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Real-Time Soft ShadowsReal-Time Soft Shadows

Goals:
• Interactive framerates
• Hardware-accelerated
• Good image quality
• Dynamic environments

Challenge:
• How to balance quality and performance?

NVIDIA

There are many (often conflicting) goals in the design of real-time soft 
shadow algorithms.  On the one hand, we want interactive framerates, which 
usually means we need to have an algorithm simple enough to map directly 
to graphics hardware.  On the other hand, we want high image quality and 
the ability to use the algorithm for dynamic scenes where anything – light, 
objects, camera – can move from frame to frame.  Not surprisingly, any real-
time shadow algorithm will involve tradeoffs.  In a nutshell, the algorithm 
presented in this session attempts to balance the quality and performance 
requirements: it is not geometrically accurate, but the results appear 
qualitatively like soft shadows, and the algorithm scales well to complex 
scenes.
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Ordinary Shadow MapsOrdinary Shadow Maps

Image-space algorithm:
• Fast and simple
• Supported in hardware
• Aliasing artifacts

NVIDIA Sen et al. [SIGGRAPH 2003]

Our work can be seen as an extension of the shadow map technique.  As we 
discussed in earlier sessions, shadow maps simply use a depth map to 
identify regions of the scene that are visible to the light source.  The 
algorithm is fast, simple, and general.  It is accelerated in modern graphics 
hardware.  However, the method is susceptible to undersampling artifacts 
such as aliasing, and we have seen a number of techniques developed to 
combat this problem.  Such techniques include perspective shadow maps 
and shadow silhouette maps.  As we will see later, the method proposed in 
this session is primarily designed to produce soft shadows, but a nice side 
effect is that the algorithm also tends to mask aliasing effects.  In that sense, 
we’ll be seeing yet another algorithm which reduces the aliasing of shadow 
maps.
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Soft Shadow MapsSoft Shadow Maps

Techniques:
• Filtering
• Stochastic sampling
• Image warping

Agrawala et al. [SIGGRAPH 2000]

But: need dense sampling to minimize artifacts

Examples:
• Percentage closer filtering     

(Reeves et al., SIG1987)
• Deep shadow maps       

(Lokovic and Veach, SIG2000)

Over the years, many researchers have extended the original shadow map 
algorithm to support antialiased and soft shadows using a combination of 
filtering, stochastic sampling, and image warping techniques.  Unfortunately, 
noise and banding artifacts appear in the results unless a high number of 
samples are used (usually at least 64).  Therefore, even though these 
techniques have been used successfully in the motion picture industry by 
companies such as Pixar, they are not easily adapted for real-time 
applications.
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Soft Shadow Maps (cont.)Soft Shadow Maps (cont.)

Approximations

Soler and Sillion
Examples:
• Convolution (Soler and Sillion, SIGGRAPH 1998)
• Linear lights (Heidrich et al., EGRW 2000)

Another class of soft shadow techniques use various approximations to the 
true soft shadow.  For instance, the soft shadows in the image shown here 
were generated by convolving blockers against an area light source.  The 
method proposed in this session is also an approximate method.
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IdeaIdea

Extend basic shadow map approach
Extra primitives (smoothies) soften shadows

light’s view (blockers only) light’s view (blockers + smoothies)

The idea of our soft shadow algorithm is just an extension of the shadow 
map approach.  We use extra geometric primitives called “smoothies” to 
soften shadow edges.  These primitives are attached like fins to the blockers’ 
silhouettes.  The image on the left shows the blockers, seen from the point 
of view of the light source.  The image on the right shows the same blockers, 
but with the smoothies attached to the silhouettes.  The idea is to render the 
smoothies into an alpha map, then apply the alpha map as a projective 
texture so that the resulting shadow edges will be smooth.
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Fake Soft ShadowsFake Soft Shadows

Shadows not geometrically correct 
Shadows appear qualitatively like soft shadows

