
1

PhysicallyPhysically--Based Reflectance Based Reflectance
for Gamesfor Games

11:15 11:15 -- 12:00: Reflectance Rendering 12:00: Reflectance Rendering
with Environment Map Lightingwith Environment Map Lighting

Jan KautzJan Kautz

2

Shading ComputationShading Computation

• Computer games often only use point lights

– Easy to compute

– But rarely occurs in reality

)0,max(),()()(p
out
p nlvlflIvL rrrrrr

⋅=

l
r

vr

3

Shading ComputationShading Computation

• Actually: light arrives from many directions

Emitter 2Emitter 2Emitter 1Emitter 1

ObjectObject

4

Shading ComputationShading Computation

• Results are more realistic

• Want to use this in real-time somehow

Environment Maps are a solution

Point Light Global Incident Light

5

Reflectance Rendering with Reflectance Rendering with
Environment Map LightingEnvironment Map Lighting

• Environment Maps

• Filtered Environment Maps
– Diffuse Reflections

– Glossy Reflections

• Anti-Aliasing

• Precomputed Radiance Transfer

In this section, we shall discuss the practical considerations for rendering
reflectance models with more general lighting, such as environment maps. First we
will over methods for using environment map lighting with the simplest types of
reflection: perfectly diffuse (Lambertian) and perfectly specular (mirror). Next, we
discuss methods for rendering more general types of reflections with environment
maps. Following that, we will discuss issues related to anti-aliasing when rendering
reflection models with environment maps. Finally we shall discuss a special class of
rendering algorithms for general lighting, precomputed radiance transfer, in the
context of various reflection types.

6

• Definition:
– 2D texture for directional

information
– Radiance arriving at a

single point.

• Assumptions:
– Environment map at

infinity ⇒ valid for whole
object

Environment MapsEnvironment Maps

EnvironmentEnvironment
MapMap

SpecularSpecular
ObjectObject

Environment maps are essentially 2D textures that store directional information. The
directional information is the incident lighting arriving at a single point. This
information can be used to render reflections off mirroring objects, such as the torus
shown on the upper right corner. To this end, the reflected viewing direction at a
surface point is used to lookup into the environment map. This makes the implicit
assumption that the environment is infinitely far away.

7

• Definition:
– 2D texture for directional

information
– Radiance arriving at a

single point.

• Assumptions:
– Environment map at

infinity ⇒ valid for whole
object

Environment MapsEnvironment Maps

Here we see how the assumption that the environment is infinitely distant slightly
changes the direction that is used to lookup into the map.

8

Environment Maps: Environment Maps:
ParameterizationsParameterizations

Cube Map (most common)

Parabolic Map

Sphere Map

There different ways to store this spherical information.

-Cube Maps: a commonly used format nowadays, that is supported by GPUs
-Parabolic Maps: a parameterization that stores two hemispheres separately.
-Sphere Map: original format supported by GPUs (OpenGL). This parameterization
corresponds to the reflection off a metal sphere.

9

Filtered Environment MapsFiltered Environment Maps

• Theory

• Diffuse Reflections
– Spherical Harmonics

• Glossy Reflections
– Prefiltering

– On-the-fly Filtering

• Implementation and Production Issues

We will first discuss general reflections with environment maps. Next we will discuss
diffuse reflections and using spherical harmonics to represent lighting on diffuse
surfaces. Glossy reflections will be treated afterwards, and finally we will discuss
implementation and production issues related to environment maps.

10

Filtered Environment MapsFiltered Environment Maps

• Goal: different materials
⇒ diffuse and glossy reflections

⇒ Necessary: use of other BRDFs

The goal of filtered environment maps is to produce reflective objects that are not
just mirrors. E.g., that can include purely diffuse object reflecting an environment or
more glossy objects, as shown here.

11

Filtered Environment MapsFiltered Environment Maps

Object

Eye
Environment map

Filtered Environment Maps:

- Filter equals BRDF

- Filter depends on view-direction

A filtered environment map stores a filtered version of the original map. Glossy
surfaces reflect light from a larger cone of directions, which depends on the material
(BRDF). A filtered environment map applies the BRDF, i.e. it convolves the original
map to get a “blurry” version. In theory the filter (BRDF) depends on the direction of
the viewer.

12

Filtered Environment MapsFiltered Environment Maps

• Environment maps:
– Store incident light

• Filtered environment maps:
– Store reflected light for all possible surface

orientations and view directions (prefiltering)

– Index into environment map with e.g.
• Reflected view direction or surface normal direction

• Depends on chosen reflectance model

Filtered environment maps store reflected light instead of incident light.

13

• General filtered environment maps:

– Depends on (global) view direction, tangent frame

• Output: 5D table ⇒ too expensive !!

()∫Ω ⋅= ldlntnltnvflLtnvL renve

rrrrrrrrrrrrr)(),,(),,,()(),,(ωω

Filtered Environment MapsFiltered Environment Maps

BRDF

Reflected radiance is computed by integrating all incident light multiplied by the
BRDF and the cosine between the normal and the lighting. Here we see that the
BRDF depends on the coordinates of the view and lighting direction in the local
coordinate system at the current point (BRDF requires local directions, the function
w() converts from global to local coordinate system). The outgoing radiance
depends on the viewing direction, the surface normal and the tangent (in case of
anisotropic BRDFs). Tabulating this ends up being a 5D table!

14

Filtered Environment MapsFiltered Environment Maps

• Goal: avoid high memory consumption
• Solutions:

– E.g. Certain BRDFs ⇒ output only 2D

– E.g. Arbitrary BRDFs ⇒ approximations

Fortunately, it is possible to avoid the high memory requirements by choosing
appropriate BRDFs or approximating them the right way.

15

Filtered Environment MapsFiltered Environment Maps

• Theory

• Diffuse Reflections
– Spherical Harmonics

• Glossy Reflections
– Prefiltering

– On-the-fly Filtering

• Implementation and Production Issues

Now we will discuss using spherical harmonics to represent lighting on diffuse
surfaces (irradiance environment maps).

