

Speakers

- Tomas Akenine-Moeller
 - Lund Institute of Technology, Sweden
- Eric Chan
 - Massachusetts Institute of Technology, USA
- Wolfgang Heidrich
 - University of British Columbia, Canada
- Mark J. Kilgard
 - NVIDIA Corporation, USA
- Marc Stamminger
 - University of Erlangen-Nürnberg, Germany
- Jan Kautz
 - Massachusetts Institute of Technology, USA

Why Shadows?

- Intuition about lighting / objects
 - Position of the light (e.g. sundial)
 - Depth cue
 - Spatial relationship between objects
 - Contact points
 - Realism

Note back facing primitives (as seen from the light source) are always in shadow So the sphere is self shadowing too (not shown)

Classification of Shadowing Techniques

- Hacks
 - No Shadows, projected blobs, projective shadows
- Shadow Maps
 - Using texture maps
- Shadow Volumes
 - Using geometry to represent shadows
- Shadows with Radiance Transfer
 - Precompute light-object interaction

Hacks

- Projective Shadows
 - distinct shadow caster / receiver
 - no self-shadowing
 - store shadow in texture
 - project onto receiver
 - possible to blur shadow texture

Schedule

- Introduction
 - 8:30 Introduction (Kautz)
- Shadow Mapping
 - 8:45 Introduction to Shadow Maps (Stamminger)
 - 9:15 Perspective Shadow Maps (Stamminger)
 - 10:00 Silhouette Maps (Chan)
 - 10:15 10:30 Break
 - 10:55 Linear Light Sources (Heidrich)
 - 11:35 Smoothies (Chan)
 - 12:15 13:45 Break
- Shadow Volumes
 - 13:45 Shadow Volumes (Kilgard)
 - 14:45 Soft Shadow Volumes (Akenine-Moeller)
 - 15:30 15:45 Break
- Radiance Transfer
 - 16:00 Radiance Transfer with Shadows (Kautz)
- Conclusions
 - 17:00 Conclusions (Kautz)