Hard shadows Fake soft shadows

I should mention up front that the shadows generated using this method are 
not geometrically correct, i.e. we’re not actually modeling an area light 
source.  In fact, we don’t even taken the shape or orientation of the light 
source into account.  However, the resulting shadows do have some of the 
important qualitative aspects of soft shadows.  For instance, look at the box 
casting a shadow onto the ground plane.  The shadow edge is sharp at the 
point where the box meets the ground, and it is softer farther away from the 
contact point.  This dependence on the ratio of distances between the light 
source, blocker, and receiver is a key property of soft shadows that we 
attempt to simulate.
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Smoothie AlgorithmSmoothie Algorithm

Properties:
• Creates soft shadow edges 
• Hides aliasing artifacts
• Efficient (object / image space)
• Hardware-accelerated
• Supports dynamic scenes

Here are some of the properties of the smoothie algorithm.  Its primary 
purpose is to create soft shadow edges, and a side effect is that the typical 
aliasing artifacts of shadow maps are masked.  The algorithm achieves 
efficiency by combining both image-space and object-space techniques.  It is 
easy to implement on programmable graphics hardware, and there’s no 
precomputation, so it works fine for dynamic scenes.
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ReferencesReferences

Rendering Fake Soft Shadows with Smoothies
• E. Chan and F. Durand [EGSR 2003]

Penumbra Maps
• C. Wyman and C. Hansen [EGSR 2003]

Before we dive into the algorithm details, let me mention two research 
papers that describe the algorithm in more detail.  The idea was developed 
independently by Fredo Durand and myself at MIT, and by Chris Wyman and 
Chris Hansen at the University of Utah.  The two papers were published 
simultaneously at the Eurographics Symposium on Rendering in 2003.  The 
algorithms described in these two papers are essentially the same.  The 
main difference lies in the way the extra geometric primitives are 
constructed, but this difference is not very important.
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Algorithm
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Algorithm OverviewAlgorithm Overview

Implementation details later
Focus on concepts

Here is an overview of the smoothie algorithm.  We’ll first discuss the 
algorithm conceptually and then see how to implement it using graphics 
hardware.
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Algorithm OverviewAlgorithm Overview

Create depth map

Step 1

The algorithm consists of three rendering passes.  In the first step, we create 
a standard shadow map, i.e. render the scene from the light’s viewpoint and 
store the nearest depth values into a buffer.
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Algorithm OverviewAlgorithm Overview

Create smoothie buffer

Step 2

In the second step, we construct extra geometric primitives called 
“smoothies” and render them from the light’s viewpoint.  You can think of this 
extra geometry as “fins” that are attached to the blockers’ silhouettes.  When 
drawing the smoothies, we compute two quantities at each pixel, a depth 
value and an alpha value, and store them together into the smoothie buffer.
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Algorithm OverviewAlgorithm Overview

Render scene + shadows

Step 3

In the final step, we draw the scene from the observer’s viewpoint and 
compute the shadows.  We refer to both the shadow map and the smoothie 
buffer to compute shadows with soft edges.

You may have noticed that this algorithm is similar in structure to the shadow 
silhouette map algorithm, which was covered in an earlier session.  Both 
algorithms involve three rendering passes.  The first one creates a standard 
shadow map, the second one creates an auxiliary buffer of some sort, and 
the third one performs lookups into both buffers to compute shadows.  Of 
course, the two algorithms are designed with different goals in mind, but it is 
interesting to note the similarities.
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Create Shadow MapCreate Shadow Map

Render blockers into depth map

light’s view

observer’s view

Now let’s take a closer look at the algorithm.  We first create a shadow map 
from the light’s viewpoint.
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Find Silhouette EdgesFind Silhouette Edges

Find blockers’ silhouette edges in object space

object-space
silhouettes

observer’s view

light’s view

Next, we identify the object-space silhouettes, seen from the point of view of 
the light source.  (This exact same step is also required for the shadow 
volume algorithm.)  There are many ways to compute object-space 
silhouettes.  A simple way is to loop through all the edges in the model and 
check if one adjacent face is facing the light source and the other face is 
facing away.  Note that we’ve implicitly made an assumption here: our 
blockers are represented as polygons.
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Construct SmoothiesConstruct Smoothies

Blocker only:

blocker exterior

silhouette vertex

silhouette edges

Now that we have the silhouette edges, we can go ahead and construct the 
smoothies.  The diagram here shows a blocker (light blue) and its silhouette 
edges and vertices.
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Construct SmoothiesConstruct Smoothies

Blocker + smoothies:
silhouette vertex

silhouette edges

smoothie edge

smoothie corner
blocker exterior

The smoothies (edges and corners) are shown in light green.  Smoothie 
edges are fixed-width rectangles in the screen space of the light source.  
Smoothie corners are quads that connect adjacent smoothie edges, as 
shown in the diagram.