16

• Diffuse prefiltering [Greene ’86]

• Results in 2D map parameterized over the
surface normal:

Diffuse Environment MapsDiffuse Environment Maps

Original Diffuse ResulOriginal Diffuse Resultt

∫Ω ⋅= ldlnlLnL env
d

e

rrrrr))((ρ)(
π

The first material we want to look at are diffuse materials. The BRDF of a diffuse
material is just a constant ρd. The integral of the lighting and the cosine between the
normal and integration direction only depends on the surface normal. Hence the
filtered environment map also only depends on the normal, which makes it again a
2D environment map.

Notice how much smoother the diffusely prefiltered environment map looks like.

17

Diffuse Environment MapsDiffuse Environment Maps

• Brute-force filtering is very slow
– Can be tens of minutes for large environment

maps

• Observation:
– Diffuse environment maps are low-frequency
⇒ due to large filter kernel

– Hence, filtering in frequency-space is faster

Filtering can be done brute-force (by applying the cosθi filter at every texel of the
environment map). But that can be slow.

Due to the large filter kernel (the cosine kernel extends over a full hemisphere) and
the resulting low-frequency environment map, filtering is fast in frequency-space.

18

Diffuse Environment MapsDiffuse Environment Maps
Using Spherical HarmonicsUsing Spherical Harmonics

• Proposed by [Ramamoorthi01]

• Project lighting into spherical harmonics:

• Convolution with cosine-kernel

becomes

ldlylLl kenvkenv

rrr
)()(, ∫=

ldlnlLnL envdiffuse

rrrrr)()()(⋅= ∫

∑
=

=
8

0
,)(ρ)(

k
kkenvk

d
diffuse nylAnL rr

π

First proposed by [Ramamoorthi01], frequency-space filtering is performed with
Spherical Harmonics (the Fourier equivalent over the sphere). If the lighting is
represented in SH, then the convolution becomes a simple scaled sum between the
coefficients of the lighting (projection to be explained in a bit) and the coefficients of
the cosine (times some convolution constants).

The exact definitions of SH can be looked up on the web. If only the first few bands
are used, it is more efficient to use explicit formulas, which can be derived by using
Maple for example.

19

The definitions for the first 25 basis functions (in ylm_array[]). Input is a direction.

float x = dir[0];

float y = dir[1];

float z = dir[2];

float x2, y2, z2;

ylm_array[0] = 0.282095f; //l,m = 0,0 // 1/sqrt(4pi)

ylm_array[1] = 0.488603f * y; //1,-1 //sqrt(3/4pi)

ylm_array[2] = 0.488603f * z; //1,0

ylm_array[3] = 0.488603f * x; //1,1

x2 = x*x; y2 = y*y; z2 = z*z;

ylm_array[4] = 1.092548f * x * y; //2,-2 // sqrt(15/4pi)

ylm_array[5] = 1.092548f * y * z; //2,-1

ylm_array[6] = 0.315392f * (3.f*z2 - 1.f); //2,0 // sqrt(5/16pi)

ylm_array[7] = 1.092548f * x * z; //2, 1

ylm_array[8] = 0.546274f * (x2 - y2); //2,2 // sqrt(15/16pi)

const float fY30const = 0.373176332590115391414395913199f; //0.25f*sqrt(7.f/M_PI);

const float fY31const = 0.457045799464465736158020696916f; //1.f/8.0f*sqrt(42.f/M_PI);

const float fY32const = 1.445305721320277027694690077199f; //0.25f*sqrt(105.f/M_PI);

const float fY33const = 0.590043589926643510345610277541f; //1.f/8.f*sqrt(70.f/M_PI);

ylm_array[9] = fY33const*y*(3.f*x2 - y2); //3,-3

ylm_array[10] = fY32const*2.f*x*y*z; // 3,-2

ylm_array[11] = fY31const*y*(5.f*z2-1.f); // 3,-1

ylm_array[12] = fY30const*z*(5.f*z2-3.f); // 3,0

ylm_array[13] = fY31const*x*(5.f*z2-1.f); // 3,1

ylm_array[14] = fY32const*z*(x2-y2); // 3,2

ylm_array[15] = fY33const*x*(x2-3.f*y2); // 3,3

const float fY40const = 0.84628437532163443042211917734116f; // 3.0f/2.0f/sqrt(M_PI);

const float fY41const = 0.66904654355728916795211238971191f; // 3.0f/8.0f*sqrt(10.f/M_PI);

const float fY42const = 0.47308734787878000904634053544357f; // 3.0f/8.0f*sqrt(5.f/M_PI);

const float fY43const = 1.7701307697799305310368308326245f; // 3.0f/8.0f*sqrt(70.f/M_PI);

const float fY44const = 0.62583573544917613458664052360509f; // 3.0f*sqrt(35.0f/M_PI)/16.f;

ylm_array[16] = fY44const*4.f*x*y*(x2-y2); // 4,-4

ylm_array[17] = fY43const*y*z*(3.f*x2-y2); // 4,-3

ylm_array[18] = fY42const*2.f*y*x*(7.f*z2-1.f); // 4,-2

ylm_array[19] = fY41const*y*z*(7.f*z2-3.f); //4,-1

ylm_array[20] = fY40const*(z2*z2 - 3.f*z2*(x2+y2) + 3.0f/8.0f*(x2+y2)*(x2+y2)); // 4,0

ylm_array[21] = fY41const*x*z*(7.f*z2-3.f); // 4,1

ylm_array[22] = fY42const*(x2-y2)*(7.f*z2-1.f); // 4,2

ylm_array[23] = fY43const*x*z*(x2 - 3.f*y2); // 4,3

ylm_array[24] = fY44const*(x2*x2 - 6.f*x2*y2 + y2*y2); // 4,4

20

Diffuse Environment MapsDiffuse Environment Maps
Using Spherical HarmonicsUsing Spherical Harmonics

• Convolution

• With convolution constants: Ak
• Simple sum instead of integral!

