

Tyystjärvi, “A General Soft Shadow
Map Algorithm using Graphics
Hardware”, Eurographics 2004.

1024 point samples

Soft shadow volumes

One further disadvantage is due to the single silhouette approximation: when the
object is simple, the silhouette will change abrubptly as will the shadow...
Example of object: cube

45

Artifacts:Artifacts:
• Single silhouette error • Overlapping geometry

is handled incorrectly

Single silhouette: can give a popping effect (e.g., for a cube with a moving light
source gives sudden and large changes of the silhouette).

46

For better quality, use 2x2 area lights…
(and 2x2 does not cost 4 times as much!)
For better quality, use 2x2 area lights…
(and 2x2 does not cost 4 times as much!)

In theory, we believe that 2x2 would cost about twice as much using ideal
hardware...
Not sure what happens using real hardware.

47

Comparison Hard vs SoftComparison Hard vs Soft
• Hard to beat the soft!

– Soft is more realistic
– Soft contains less high frequency content
– Soft provides better spatial relationship cues
– Soft seldom gives aliasing effects

• But...
– Soft costs more

• More research to be done before the final
answer is here!!

When the shadow border contain only high frequency content (which is the case for
hard shadows), the shadow boundary can be misinterpreted for a geometrical
feature.

The battle goes on between shadow mapping and shadow volumes, both for hard
and soft shadows. I do not favor either of these – we’ll see in a few years.

48

Time for real-time demo...Time for real-time demo...
• Frame work

– Written in OpenGL using
GL_ARB_fragment_program etc.

• There is also a smaller DirectX demo coded by
Michael Dougherty & Michael Mounier, XBOX
Advanced group

– Open and free source code
• http://www.cs.lth.se/~tam/shadows/

– Need graphics hardware:
• ATI Radeon 9700 and up...
• Any NVIDIA GeForce FX

– Coded by: Jonas Svensson and Ulf Borgenstam

49

• Thanks for listening...
• This is not only my work – several persons

contributed:
– Ulf Assarsson, PhD on soft shadows
– Michael Dougherty and Michael Mounier, DirectX

implementation and optimization
– Jonas Svensson & Ulf Borgenstam, OpenGL

implementation

1024 hard shadow samples Our algorithm