The diagram shows a convex silhouette curve.  For concave silhouettes, we 
omit the smoothie corners.  This causes smoothie edges to overlap each 
other, but ultimately it doesn’t cause problems because, as we will see, we 
use minimum blending to handle the case when multiple smoothies overlap 
in screen space.

How thick do we make the smoothie geometry?  Intuitively, the wider we 
make a smoothie, the softer the shadow becomes.  Thus, the size of a 
smoothie should depend on the size of the light source being simulated.

Chris Wyman and Charles Hansen [EGSR 2003] describe a different 
geometric construction using “cones” and “sheets.”  This construction was 
originally proposed by Eric Haines for rendering soft planar shadows [JGT 
2001].
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Construct SmoothiesConstruct Smoothies

Smoothie edges are fixed-width rectangles in screen space
Smoothie corners connect adjacent smoothie edges

geometry shading

In case it’s unclear where we’re going with the smoothie construction, 
perhaps these diagrams will help.  The idea is that we’ll compute alpha 
values for the smoothies (shown on the right) in such a way so that when we 
project them onto the scene from the light’s viewpoint (via projective texture 
mapping), the shadow edges will appear smooth.  
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Render SmoothiesRender Smoothies

Store depth and alpha values into smoothie buffer
Smoothie Buffer (depth) Smoothie Buffer (alpha)

light’s viewpoint

Now that we’ve constructed the smoothies, we draw them from the light’s 
viewpoint into the smoothie buffer.  We compute both depth (shown on left) 
and alpha values (shown on right) for each smoothie pixel.  Rendering depth 
is straightforward (the same as when rendering a shadow map).  We’ll come 
back and discuss how we compute the alpha values.  We ought to be careful 
how we compute them, since they will ultimately determine how our shadows 
appear in the scene!
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Compute ShadowsCompute Shadows

smoothie

light source

blocker

receiver

Compute intensity using depth comparisons

Finally, we render the scene from the observer’s viewpoint.  For each 
sample, we check for three cases.
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Compute Shadows (1 of 3)Compute Shadows (1 of 3)

Image sample behind blocker (intensity = 0)

smoothie

light source

blocker

receiver
completely in shadow

We project the sample into light space so that we can perform lookups into 
the shadow map and smoothie buffer.  If the sample is behind the shadow 
map, i.e. the depth of the sample is greater than the depth value stored in 
the shadow map, then we say the sample is completely in shadow and 
assign it zero intensity.

In the diagram, the three images on the right show the depth map (top), 
smoothie buffer depth (middle), and smoothie buffer alpha (bottom).
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Compute Shadows (2 of 3)Compute Shadows (2 of 3)

partially in shadow

smoothie

light source

blocker

receiver

Image sample behind smoothie (intensity = α)

If the sample is not behind a blocker, but it is behind a smoothie, then we 
shade the sample using the smoothie’s alpha value.  We use the depth value 
stored in the smoothie buffer to make the smoothie depth comparison, and 
we retrieve the alpha value from the alpha part of the smoothie buffer.
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Compute Shadows (3 of 3)Compute Shadows (3 of 3)

illuminated

smoothie

light source

blocker

receiver

Image sample illuminated (intensity = 1)

Finally, if the sample is neither behind a blocker nor behind a smoothie, then 
it is considered fully illuminated.