• yk(ω) are simple (quadratic) polynomials

• Only 15 instructions in shader

() ∑
=

=
8

0
,)(ρ

k
kkenvk

d
diffuse nylAnL rr

π

The constants are:
A0 = π
A1 = A2 = A3 = 2π/3
A4 = … = A8 = π/4

See previous page for yk(ω)

21

• Projection into Spherical Harmonics
– Integrate basis functions against fixed HDR map

• 1) Monte-Carlo integration

• 2) Precompute maps in same space (e.g. cube map) that
contain the basis functions ⇒ big dot-product for each coeff.

∫ ⋅=kenvl ,

Diffuse Environment MapsDiffuse Environment Maps
Using Spherical HarmonicsUsing Spherical Harmonics

() ()∫
Ω

= ldlylLl kenvkenv

rrr
,

This is a standard scenario for projecting an HDR environment into SH basis
functions.

If the environment map is given as a cube map, it is necessary to know the solid
angle of a texel in the cube map. It is: 4/((x2+y2+z2)3/2), where [x y z] is the vector to
the texel (not normalized).

22

Diffuse Environment MapsDiffuse Environment Maps

full integralfull integral

SHSH

inputinputIMAGES BY R. RAMAMOORTHI

23

Filtered Environment MapsFiltered Environment Maps

• Theory

• Diffuse Reflections
– Spherical Harmonics

• Glossy Reflections
– Prefiltering

– On-the-fly Filtering

• Implementation and Production Issues

We will now consider various issues involved with the use of environment maps to
render glossy reflections.

24

Glossy ReflectionsGlossy Reflections

• Reminder: store reflected light

• Table is
– 4D for general isotropic BRDF

– 5D for general anisotropic BRDF

()∫Ω ⋅= ldlntnltnvflLtnvL renve

rrrrrrrrrrrrr)(),,(),,,()(),,(ωω

Reminder: Reflected radiance is computed by integrating all incident light multiplied
by the BRDF and the cosine between the normal and the lighting. Here we see that
the BRDF depends on the coordinates of the view and lighting direction in the local
coordinate system at the current point (BRDF requires local directions). The
outgoing radiance depends on the viewing direction, the surface normal and the
tangent (in case of anisotropic BRDFs). Tabulating this ends up being a 5D table!

Tabulating this ends up being a 5D table in case of anisotropic BRDFs (2D for
viewing direction, 3D for tangent frame), and 4D for isotropic BRDFs (2D+2D).

25

• Intuition: lobe size/shape changes with view

• Solution: fixed lobe shape?
– In global coordinate system

of the environment map,
the shape still changes.

Glossy ReflectionsGlossy Reflections

Arbitrary BRDFArbitrary BRDF

vr
r
vr
r

vrv
r

vr
r
vr
r

vrv
r

The reason for this is that the lobe size/shape of the BRDF changes with the
viewing direction. For example reflections become sharper at grazing angles.

Even a fixed lobe shape is not sufficient, as the change from the local BRDF
coordinate system to global environment map coordinate system still results in
different shapes (i.e. dimensionality is still high).

26

Glossy ReflectionsGlossy Reflections

• Nonetheless, certain BRDFs (or
approximations) reduce dimensionality

• Best example: Phong model

• Reason: its lobe shape is
– fixed

– rotationally symmetric

PhongPhong BRDFBRDF

The solution is to find a BRDF that has a fixed lobe-shape and that the lobe shape
is rotationally symmetric (so change from local to coordinate system doesn’t
matter).

27

Glossy Reflections: PhongGlossy Reflections: Phong

• Phong prefiltering [Miller84, Heidrich99]
– Outgoing radiance of a Phong material at one point

is a 2D function of the reflected viewing direction

– Phong BRDF (global coords):

– “Blurred” environment map resulting from shift-
invariant Phong filter:

∫Ω ⋅= ldlLlrkrL env
N

vsve

rrrrr)()()(

)()(),(lnlrklvf N
vsr

rrrrrr
⋅⋅=

The best example is the Phong BRDF, as defined here (original definition using
global coordinate system). Note that the Phong material is physically not plausible,
but results in 2D environment maps.

28

Glossy Reflections: PhongGlossy Reflections: Phong

N=10 N=100 N=1000 N=10 N=100 N=1000 perfectperfect

Here we have an example of Phong environment maps, for different
exponents N=10,100,1000.

29

Glossy Reflections: Phong + Diffuse Glossy Reflections: Phong + Diffuse
(Combined with Fresnel)(Combined with Fresnel)

IMAGES BY W. HEIDRICH

Here we combined Phong filtered environment maps with diffuse environment
maps. The combination is governed by the Fresnel equations. This results in very
realistic looking materials.

30

Glossy Reflections: Phong ProblemGlossy Reflections: Phong Problem

• Phong model is not realistic

• Real materials are sharper at grazing angles:

IMAGES BY E. LAFORTUNE

The Phong model is not realistic, as its lobe shape remains constant for all viewing
directions! Real reflections become sharper at grazing angles, e.g. when looking at
a sheet of paper at very grazing angles will show a visible glossy reflection.

31

Glossy Reflections: Real MaterialsGlossy Reflections: Real Materials

• Lobe becomes narrower and longer at
grazing angles:

• For increased realism, want to model that
– Need to use other BRDFs

– Without increasing dimensionality of filtered
environment map

Real BRDFReal BRDF

I.e., the lobe shape changes. For more realism, we want to include this effect in our
filtered environment maps.

32

Glossy Reflections: Lafortune ModelGlossy Reflections: Lafortune Model

• Lafortune model
– Derived from Phong model

– Keeps lobe shape as in Phong, but modifies
viewing direction to achieve off-specular lobes

– Allows for anisotropic reflections

The first example that allows this (to some limited extent) is the Lafortune model. It
is basically a Phong model, but slightly more realistic, allowing a more realistic class
of materials to be represented.

33

Glossy Reflections: Lafortune ModelGlossy Reflections: Lafortune Model

• [McAllister02] proposed to use it for
environment maps:

with

• Note that is moved outside the integral
as which is an approximation.
– Ok for sharp lobes, otherwise inaccurate

∫Ω ⋅⋅= ldlLlrkrnrL env
N

wsvwlaf

rrrrrrr)()()()(

),,(zzyyxxw vCvCvCr =
r

)(vrn
rr
⋅

)(ln
rr
⋅

Plugging the model into the reflectance equation, we arrive at the above equation.
Note how similar the integral is to the original Phong environment maps.

The main difference is the direction rw, which isn’t necessarily just the reflected view
direction, it can be any scaled version of the view direction, which allows for off-
specular reflections.

Note further how the term (n·l), which should be inside the integral is simply moved
outside by approximating it with (n· rv). This is incorrect of course, but for high
exponents N, the influence of (n·l) is rather small anyway (it doesn’t vary much
where (rw·l)N ≠ 0), so moving it outside the integral is an acceptable approximation.
For small N, the approximation is very crude.

34

Glossy Reflection: Glossy Reflection:
Lafortune ExampleLafortune Example

Additionally:
– Stored several 2D

filtered environment
maps as 3D stack
(varying exponent)

– Per-pixel lookups to
achieve spatial
variation

IMAGE BY D. MCALLISTER

Example of rendering with Lafortune example.

Here the authors have prefiltered an environment map with different exponents and
stored it in a mip-mapped cube map. At each texel, they have a roughness map,
which governs in which level of the mip-map to index. You can also note that the
Lafortune model allows for anisotropies.

35

Glossy Reflections: Glossy Reflections:
BRDF Approximations [Kautz00]BRDF Approximations [Kautz00]

• Approximate BRDF [Kautz00] with
– rotationally-symmetric &

– constant lobe

• E.g:

[Kautz00] proposed to approximate BRDFs with a rotationally-symmetric and fixed
lobe such that filtered environment maps would remain 2D (like the Phong lobe).

36

Glossy Reflections:Glossy Reflections:
BRDF Approximations [Kautz00]BRDF Approximations [Kautz00]
• Given:

• Fit rotationally symmetric lobes:

• Filter environment map with lobes:

Arbitrary BRDFArbitrary BRDF Environment MapEnvironment Map

+++

Given some arbitrary shaped lobe, you can see here rotationally-symmetric
lobes and the environment maps filtered with it.

You can still see how the width/length of the lobe changes with viewing
direction.

37

Glossy Reflections: Glossy Reflections:
BRDF Approximations [Kautz00]BRDF Approximations [Kautz00]

• Any BRDF can then be used for filtering:
– for good quality: need separate lobe for each view

• results in 3D environment map (stack of 2D maps)

– otherwise: use single (scaled) lobe for each view
• basically like Phong or Lafortune

• Similar approximation as Lafortune needed
– move (n·l) outside integral, or otherwise the lobes

are not rotationally symmetric

For realistic results, it is necessary to use these separate lobes and filter the
environment map with it. This results in a stack of 2D environment maps, which are
index with the elevation angle of the viewing direction (anisotropic BRDFs are not
considered).

The authors also propose to approximate the BRDF with one (scaled) fixed lobe,
which then is very similar to the Phong/Lafortune BRDFs (but based on measured
BRDFs, which they approximate).

Again, (n·l) is moved outside the integral.

38

Glossy Reflections:Glossy Reflections:
How to Filter a Cube Map?How to Filter a Cube Map?
environment mapenvironment map

over sphereover sphere

sourcesourcefilter kernelfilter kernel targettarget

apply filterapply filter

Now we have some idea on how prefiltered environment maps work. We don’t know
exactly how to filter one.

It is quite simple: for each texel in the target (filtered) environment map, we apply a
convolution filter. This filter needs to be mapped from the sphere (the domain over
which it is defined) into the texture domain of the environment map.

39

Glossy Reflections:Glossy Reflections:
How to Filter a Cube Map?How to Filter a Cube Map?
environment mapenvironment map

over sphereover sphere

sourcesource

filter kernelfilter kernel
shape variesshape varies

This usually means that the filter is spatially-varying in the environment map-
domain, as there is no mapping from the sphere to the plane that doesn’t introduce
distortions.

40

∑ *

Glossy Reflections:Glossy Reflections:
How to Filter a Cube Map?How to Filter a Cube Map?
• Easy implementation: brute force

– For each target pixel, go over the full

input map, and do:
(take solid angle
of each pixel into
account)

A simple implementation just does brute-force filtering.

41

Glossy Reflections: HowGlossy Reflections: How
to Filter a Cube Map?to Filter a Cube Map?

• Faster (seconds), less
accurate:
– Hierarchically [Kautz00]

– Angular filtering with cut-off
[CubeMapGen-ATI05]

– Filter each face separately,
surrounded by other faces
[Ashikhmin03]

– In frequency domain [S2kit]

Faster and less accurate filtering can be done hierarchically [Kautz00].

Angular extent filtering: ATI’s cubemapgen tool does correct filtering, but clamps
the filter at a certain threshold and only filters within the bound of the filter. Much
faster than doing brute-force.

Another method which can be used in the case of cube maps, is filtering each face
individually but including neighboring faces around it to make sure borders are
(somewhat) handled. As can be seen in the pictures, there is no way to fill in the
corners around the center face.

Finally, the filtering can be performed in the frequency domain (S2kit has sample
source code to do this).

42

Filtered Environment MapsFiltered Environment Maps

• Theory

• Diffuse Reflections
– Spherical Harmonics

• Glossy Reflections
– Prefiltering

– On-the-fly Filtering

• Implementation and Production Issues

We will first consider various issues involved with the use of environment maps to
render mirror and diffuse reflections. Next we will discuss using spherical harmonics
to represent lighting on diffuse surfaces (irradiance environment maps). Finally we
will discuss implementation and production issues related to diffuse and mirror
reflections of environment maps.