It is important to realize that this method is not geometrically accurate.  For 
instance, since the smoothies always grow outwards from the blockers, we 
only capture the “outer penumbra” of the shadow, meaning that shadows 
always have a full umbra with our approach.  In reality, as the size of the 
light source increases, the umbra of the shadow should decrease, and in 
particular for a sufficiently large light source the umbra should vanish 
entirely.  Later on we will see how this limitation of our approach affects the 
image quality.
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Computing Alpha ValuesComputing Alpha Values

Intuition:
• Alpha defines penumbra shape
• Should vary with ratio b/r

blocker

smoothie α

receiver

light source

r b

Now that we’ve seen the sequence of steps involved in the smoothie 
algorithm, let’s get back to how we compute the alpha values when 
rendering the smoothies.  Consider the diagram shown here, which shows 
the high-level geometric relationship between a light source, blocker, and 
receiver.  One of the properties of soft shadows is that the width of the 
penumbra depends on the ratio of b (the distance from the light to the 
blocker) and r (the distance from the light to the receiver).  As b becomes 
close to r, the shadow becomes sharper (less penumbra).  As b becomes 
much smaller than r, then the shadow becomes very soft (large penumbra).  
Thus, intuitively, our computation alpha should somehow involve the ratio of 
b/r.
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Without Alpha RemappingWithout Alpha Remapping

Linearly interpolated alpha        undesired results!

smoothie contact problem

Let’s see what happens if we don’t take into account this ratio b/r.  Intuitively, 
it seems that we should have alpha start from 0 at the blocker (0 meaning 
complete occlusion by the blocker) and fade to 1 at the edge (1 meaning 
100% visible).  Notice what happens, though, if we just linearly interpolate 
the alpha value across the smoothie (shown in left image) and then project 
the smoothie onto the ground plane.  Although the edge itself is soft, there is 
clearly a problem at the contact point between the box and the ground.  
Whereas we expect to see a hard shadow near the contact point, we instead 
get a “disconnected” shadow because we did not taken into account the ratio 
of distances.
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With Alpha RemappingWith Alpha Remapping

Remap alpha at each pixel using ratio b/r:

smoothie fixed contact problem

α’ = α / (1 – b/r)

All we have to do instead is remap the alpha values at each pixel using a 
simple formula, shown here.  The original alpha (without the prime) is 
obtained by linearly interpolating from 0 to 1 across the smoothie.  
Remapping the alpha using this equation creates the “warped” alpha effect 
shown in the image on the left.  When projected onto the ground plane, we 
obtain the desired effect: the shadow is hard near the contact point and gets 
softer farther away.
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Computing Alpha ValuesComputing Alpha Values

1. Linearly interpolate alpha
2. Remap alpha at each pixel using ratio b/r:

α’ = α / (1 – b/r)

original α remapped α result
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Multiple ObjectsMultiple Objects

So far we have only considered simple examples, ones in which there is a 
single blocker and receiver.  In more complex scenes, however, there are 
multiple blockers and receivers.  We’ll use this scene of two boxes and a 
floor to study how these blockers and receivers interact.  For instance, in the 
image shown here, the box closer to the ground acts as both a blocker and a 
receiver.  It receives the shadow from the first box and casts a shadow onto 
the ground.  Notice how the shadows from the top box overlap with the 
shadows from the bottom box.
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Multiple ReceiversMultiple Receivers

light’s view

same thickness

Smoothie buffer
(linearly-interpolated α)

Let’s first consider the case of multiple receivers.  In the image of the 
smoothie buffer shown here, we have neglected to remap the alpha values 
as suggested earlier.  Instead, we have simply used the linearly-interpolated 
alpha.  Notice that the top box, in principle, should cast a harder shadow on 
the bottom box and a softer shadow onto the ground plane (because the 
ground plane is farther away). Without the remapping of alpha, however, the 
smoothie alpha values have the same “thickness” in both places (indicated 
by green areas).  This is qualitatively incorrect.
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Multiple ReceiversMultiple Receivers

light’s view

Smoothie buffer
(remapped α)

different thickness

Now we have applied the remapping of alpha using the equation shown 
earlier.  Notice how the thickness changes across the two receiving 
surfaces. 
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Multiple ReceiversMultiple Receivers
Final image

observer’s view

different thickness

Here is the final image shown from the observer’s viewpoint.  As expected, 
the top box casts a sharper shadow on the lower box and softer shadow 
onto the ground plane.
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Multiple BlockersMultiple Blockers

What happens when smoothies overlap?

smoothie overlap

Now let’s turn to the case of multiple blockers and understand how to handle 
overlapping shadows.  The case of overlapping shadows means that
multiple smoothies overlap in the screen space of the light source.  
Computing the smoothies’ depth values is the same: just store the nearest 
depth value into the buffer.  But how do we compute alpha values?