43

Filtered Environment Maps:Filtered Environment Maps:
Filtering ProcessFiltering Process

Environment Map Filtering
⇒ kernel shift-variant in texture space

(for all: cube map, sphere map, etc.)
⇒ convolution is expensive

Environment Map Filtering Environment Map Filtering
⇒⇒ kernel shiftkernel shift--variant in texture space variant in texture space

(for all: cube map, sphere map, etc.)(for all: cube map, sphere map, etc.)
⇒⇒ convolution is convolution is expensiveexpensive

As said before, filtering can be expensive, which is mainly due to the shift-variant
filter in texture space.

44

Filtered Environment Maps:Filtered Environment Maps:
Dynamic Glossy ReflectionsDynamic Glossy Reflections

• If environment changes, want to create and
filter environment map dynamically.
[Kautz00] [Ashikhmin03][Kautz04]

– Render environment into cube/parabolic map

– Filter environment using graphics hardware
• Box Filtering

• Actual Convolution

But if a scene is changing dynamically, we also want dynamic reflections.

Easy solution: render scene into a cube map, and filter it using hardware.

45

Dynamic Glossy Environment Maps: Dynamic Glossy Environment Maps:
BoxBox--FilteringFiltering

originaloriginaloriginal

x2x2x2

x4x4x4

x8x8x8

[Ashikhmin03][Kautz04]

The actual filter that is used to filter an environment map is not easy to tell for a
viewer, so why not just use an inexpensive box-filter and store a mip-mapped cube
map.

46

Dynamic Glossy Environment MapsDynamic Glossy Environment Maps

bias: 0.05 0.1 0.15 0.2

– Box filtering is supported by hardware (automipmap)

– Select glossiness: globally (GL_EXT_lod_bias) or
per pixel (texCUBEbias())

The filtering can be done automatically using the auto_mipmap feature of GPUs.
Glossiness can then be selected on a per-object level (EXT_lod_bias) or by
changing the LOD level per-pixel.

47

Dynamic Glossy Environment MapsDynamic Glossy Environment Maps

Phong: N = 225Phong: N = 225 Box: bias = 2.25Box: bias = 2.25

48

Dynamic Glossy Environment Maps:Dynamic Glossy Environment Maps:
NaNaïïve implementationve implementation

LOD bias = 0.0LOD bias = 0.0 LOD bias = 9.4LOD bias = 9.4

Problem: cube faces are filtered independentlyProblem: cube faces are filtered independently

Solution: filtering Solution: filtering with borderwith border! ! slower againslower again

Unfortunately, there is one big drawback, the filtering is not done with borders taken
into account, which means that the faces boundaries will show up at blurrier levels
of the MIP-map!

Now easy way around this, other than slower filtering with borders again! Change
to different parameterization

49

Dynamic Glossy Environment Maps:Dynamic Glossy Environment Maps:
Parabolic MapsParabolic Maps

• Parabolic maps can include borders
GPU filtering is easier

– Here the border is shown, and one
can see that a filter kernel can extend
outside the area of the hemisphere.

• Disadvantages:
– Need to write own lookup into

parabolic maps

Parabolic maps can be used instead, where border can be used.

Problem, one needs to write a lookup into the parabolic map, which isn’t that
complicated, but it does cost a few instructions.
The other problem is that when a constant filter kernel is mapped to the center of a
parabolic map, it is much smaller than at the boundaries. Can be fixed with
[Kautz00]

50

Dynamic Glossy Environment Maps:Dynamic Glossy Environment Maps:
Parabolic MapsParabolic Maps

• Disadvantages:
– Kernel becomes spatially varying

• Fix with [Kautz00]:
– Filter with smallest & biggest kernel
– Blend between two versions to get “correctly”

filtered result
– Can choose filter (e.g. Phong, approximations,

box, …)

Problem, one needs to write a lookup into the parabolic map, which isn’t that
complicated, but it does cost a few instructions.
The other problem is that when a constant filter kernel is mapped to the center of a
parabolic map, it is much smaller than at the boundaries. Can be fixed with
[Kautz00] by filtering with smallest & largest kernel and then interpolating between
them to give “correct” kernel

51

Filtered Environment MapsFiltered Environment Maps

• Other techniques
– Unified Approach To Prefiltered Environment Maps

(using parabolic maps) [Kautz00]

– Frequency-Space Environment Map Rendering
[Ramamoorthi02]

– Fast, Arbitrary BRDF Shading [Kautz02]

52

Filtered Environment Maps Filtered Environment Maps ––
Production IssuesProduction Issues

• Distant Lighting Assumption
– All techniques assume a distant environment

– Looks odd, when object moves around and
reflections don’t change!

• Solutions
– Static scene:

• Sample incident light on grid (diffuse SH) and interpolate

• Half-Life 2 uses an artist-defined sampling of incident light

The assumption of distant lighting can be disturbing, when an object moves around
within an environment.

For static scenes, the incident lighting can be precomputed (e.g. on a grid, e.g. in
SH for diffuse reflections) and interpolated.

Half-Life 2 places samples of environment maps throughout the scene; the locations
are controlled by the artist.

53

Filtered Environment Maps Filtered Environment Maps ––
Production IssuesProduction Issues

• Dynamic scenes
– Distant lighting not main issue

• Need to re-generate environment map anyway!

– Sample incident light on-the-fly
• Render scene into cube map

– On older hardware: 6 rendering passes

– With DirectX 10 can do in one pass (geometry shaders)

• How to do filtering, see before…

In dynamic scenes, one would like to regenerate the environment map. In case of
cube maps that requires 6 passes, one for each face! This is very costly, and
therefore not done on current hardware.

Next generation hardware will allow to render this in one pass by using geometry
shaders!

54

Filtered Environment Maps Filtered Environment Maps ––
Production IssuesProduction Issues

• Cube Maps: hardware does not filter across
faces!
– I.e. a bilinear lookup will not take samples from

adjacent faces

– Idea: use texture borders
• Problem: often not supported by hardware

– Fix: make sure borders of faces are similar…
• ATI’s CubeMapGen does this

Another problem is that currently the GPU does not filter across cube map faces.
That is a bilinear lookup at the border of a face will not lookup into the adjacent
face!

Texture borders (GL) are usually not supported by GPUs. ATI’s CubeMapGen tool
fixes this by making the borders of faces more similar.

55

Filtered Environment Maps Filtered Environment Maps ––
Production IssuesProduction Issues

• HDR compression
– For realistic effects, environment maps need to be

high-dynamic range

– So far no good compression for float textures

– Solution: see this year’s papers program!

Environment maps should be high-dynamic range to achieve realistic effects, but
there are no compression techniques yet.

See this year’s technical program for a solution.

56

Filtered Environment Maps Filtered Environment Maps ––
Production IssuesProduction Issues

• So, what algorithm should I use then?

depends

57

Filtered Environment Maps Filtered Environment Maps ––
Production IssuesProduction Issues

• On-the-fly vs. Prefiltering
– Prefiltering can achieve higher quality reflections

• But: not quite clear how much better Cosine-lobe filtering
vs. box-filtering is

• Prefiltering is slower

– On-the-fly
• Problem: filtering individual faces when using cube maps

– wrong results

• Parabolic maps: need some more shader instructions

58

Filtered Environment Maps Filtered Environment Maps ––
Production IssuesProduction Issues

• Spatially-Varying BRDFs?
– Store (pre-)filtered environment map as mip-

mapped cube map/parabolic map

– Per-pixel roughness select level l of mip-map
• Want to make sure not to exceed maximum LOD lmax

(determined by hardware to avoid aliasing)

• Clamp mip-level “by hand” and then do a texCUBElod
instruction (pre-PS3.0: use texCUBEbias)

59

Reflectance Rendering with Reflectance Rendering with
Environment Map LightingEnvironment Map Lighting

• Environment Maps

• Filtered Environment Maps
– Diffuse Reflections

– Glossy Reflections

• Anti-Aliasing

• Precomputed Radiance Transfer

Now we will discuss issues related to anti-aliasing when rendering reflection models
with environment maps.

60

Environment Map AntiEnvironment Map Anti--AliasingAliasing

screen

pixel

environment map

• Aliasing due to curved surfaces
– Envmap may be minified

– Need to anti-alias it

• Done automatically
by the GPU!

vrd

vr
rd

Minification as well as magnification may occur when rendering with environment
maps. For example, a convex, curved surface can reflect light from a larger area of
the environment map towards a single pixel on the screen. To avoid aliasing
artifacts, the environment map needs to be filtered, just like any other texture needs
to be filtered in this case. GPUs perform this filtering automatically, and the
programmer does not need to deal with it explicitly.

61

Environment Map AntiEnvironment Map Anti--AliasingAliasing

screen

pixel

environment map

• Aliasing due to bump maps
– Multiple bumps within one pixel

– Accurate filtered reflection
is nearly impossible (almost
random reflected views)

The situation is more difficult, when rendering environment maps together with
bump maps. Underneath a single pixel, there might be several bumps that are all
reflecting in different directions. Accurate filtering is almost impossible in this
situation (unless very heavy super-sampling is used, which is not an option with
current GPUs).

62

• [Schilling97]
– Use covariance matrix of

distribution of normals (for
mip-maps of bump map)

– Change derivatives in cube map
lookup based on covariance value

– An implementation using TEXDD (supply
derivatives by hand) is interesting, but hasn’t
been tried…

Environment Map AntiEnvironment Map Anti--AliasingAliasing

screen

pixel

environment map

A. Schilling proposed to approximate the variation of normals underneath a screen
pixel and then to use that knowledge when looking up the environment map. He
proposes to store a covariance matrix of the normals underneath each texel of
the bump map in a MIP-mapped fashion (i.e., at coarser resolution, the area
taken into account becomes bigger). The covariance matrix is then used to
perform an anisotropic texture lookup into the environment map. Please see the
paper for details.

It might be feasible now to perform all the necessary calculations in a pixel shader.
The anisotropic lookup can be performed with the TEXDD instruction (explicit
derivatives needed). Nobody has tried this yet, but it does seem interesting.

63

Reflectance Rendering with Reflectance Rendering with
Environment Map LightingEnvironment Map Lighting

• Environment Maps

• Filtered Environment Maps
– Diffuse Reflections

– Glossy Reflections

• Anti-Aliasing

• Precomputed Radiance Transfer

Finally, we discuss a special class of rendering algorithms for general lighting,
precomputed radiance transfer, in the context of various reflection types.

64

Precomputed Radiance TransferPrecomputed Radiance Transfer

• So far: no self-shadowing
taken into account

• But is much more realistic

• Want to do it in real-time
for changing illumination

S
h

a
d

o
w

s
S

h
a
d

o
w

s
N

o
 S

h
a
d

o
w

s
N

o
 S

h
a
d

o
w

s

65

Precomputed Radiance TransferPrecomputed Radiance Transfer

• Diffuse Reflection [Sloan02]

• Other BRDFs

• Implementation and Production Issues

Another method for rendering environment map lighting, which also takes other
effects such as self-shadowing, interreflections and subsurface scattering into
account, is precomputed radiance transfer (PRT). We will first discuss using PRT on
Lambertian surfaces, followed by more general reflection models, and finally
implementation and production issues.

66

Global IlluminationGlobal Illumination
(Reflectance Equation)(Reflectance Equation)

Emitter 2Emitter 2Emitter 1Emitter 1

ObjectObject

• Integrate incident light * V() * diffuse BRDF

To compute exit radiance from a point p, we need to integrate all incident lighting
against the visibility function and the diffuse BRDF (dot-product between the normal
and the light direction).

67

• Math:

Precomputed Radiance TransferPrecomputed Radiance Transfer
Reflectance EquationReflectance Equation

∫
Ω

⋅= ldlnlVlLvL ppenvpe

rrrrrr)0,max()()()(,

Incident LightIncident Light VisibilityVisibility CosineCosine

ReflectedReflected
LightLight

Computation written down more accurately.

68

Reflectance Equation: VisuallyReflectance Equation: Visually

Incident LightIncident Light

VisibilityVisibility

CosineCosine

IntegrandIntegrand

Visually, we integrate the product of three functions (light, visibility, and cosine).