It turns out that this is a tricky issue, because smoothies are rendered 
independently of one another.  If we were to try to determine the correct 
visiblity due to multiple overlapping blockers, it would be very costly because 
then we could no longer consider blockers independently of one another.  So 
what do we do?
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Multiple BlockersMultiple Blockers

Minimum blending: just keep minimum of alpha values

smoothie ray tracer

It turns out that a simple solution works reasonably well: minimum blending.  
In other words, when multiple smoothies overlap, compute alpha values 
independently for each, then apply minimum blending so that the darkest 
(minimum) alpha value is kept.  The reason for doing so is that it avoids 
continuity problems when multiple smoothies overlap.  The images here 
compare the minimum blending of two smoothies (left) versus the correct 
result obtained using a ray tracer.
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Implementation

We have finished covering the details of the algorithm.  Now we can move 
on to understanding how we implement the smoothie algorithm in hardware.
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ImplementationImplementation

• Details (OpenGL)
• Hardware acceleration
• Optimizations

The smoothie algorithm can be implemented on DirectX 9-class hardware.  
This means specifically that you need to have programmable vertex and 
fragment units, and floating-point precision (at least 16 bits of floating-point) 
must be available in the programmable fragment unit.  This precision is 
necessary for storing linear depth values, as we’ll see in a moment. 
Examples of suitable hardware include the ATI R300 chips (e.g. Radeon 
9700 and later) and the NVIDIA NV30 chips (e.g. GeForce FX and later).

The silhouette map algorithm can be implemented using both OpenGL and 
DirectX.  However, any code snippets I show here will be in OpenGL.
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Create Shadow MapCreate Shadow Map

Render to standard OpenGL depth buffer
• 24-bit, window space
• Post-perspective, non-linear distribution of z

Also write to color buffer (using fragment program)
• Floating-point, eye space
• Pre-perspective, linear distribution of z
• Unlike regular shadow maps

Why?  Need linear depth for next rendering pass

To create a shadow map, we place the OpenGL camera at the light position 
of the light source, aim it at the scene, and draw.  Unlike rendering a regular 
shadow map, however, we have to perform some additional steps.  In a 
standard depth map in OpenGL, depth values are stored in fixed point 
(usually with 24 bits of precision) in window space, i.e. after perspective 
projection has been applied.  This causes z values to be non-linearly 
distributed.

However, we need to store linearly-distributed z values because the next 
pass (rendering of smoothies) will require such a z value for computing alpha 
properly.  The easiest way to store linearly-distributed z values is to use a 
vertex shader to compute the depth of a vertex, which is just the z 
component of the vertex’s position in eye-space.  Then, using a fragment 
program, simply copy this eye-space z value to the color output.  Note that 
the output color buffer needs to be a floating-point buffer (and at least 16 bits 
of precision).  Otherwise, there will simply not be enough precision to handle 
a wide range of z values.
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Create Smoothie BufferCreate Smoothie Buffer

Conceptually, draw the smoothies once:
• store depth and alpha into a buffer

In practice, draw smoothies twice:
1. store nearest depth value into depth buffer
2. blend alpha values into color buffer

Next, we draw the smoothies twice, once to store the depth values, and 
once to store the alpha values (which we’ll actually end up storing in the 
color buffer).  The reason we cannot compute and store both quantities in 
the same pass is because we use minimum blending when rendering the 
smoothies’ alpha, which is not compatible with using depth testing.
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Computing AlphaComputing Alpha

α’ = α / (1 – b/r)How to compute alpha?  Recall
• α is linearly interpolated from 0 to 1 across quad
• b is computed in fragment program
• r is obtained from shadow map (linear depth!)

blocker

smoothie α

receiver

light source

r b

current sample

We use a fragment program to perform the alpha computation.  The distance 
b from the light to the smoothie is easy to compute.  Since we are drawing 
the smoothies from the light’s viewpoint, if a vertex has been transformed 
(i.e. in a vertex program) to eye space, then the z component is exactly the 
distance from the light to the smoothie.  Now how do we compute r?  The 
interesting point here is that, looking at the diagram, the surface lying 
immediately behind the smoothie is (by definition) the receiver, and we want 
to know the distance r to that surface.  We have already computed this 
distance – it’s stored in the depth map that we rendered in the first pass!