69

PRT: VisuallyPRT: Visually

Incident LightIncident Light

VisibilityVisibility

CosineCosine

IntegrandIntegrand∫∫
PrecomputePrecompute

The main trick we are going to use for precomputed radiance transfer (PRT) is to
combine the visibility and the cosine into one function (cosine-weighted visibility or
transfer function), which we integrate against the lighting.

70

PRTPRT

• Questions remain:

– How to encode the spherical functions?

– How to quickly integrate over the sphere?

This is not useful per se. We still need to encode the two spherical functions
(lighting, cosine-weighted visibility/transfer function). Furthermore, we need to
perform the integration of the product of the two functions quickly.

71

• Math:

• Rewrite with

• This is the transfer function
– Encodes:

• Visibility

• Shading

PRTPRT
Reflectance Equation: RewriteReflectance Equation: Rewrite

∫ ⋅= ldnllVlLvL ppenvpe

rrrrrr)0,max()()()(,

)0,max()()(ppp nllVlT rrrr
⋅=

Using some more math again, we get the transfer function Tp(s).

Note, that this function is defined over the full sphere. It also implicitly encodes the
normal at the point p! So, for rendering no explicit normal will be needed.

72

• Math:

• Plug new into Equation:

∫= ldlTlLvL penvpe

rrrr)()()(,

PRTPRT
Reflectance Equation: RewriteReflectance Equation: Rewrite

)(lTp
r

light function:light function:

into SHinto SH

transfer:transfer:

into SHinto SH

pTenvL

⇒⇒ project project lightinglighting and and transfertransfer into SHinto SH

∫ ⋅= ldnllVlLvL ppenvpe

rrrrrr)0,max()()()(,

Now, when we plug the new Tp(s) into the rendering equation, we see that we have
an integral of a product of two functions. We remember, that this special case boils
down to a dot-product of coefficient vectors, when the two functions are represented
in SH.

This is exactly, what we will do. We project the incident lighting and the transfer
function into SH.

73

• The integral

becomes

A simple dot-product!!!!

∑=
n

k
kpkenvpe tlvL ,,,)(r

PRT PRT –– Evaluating the IntegralEvaluating the Integral

∫= ldlTlLvL penvpe

rrrr)()()(,
"light vector""light vector"

"transfer vector""transfer vector"

(All examples use n=25 coefficients)(All examples use n=25 coefficients)

Then the expensive integral becomes a simple product between two coefficient
vectors.

74

Precomputed Radiance TransferPrecomputed Radiance Transfer

•• = =

Project lightingProject lighting

LookupLookup pT

Rotate lightRotate light

Compute integralCompute integral

per per
objectobject

per per
pixel/vertexpixel/vertex= = * *

∫ ⋅= ldlnlVlLvL ppenvpe

rrrrrr)0,max()()()(,

This shows the rendering process.

We project the lighting into SH (integral against basis functions). If the object is
rotated wrt. to the lighting, we need to apply the inverse rotation to the lighting
vector (using the SH rotation matrix).

At run-time, we need to lookup the transfer vector at every pixel (or vertex,
depending on implementation). A (vertex/pixel)-shader then computes the dot-
product between the coefficient vectors. The result of this computation is the exitant
radiance at that point.

75

PRT ResultsPRT Results

UnshadowedUnshadowed ShadowedShadowed

76

PRT ResultsPRT Results

UnshadowedUnshadowed ShadowedShadowed

77

PRT ResultsPRT Results

UnshadowedUnshadowed ShadowedShadowed

78

PRT ResultsPRT Results

DEMO

79

• Reminder:

• Need lighting coefficient vector:

• Compute every frame (if lighting changes)

• Projection can e.g. be done using Monte-
Carlo integration, or on GPU

PRT RenderingPRT Rendering

∫= ldlylLl kenvkenv

rrr
)()(,

∑=
n

k
kpkenvpe tlL ,,,

Rendering is just the dot-product between the coefficient vectors of the light and the
transfer.

The lighting coefficient vector is computed as the integral of the lighting against the
basis functions (see slides about transfer coefficient computation).

80

• Sample dynamic lighting:
– Render scene from center of object p

– 6 times: for each cube face

– Compute lighting coefficients (SH/Haar):

– No need to rotate lighting then

∫ ⋅=kenvl ,

PRT Rendering PRT Rendering ––
Dynamic LightingDynamic Lighting

81

PRT RenderingPRT Rendering

• Work that has to be done per-vertex is easy:

• Only shadows: independent of color
channels ⇒ single transfer vector

• Interreflections: color bleeding ⇒ 3 vectors

// No color bleeding, i.e. transfer vector is valid for all 3 channels

for(j=0; j<numberVertices; ++j) { // for each vertex
for(i=0; i<numberCoeff; ++i) {
vertex[j].red += Tcoeff[i] * lightingR[i]; // multiply transfer
vertex[j].green += Tcoeff[i] * lightingG[i]; // coefficients with
vertex[j].blue += Tcoeff[i] * lightingB[i]; // lighting coeffs.

}
}

So far, the transfer coefficient could be single-channel only (given that the 3-
channel albedo is multiplied onto the result later on). If there are interreflections,
color bleeding will happen and the albedo cannot be factored outside the
precomputation. This makes 3-channel transfer vectors necessary, see next slide.

82

PRT RenderingPRT Rendering

• In case of interreflections (and color
bleeding):

// Color bleeding, need 3 transfer vectors

for(j=0; j<numberVertices; ++j) { // for each vertex
for(i=0; i<numberCoeff; ++i) {
vertex[j].red += TcoeffR[i] * lightingR[i]; // multiply transfer
vertex[j].green += TcoeffG[i] * lightingG[i]; // coefficients with
vertex[j].blue += TcoeffB[i] * lightingB[i]; // lighting coeffs.

}
}

83

What does this mean?What does this mean?

• Positive:
– Shadow computation is independent of number or

size of light sources

– Soft shadows are cheaper than hard shadows

– Transfer vectors need to be computed (can be
done offline)

– Lighting coefficients computed at run-time (3ms)

This has a number of implications:
Shadow computation/shading is independent of the number or the size of the light
sources! All the lighting is encoded in the lighting vector, which is independent of
that.

Rendering this kind of shadows is extremely cheap. It is in fact cheaper than
rendering hard shadows!

The transfer vectors can be computed off-line, thus incurring no performance
penalty at run-time.

The lighting vector for the incident light can be computed at run-time (fast enough,
takes a few milliseconds).

84

What does this mean?What does this mean?

• Negative:

– Models are assumed to be static

The precomputation of transfer coefficients means that the models have to be static!

Also, there is an implicit assumption, that all points on the surface receive the same
incident illumination (environment map assumption). This implies that no half-
shadow can be cast over the object (unless, it's part of the object preprocess).

85

PRT PRT –– PrecomputationPrecomputation

• Integral

evaluated numerically with e.g. ray-tracing:

• Directions need to be uniformly
distributed (e.g. random)

• Visibility is determined with ray-tracing

∫ −⋅→= ldlylnlpVt kpkp

rrrrr
)()0,max()(ρd0

, π

∑
−

=

−⋅→=
1

0

d0
,)()0,max()(ρ4 N

j
jkjpjkp lylnlpV

N
t

rrrr

π
π

jl
r

V

The main question is how to evaluate the integral. We will evaluate it numerically
using Monte-Carlo integration. This basically means, that we generate a random
(and uniform) set of directions s_j, which we use to sample the integrand. All the
contributions are then summed up and weighted by 4*pi/(#samples).

The visibility V(p->s) needs to be computed at every point. The easiest way to do
this, is to use ray-tracing.

Aside: uniform random directions can be generated the following way.
1) Generate random points in the 2D unit square (x,y)
2) These are mapped onto the sphere with:

theta = 2 arccos(sqrt(1-x))
phi = 2y*pi

86

Basis 16Basis 16

Basis 17Basis 17

Basis 18Basis 18

illuminateilluminate resultresult

......

......

PRT Precomputation PRT Precomputation –– VisuallyVisually

Visual explanation 2):

This slide illustrates the precomputation for direct lighting. Each image on the right
is generated by placing the head model into a lighting environment that simply
consists of the corresponding basis function (SH basis in this case illustrated on the
left.) This just requires rendering software that can deal with negative lights.

The result is a spatially varying set of transfer coefficients shown on the right.

To reconstruct reflected radiance just compute a linear combination of the transfer
coefficient images scaled by the corresponding coefficient for the lighting
environment.

87

PRT Precomputation PRT Precomputation –– CodeCode
// p: current vertex/pixel position
// normal: normal at current position
// sample[j]: sample direction #j (uniformly distributed)
// sample[j].dir: direction
// sample[j].SHcoeff[i]: SH coefficient for basis #i and dir #j

for(j=0; j<numberSamples; ++j) {
double csn = dotProduct(sample[j].dir, normal);
if(csn > 0.0f) {
if(!selfShadow(p, sample[j].dir)) { // are we self-shadowing?
for(i=0; i<numberCoeff; ++i) {
value = csn * sample[j].SHcoeff[i]; // multiply with SH coeff.
result[i] += albedo * value; // and albedo

}
}

}
}
const double factor = 4.0*PI / numberSamples; // ds (for uniform dirs)
for(i=0; i<numberCoeff; ++i)

Tcoeff[i] = result[i] * factor; // resulting transfer vec.

Pseudo-code for the precomputation.

The function selfShadow(p, sample[j].dir) traces a ray from position p
in direction sample[j].dir. It returns true if there it hits the object, and false
otherwise.

88

PRT PRT –– Basis FunctionsBasis Functions

• Original technique uses Spherical Harmonics

• Wavelets are a good alternative [Ng03]
– Better quality for a given amount of coefficients

– [Ng03] cannot be directly done on GPU

– Using compression [Sloan03], most of the
computation can be done on the GPU

89

Precomputed Radiance TransferPrecomputed Radiance Transfer

• Diffuse Reflection

• Other BRDFs

• Implementation and Production Issues

We will now discuss methods for using PRT with more general reflection models.

90

• General BRDFs
– Ongoing subject of research, see this year’s

papers.

– Difficult due to additional BRDF term:

– Could say: like envmap rendering, but with visibility

– Won’t go into details in this course

∫ ⋅= ldnlvlflVlLvL ppenvpe

rrrrrrrr)0,max())(),(()()()(, ωω

Precomputed Radiance TransferPrecomputed Radiance Transfer

General BRDFs are ongoing research. The difficulty arises from the use of an
arbitrary BRDF f(). As before, the BRDF requires local coordinates, and the function
ω() converts from global to local coordinates. The treatment of arbitrary BRDFs is
outside the scope of this course. The audience is referred to last year’s course on
PRT.

91

Precomputed Radiance TransferPrecomputed Radiance Transfer

• General BRDFs
– Commonalities of various techniques:

• Need to store more data

• Use compression

• Slower run-time than pure diffuse BRDF

– Problems with these techniques:
• Still to slow for games

– Question: do glossy reflections need self-
shadowing?

92

Precomputed Radiance TransferPrecomputed Radiance Transfer

• Diffuse Reflection

• Other BRDFs

• Implementation and Production Issues

We will now cover implementation and production issues relating to the techniques
we have just discussed.

93

PRT: Production IssuesPRT: Production Issues

• Albedo maps
– Could be stored as part of the transfer coefficients

– But often textures are sampled at higher resolution

– Better: multiply albedo with transfer at run-time
• If inter-reflections are included this is tricky, since they

depend on albedos.

94

PRT: Production IssuesPRT: Production Issues

• Normal maps
– If normal maps are included in precomputation

works just fine

– But
• Normal maps often at different resolution than PRT maps

– Solution:
• Normal Mapping for Precomputed Radiance Transfer

[Sloan06]

95

PRT: Production IssuesPRT: Production Issues

• Should I use PRT?
– If you are using light maps anyway

• PRT is not that different really!

– If you are using dynamic lighting (point lights …)
• More difficult to answer

• Combination of the two is unexplored…