This is why we needed to store eye-space linear z values in the first pass. 
We now perform a texture lookup in that depth map, and the result is our 
distance r.  The original alpha (no prime) can be computed in a vertex 
program or on the CPU.  Now we have all the information we need to 
perform the alpha remapping, which can be done in a fragment program and 
written to the color output.
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Minimum BlendingMinimum Blending

Implementation in OpenGL:
• Supported natively in hardware
• use  glBlendEquationEXT(GL_MIN_EXT)

It is simple to implement minimum blending in OpenGL because it is 
supported natively in hardware.  Just use the shown GL command.
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Final Rendering PassFinal Rendering Pass

Implementation using fragment program:
• Project each sample into light space
• Multiple texture lookups

shadow map
(depth)

smoothie buffer
(depth)

smoothie buffer
(alpha)

In the final rendering pass, we project each sample into light space (just as is 
done with ordinary shadow maps) to perform lookups into the shadow map, 
the smoothie (depth) buffer, and the smoothie (alpha) buffer.  Then we can 
perform the necessary depth comparisons to shade the sample 
appropriately.  Using the OpenGL ARB_shadow extension, the hardware 
actually does the depth comparisons for you, which leads to a big 
performance boost.
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Additional DetailsAdditional Details

Combination of methods:
• percentage closer filtering (2 x 2 filtering in shader)
• perspective shadow maps

See paper (course notes) for Cg shader code

There are a number of ways to extend the smoothie algorithm.  For instance, 
in the final rendering pass, instead of performing a single lookup into each 
texture map to shade the sample, we can perform the lookups multiple times 
using neighboring texels (e.g. the neighboring 2x2 grid), perform the shading 
using each set of samples, and then filter the results.  This is similar to 
percentage closer filtering.

Our method can also be combined with perspective shadow maps to further 
reduce aliasing.

The original paper (E. Chan and F. Durand, EGSR 2003) is provided in the 
course notes and contains sample Cg shader source code for each of the 
rendering passes.
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Examples
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VideoVideo

This video, which compares regular shadow maps, bicubic-filtered shadow 
maps, and the smoothie algorithm, is not very useful in these course notes, 
but fortunately it is available on the paper web site: 
http://graphics.csail.mit.edu/~ericchan/papers/smoothie/
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Hiding Aliasing (256 x 256)Hiding Aliasing (256 x 256)

shadow map bicubic filter

smoothie (t = 0.02) smoothie (t = 0.08)

16 ms 129 ms

19 ms 19 ms

I mentioned earlier that the smoothie algorithm is useful for hiding aliasing 
artifacts.  Let’s consider an extreme case: using low-resolution (256 x 256) 
buffers.  We’re looking a simple scene where a cylinder casts a shadow onto 
a ground plane.  The top-left image shows the extremely aliased shadow 
edge from a regular shadow map.  In the top-right image, we have applied 
percentage closer filtering with a bicubic reconstruction filter (16 samples).  
The shadows are somewhat smoother, but the rendering time has increased 
considerably.  The bottom of row images were generated using the smoothie 
algorithm.  The bottom-right image simulates a larger area light source, 
which equates to using larger smoothies.  Although the aliasing artifacts are 
still apparent, they are less objectionable than in the top row of images, and 
the performance remains high.
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Hiding Aliasing (1k x 1k)Hiding Aliasing (1k x 1k)

17 ms 142 ms

22 ms 24 ms

shadow map bicubic filter

smoothie (t = 0.02) smoothie (t = 0.08)

This is the same scene, except using 1024 x 1024 buffers.  Whereas aliasing 
is still noticeable in the top of images, it is completely masked in the images 
generated using the smoothie algorithm.  Furthermore, the bottom-row 
image looks convincingly like a soft shadow, with the shadow getting softer 
farther away from the cylinder.
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Antialiasing Example #1Antialiasing Example #1

shadow map

hard shadows
(aliased)

Here are some additional examples with more complex blockers and
receivers.  We are looking at the shadow cast by a flamingo’s neck onto its 
body.  This image was created using a standard 1024 x 1024 shadow map.
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Antialiasing Example #1Antialiasing Example #1

smoothies

soft shadows
(antialiased)

This image was generated using the smoothie algorithm.  The shadow 
edges appear softer and antialiased.
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Antialiasing Example #2Antialiasing Example #2

shadow map

hard shadows
(aliased)

In this image the elephant’s tusk casts a shadow onto its trunk. Again we 
are using a 1024 x 1024 shadow map.
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Antialiasing Example #2Antialiasing Example #2

smoothies

soft shadows
(antialiased)

The shadows using the smoothie algorithm are soft and antialiased.
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LimitationsLimitations

smoothie ray tracer

increasing size
of light source

Now let’s consider what happens as we increase the size of the light source 
(i.e. make the smoothies bigger).  As we mentioned earlier, this is actually a 
limitation of our approach, since we aren’t accurately modeling the area light 
source (in fact, we aren’t really modeling it at all).  These images compare 
the smoothie algorithm against a Monte Carlo ray tracer.  As can be seen in 
the left column, as we increase the size of the light source, the shadow does 
indeed get softer, but the umbra always has the same size.  In contrast, the 
ray-traced images show the correct result, i.e. the umbra decreases as the 
size of the light source increases.
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VideoVideo

original md2shader demo courtesy of Mark Kilgard

This video is also available on the paper web site: 
http://graphics.csail.mit.edu/~ericchan/papers/smoothie/
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TradeoffsTradeoffs

Shadow maps:
• Assumes directional light or spotlight
• Discrete buffer samples

Now let’s discuss qualitatively the tradeoffs involved in the smoothie 
algorithm.  Since the method works in both image space (i.e. the use of a 
discrete buffer for the shadow map and smoothie buffer) and object space 
(the use of object-space silhouettes to construct the smoothies), the method 
inherits some the limitations from both sets of techniques.

Like the shadow map method, the smoothie algorithm assumes some form 
of directional light.  Covering the entire sphere of directions requires 
additional rendering passes.  In contrast, shadow volumes automatically 
handle omnidirectional point light sources as well as directional light sources.
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TradeoffsTradeoffs

Shadow maps:
• Assumes directional light or spotlight
• Discrete buffer samples

Shadow volumes:
• Assumes blockers are closed triangle meshes 
• Silhouettes identified in object space

As with the shadow volume method, the smoothie algorithm requires finding 
object-space silhouettes.  This implies that our blockes must be represented 
as polygons.  In contrast, shadow maps automatically handle any type of 
geometry that can be represented in a depth buffer.
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TradeoffsTradeoffs

Shadow maps:
• Assumes directional light or spotlight
• Discrete buffer samples

Shadow volumes:
• Assumes blockers are closed triangle meshes 
• Silhouettes identified in object space

Smoothies:
• Rendered from light’s viewpoint
• Occupy small screen area        inexpensive

One might wonder about the expense of rendering the smoothies 
themselves.  After all, it sounds similar to rasterizing shadow volumes, which 
is known to be a costly operation.  The main difference here is that shadow 
volume polygons are drawn from the observer’s viewpoint.  They occupy 
substantial screen area and thus are expensive to rasterize.  On the other 
hand, smoothies are drawn from the light’s viewpoint.  They occupy relatively 
little screen area and thus are cheaper to render.
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SummarySummary

Main points:
• Simple extension to shadow maps
• Shadows edges are fake, but look like soft shadows
• Fast, maps well to graphics hardware

In summary, the smoothie algorithm tries to balance the quality and 
performance goals of real-time soft shadow algorithms.  While it is not 
geometrically accurate, it captures an important aspect of soft shadows, 
namely the dependence on the ratio of distances between the light source, 
blocker, and receiver.  Since the umbra of the shadow does not decrease 
with increasing light source size, the algorithm is best suited to small area 
light sources.  Furthermore, the algorithm is useful for the antialiasing of 
shadow edges, regardless of whether or not soft shadows are desired.
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